

 sensors-21-00832

sensors-21-00832

Sensors 2021, 21(3), 832; doi:10.3390/s21030832

Article

FPGA Implementation for Odor Identification with Depthwise Separable Convolutional Neural Network

Zhuofeng Mo, Dehan Luo, Tengteng Wen *, Yu Cheng[image: Orcid] and Xin Li

School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

*

Correspondence: wentt@gdut.edu.cn

Academic Editor: Chiman Kwan

Received: 18 December 2020 / Accepted: 24 January 2021 / Published: 27 January 2021

Abstract

:

The integrated electronic nose (e-nose) design, which integrates sensor arrays and recognition algorithms, has been widely used in different fields. However, the current integrated e-nose system usually suffers from the problem of low accuracy with simple algorithm structure and slow speed with complex algorithm structure. In this article, we propose a method for implementing a deep neural network for odor identification in a small-scale Field-Programmable Gate Array (FPGA). First, a lightweight odor identification with depthwise separable convolutional neural network (OI-DSCNN) is proposed to reduce parameters and accelerate hardware implementation performance. Next, the OI-DSCNN is implemented in a Zynq-7020 SoC chip based on the quantization method, namely, the saturation-flooring KL divergence scheme (SF-KL). The OI-DSCNN was conducted on the Chinese herbal medicine dataset, and simulation experiments and hardware implementation validate its effectiveness. These findings shed light on quick and accurate odor identification in the FPGA.

Keywords:

electronic nose; odor identification; depthwise separable convolutional neural network; FPGA-implementation

1. Introduction

An electronic nose (e-nose), which mimics biological olfaction, is an odor analysis device composed of a carefully selected sensor array and an appropriate pattern recognition algorithm [1]. E-nose has the ability to detect and distinguishing characteristics such as the type and concentration of gas. E-nose has become more and more widely used in the world. Sigfredo et al. designed an array of gas sensor and five machine learning algorithms to detect and evaluate contamination in grapevine berries and taint in wines [2]. Hao Wei et al. used PEN3 e-nose for data collection and designed a back-propagation neural network (BPNN) to detect brown core in the Chinese pear variety huangguan [3]. Winston Li et al. used four classifiers—MLP, SVM, KNN, and Parzen—and fusion in Dempster–Shafer to improve the accuracy of odor classification [4]. In addition, fluctuation enhanced sensing (FES) has been applied to the field of e-noses to detect gas-phase chemicals [5,6,7]. In FES, noise is considered to carry much useful information, so it uses microfluctuations caused by the interaction between chemical sensors and gas molecules to improve sensitivity and selectivity [8]. With the development of e-nose technology, e-nose has been designed and optimized many times and widely used in food testing [9], environmental monitoring [10,11], medical diagnosis [12,13,14], and the space shuttle [15,16,17]. In particular, for a long time, Chinese herbal medicine has been classified based on traditional identifying methods such as human smell, taste, vision, and touch, while the human smell is the most common method to distinguish the variety and various herb-growing areas. However, human identification of Chinese herbal medicines is highly subjective and time-consuming because individual differences and external disturbances may easily influence humans distinguishing. In recent years, several new technologies have emerged to replace manual classification of Chinese medicinal materials, such as gas chromatography-mass spectrometry (GC–MS) [18] and Electronic tongue (E-tongue) [19]. They are challenging to be commonly used because of their high price or damage to the integrity of Chinese medicinal materials.

At present, many deep learning methods and applications have been proposed, and they were also applied to odor identifications. Danli Wu et al. used a convolutional neural network (CNN) to predict odor pleasantness [20]. You Wang et al. designed an optimized deep convolutional neural network to classify dendrobium data collected by e-nose [21]. Yan Shi et al. designed a CNN-SVM model to classify beer data collected by PEN3 e-nose [22]. Deep learning algorithm can automatically extract and recognize odor features from odor data. Compared with traditional machine learning methods [23,24], the deep learning method has more advantages when applied in the field of odor recognition and achieved better performance.

An e-nose is usually operating in a separate way where the gas sensing hardware collects response data then transmits them to a computer for identification. Considering the feature of real-time data processing, some studies integrated odor identification function into automatic odor sampling hardware. Zhiyuan Wu et al. designed a low-cost e-nose system and identified cigarettes using random forest [10]. A. Ali et al. proposed a hardware/software co-design approach using the Zynq platform based on principal component analysis [25]. The integration of the e-nose system has several advantages. First of all, the integration makes the system less complicated and increase mobility because the identification algorithm runs locally and avoid using an additional computer. Furthermore, integration reduces data transmission, which makes it easier for real-time odor identification. It can be seen that the integrated e-nose design has become an important research direction. Although the integrated e-nose has many benefits, such as portability, low cost, and miniaturization, there are still some challenges in designing the integrated e-nose. The design of integrated e-nose is limited by chip performance, which leads to simple algorithms can be conducted. A simple algorithm may have a certain effect in some specific applications, but the effect may worsen in a complex odor recognition field. Complex algorithms are limited by the computational performance of simple chips, resulting in slow recognition speed, which leads to many excellent deep learning models that usually need to run on computers with GPUs. Therefore, it is vital to contrive this system capable of low-cost, fast identification, and maintaining the accuracy of identification, especially in the practical application of e-nose.

The main contributions of this paper are as follows. (1) Deep separable convolution is applied in odor identification. We propose a lightweight deep learning odor identification model named OI-DSCNN, which balances the speed and accuracy of the odor identification algorithm. (2) Accelerated deep learning algorithm based on Field-Programmable Gate Array (FPGA) is introduced into odor identification, in which the overall architecture and modules of OI-DSCNN are designed and optimized. Therefore, odor identification is accelerated in FPGA. (3) The SF-KL quantization scheme is designed to reduce FPGA resource consumption and maintain the accuracy.

This article is composed as follows. In Section 2, the OI-DSCNN model is first introduced, and then the design and implementation of SF-KL are introduced in detail. In Section 3, the architecture of OI-DSCNN in FPGA, and the design and optimization of each module are illustrated. In Section 4, experiments for the evaluation of the model are demonstrated. In Section 5, conclusions are drawn and future research is prospected.

2. The OI-DSCNN Model

2.1. Depthwise Separable Convolution

The depthwise separable convolution, initially introduced by L. Sifre et al. [26], requires fewer parameters to reduce the high computational burden of standard convolution. It had been applied to frameworks such as Mobilenet [27,28,29], and it remained sufficiently decent results and performances.

A depthwise separable convolution decomposes a standard convolution into a depthwise convolution and a pointwise convolution. Figure 1 shows the working principle of a standard convolution and depthwise separable convolution.

As for standard convolutions, as shown in Figure 1a, each input channel requires a convolution that the number of convolution kernels is the same as the output channel. The result of each output channels is the sum of its corresponding convolution kernels and convolutional results of all input channels. Suppose that the size of the input X is W X · H X · C i n , where W X , H X , and C i n is the width, height, and the number of input channels, respectively. The output Y is W Y · H Y · C o u t , where W Y , H Y , and C o u t are the width, height, and the number of output channels, respectively. Compared with the standard convolution, depthwise separable convolution separates the network into depthwise convolution and pointwise convolution, which reduces the number of weights and the amount of computation:

 N K D C + N K P C N K S C = W K · H K · C i n t e r + C i n t e r · C o u t W K · H K · C i n · C o u t = 1 C i n + 1 W K · H K

(1)

where N K S C is the size of the standard convolution kernels. N K D C is the size of the depthwise convolution kernels. N K P C is the size of the pointwise convolution kernels. C i n t e r is intermediate channels of depthwise separable convolutional network.

2.2. OI-DSCNN Modeling

The 2-dimensional sensing responses collected from e-noses were used directly in many studies [20,30,31,32,33,34,35]. In our studies, the w × h input data were reshaped to w × 1 × h for depthwise convolution computations of w independent channels as shown in Figure 2.

The structure of the OI-DSCNN model is shown in Figure 3 and Table 1. It consists of two depthwise separable convolution layers and a fully connected layer, each depthwise separable convolution layer with a max-pooling layer. Softmax classifier is used for the identification. The two depthwise convolution layers consisted of 1 × 3 and 1 × 2 convolution kernels, respectively. Nonlinear activation function R e l u is selected in all convolutional layers. The stride size of all convolutional layers is set to 1, and the max-pooling layer is set 2.

2.3. Quantization

Generally speaking, a 32-bit floating-point arithmetic consumes four times more DSPs than a 8-bit fixed-point arithmetic in parallel operation, and it requires over two times computation timing. Besides, it consumes more block memory (BRAM) and registers resources to store a large amount of parameters and intermediate computing results. To decrease the number of resources used, currently, many effective quantization methods have been proposed [36,37,38], which these methods were mostly designed for GPUs and CPUs but not for FPGA. Some common methods can decrease the model accuracy under the same network scale in the quantization phase in FPGA [39,40]. Here, we proposed a saturation-flooring KL_divergence scheme (SF-KL) to reduce the usage of computing devices because of the limited DSP resource in the FPGA chip.

The OI-DSCNN is first trained and validated in floating-point operation, then the proposed SF-KL is used to find the optimized saturation-flooring bits of outputs on each layers. After that, the quantization methods were designed in hardware logic. There are three parts of quantization process as follows.

2.3.1. Quantization of Model Weights

The OI-DSCNN model is fully trained using floating-point algorithms. After the training, parameters were first converted from 32-bit floating-point to 8-bit fixed-point using linear quantization. The following is the procedure of how to quantize weights.

We need to find the maximum weight in each layer:

 M i = max abs P i ,

(2)

where i = 1 , … , m , m is the number of layers in the model. P i represents weights in each layer:

 P i = p 1 p 2 … p n

(3)

where n is the number of weights in a layer.

The scale factor s f is obtained by

 s f i = 2 8 − 1 M i

(4)

The quantized value Q P i of P i is:

 Q P i = round P i · s f i

(5)

2.3.2. Quantization of Input

As the different sensitivities and selectivities to various gases on gas sensors, the input was mean normalized to [− 1 , 1] :

 μ i = ∑ j x i , j 120

(6)

 x i , j ′ = x i , j − μ i max (x i) − min (x i)

(7)

where j = 1 , 2 , … , 120 , i = 1 , 2 , … , 10 . μ i , max (x i) and min (x i) are the average value, maximum value, and minimum value of sampling points, respectively. x i , j and x i , j ′ represent the original input and normalized input, respectively. After that, the input is linearly quantized to the N-bit fixed-point number Q x i , j :

 Q x i , j = floor x i , j ′ · 2 8 − 1

(8)

2.3.3. Quantization of Output on Each Layer

In order to reduce the workload of manual attempts and avoid introducing additional parameters, an output quantization is shown in Equation (9). It calculates by the floor and saturation operating, which the scale factor is constrained to 1 2 N :

 Q Y N = 127 Y 2 N ≥ 127 floor (Y 2 N) − 128 < Y 2 N < 127 − 128 Y 2 N ≤ − 128

(9)

where Y is the output, and Q Y N is the quantized output. In this way, the quantization of the output can be operated only by floor and saturation without multipliers, thereby reducing the consumption of DSPs. Algorithm 1 demonstrated the completed procedure of SF-KL obtaining the scale factor.

	Algorithm 1 SF-KL scheme

	Input: X n ; Q X n ; P; Q P

Output: s f i

	1:

	
/*define Model A and B, while A uses floating-point and B uses integer*/

	2:

	
 A , B = O I − D S C N N (W e i g h t , D a t a)

	3:

	
functionQuantization(X n , Q X n , P, Q P)

	4:

	
 /* j = D W C 1 , P W C 1 , … , F C */

	5:

	
 for j in O I − D S C N N do

	6:

	
 for k = 1 → n do

	7:

	
 if j ≠ M a x p o o l i n g then

	8:

	
 /* X k ′ are the input for next layer*/

	9:

	
 X k ′ = A . j (P j , X k)

	10:

	
 Y k = B . j (Q P j , Q X n)

	11:

	
 /*max = the highest bit of the output value - 8*/

	12:

	
 for N = 0 → m a x do

	13:

	
 /*KL_divergence*/

	14:

	
 K L N k (X k ′ , Q Y N k)

	15:

	
 end for

	16:

	
 end if

	17:

	
 end for

	18:

	
 K L N = ∑ k K L N k

	19:

	
 /*Find the minimum KL_divergence and get N*/

	20:

	
 N ← m i n (K L N)

	21:

	
 /*Get the scale factor*/

	22:

	
 s f j ← 1 2 N

	23:

	
 end for

	24:

	
end function

First, it needs to prepare the original weight of P and the quantized weight Q P . n original training samples X n were randomly selected to calculate scale factor 1 2 N . The selected samples X n were quantized to Q X n according to Section 2.3.2. Three samples of each type are randomly selected, which a total of n = 3 × 7 = 21 samples as input to the algorithm. Two identical OI-DSCNN models are constructed. The difference between the two models is that one uses floating-point calculations and the other uses integer calculations. Then, import the samples into the two models separately. The results calculated by each layer in the two models (except for maximum pooling) will be used to calculate K L _ d i v e r g e n c e :

 K L _ d i v e r g e n c e X k ′ , Q Y N = sum X k ′ · log X k ′ Q Y N

(10)

 X k ′ is the output of floating point, and Q Y N is the output of integer number after saturation-flooring. Then, the scale factor of the smallest value of K L _ d i v e r g e n c e is used as the input of the next layer of integer number. We use the minimum value of the mean of the K L _ d i v e r g e n c e of different scale factors due to the scale factor. As a nonlinear Relu activation function is used, for the n-bit output Y [n − 1 : 0] in FPGA, the Equation (9) is transformed as

 Q Y N = 8 ′ b 0 if Y [n − 1] = 1 { 0 , Y [N + 6 : N] } elseif (| Y [n − 1 : N + 7]) = 0 { 0 , 7 ′ b 111 _ 1111 } other

(11)

In this way, it quantizes the output of each layer to 8 bits so that it can reduce the input bitwidth of the following layers.

3. FPGA Design and Implementation

Figure 4 describes the overview of the system architecture. This system was implemented on the Digilent Arty Z7-7020 development board, USA, which is detailed in Section 4. In order to take advantage of parallel computation in FPGA, the four convolutional layers and the fully connected layer are operated in a pipeline. In order to reduce the data access time and improve the performance of the system, the output of each layer of the network is stored in on-chip memory. The system is composed of PS block, PL block, and DDR memory. The PL block composes of winograd depthwise convolution unit (WDCU), pointwise convolution unit (PCU), fully connected unit (FCU), on-chip memory, and direct memory access (DMA). WDCU, PCU, and FCU are responsible for calculating each convolutional layer, activation layer, max-pooling layer, and fully connected layer. On-chip memory includes input data buffer, intermediate data buffer, and weight buffer. The input data buffer, intermediate data buffer, and the weight buffer for the fully connected layer were designed by block RAM (BRAM), while the weights of convolutional layers are stored in distributed RAM (DRAM). Thank to some techniques used when modeling OI-DSCNN, the number of parameters and computational complexity saw a significant decrease, which the experimental results will be illustrated in detail in Section 4. Besides, the BRAM with 630 KB in a Zynq-7020 chip is sufficient to store such a small scale of several input samples when the model is implemented in the pipeline. Moreover, it is also sufficient to store intermediate results, input data, and parameters in the on-chip memory, which reduces the memory access timing and enhances the performance of system.

The core of the PL design is the convolution layer, which significantly impacts the computation rate of the entire system. Due to the grouped convolution structure of the depthwise convolution layer, the data within each input channel cannot be reused. The Winograd algorithm for depthwise convolution was introduced [41], and the structure of the WDCU was presented in Section S1. WDCU consists of line buffer, input transformation unit, multiplier array unit, configurable output inverse transformation unit, and relu and quantization unit. A line buffer is used to buffer the data transferred to the input transformation unit. The transformed input data are transmitted to the multiplier array unit that multiplies the inputs and the weights from the WDCU weight buffer unit. After the inverse transformation of the Winograd algorithm is completed by the configurable output inverse transformation unit, the 8-bit output of the depthwise convolutional layer is obtained through relu and quantization unit and transmitted to the WDCU output buffer.

The PCU, which is used for pointwise convolution, comprises line buffer, multiplier array unit, adder tree unit, relu and quantization unit, and maxpooling unit. The output of WDCU is connected to the line buffer of the first PCU, then passed to the line buffer of the next PCU. Details about the design of PCU can be seen in Section S2. For the fully connected layer, as the weights and data are not reused, a compromise solution is adopted in our design [42,43]. The FCU, which is used to calculate the output of fully connected layer, comprises line buffer, multiplier array unit, adder tree unit, and accumulator unit. FCU divides the data from the PCU output buffer into several 1 × 5 small scale vectors and obtains the output through multiplier array unit, adder tree unit, accumulator unit, and quantization unit. Details about the design of FCU can be seen in Section S3. The final outputs of FCU are compared in the max unit, and then the comparison result is sent to the PS block.

4. Experiments and Results

4.1. Experimental Setup

The data set was collected from an e-nose, PEN3, AIRSENSE analytics Inc, Germany. PEN3 e-nose is a general gas response signal sampling instrument, which has 10 metal oxide gas sensors, and each sensor has a different sensitivity to different gases, as shown in Table 2. Thanks to a sensor array composed of ten gas sensors, PEN-3 has the ability to sense various gases. The settings of the e-nose are described in Table 3.

PEN3 was used to collect gas sensing responses of seven Chinese medicinal materials as dataset: betel, galangal, fructus amomi, fructus aurantii, curcuma zedoary, rhizoma zingiberis, and moutan bark. The experimental environment temperature of the e-nose was 25 ± 0.5 ∘ C, and the humidity was 75 ± 2 % . The procedures for preparing these materials were set as follows.

	
The materials were placed in a clean beaker and kept still for more than 20 min.

	
Before collecting the data, the sensor chamber is cleaned and calibrated.

	
Data collection was conducted, and each sample was collected for 120 s.

	
Steps 1–3 were repeated, and 100 samples of each kind of Chinese herbal medicine were collected. The final dataset consisted of 700 data samples in 7 categories, 100 samples for each category, as shown in the Figure 5.

We compared the OI-DSCNN model with several odor identification model methods. We mainly used PyTorch and scikit-learn in Python to model these algorithms. Pytorch is a deep learning framework for Python [44]. Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms [45].

Stochastic Gradient Descent (SGD) was used to train the model. The number of samples per training was 21, and the momentum was 0.9. The learning rate was initially set to 0.01 and adjusted by R e d u c e L R O n P l a t e a u () . When the loss of validation set has stopped improving, it was divided by 10 and finally stopped at 0.0001. The loss function was set to C r o s s E n t r o p y L o s s () .

The design was coded in Verilog HDL and synthesized and implemented on Xilinx Vivado. The OI-DSCNN model was evaluated on a Digilent Arty Z7-7020 development board. The Arty Z7-7020 development board contained a Zynq-7020 FPGA chip, a Zynq-7000TM All Programmable System-on-chip (AP SoC). The AP SoC consists of the Programmable Logic (PL) block and the Processing System (PS) block. The Arty Z7-7020 platform characteristics are shown in Table 4. Three different types of platforms, that is, Raspberry Pi 4B, CPU, and GPU with similar or slightly better performances, were selected to compare the performance with FPGA.

4.2. Results

OI-DSCNN has the advantage of less convolution kernel parameters. To evaluate this, CNN was modeled to compare the number of used parameters. The architecture of CNN was shown in Table 5. As Figure 6a displayed, the total amount of convolutional layer parameters between CNN and OI-DSCNN dropped dramatically from 316 to 162 in Pytorch. In Arty Z7, the Winograd algorithm was used, and bias was removed because of the computing acceleration and better performance. OI-DSCNN has a slight increase in the total amount of convolutional layer parameters between the PC and FPGA platforms. The convolutional layer parameters of OI-DSCNN are quantized as 8-bit fixed-point numbers when eventually implemented in FPGA. The OI-DSCNN requires less memory storage resource as shown in Figure 6b. It can be noticed that the convolutional layer parameters of an OIDSCNN requires 1600 bits of memory, where a CNN requires 10,112 bits. The amount of memory used in OI-DSCNN has a significant reduction to 15.8% of the CNN model.

Several algorithms were built for comparison to evaluate the effectiveness of OI-DSCNN. Fivefold cross-validation was used to verify the accuracy of each model in the PC. Simultaneously, OI-DSCNN was quantized and run in Arty Z7 during the cross-validation process to verify the performance of the model on the FPGA. As shown in the Table 6, CNN had the best performance among these models where it took the average score of 0.9457 . OI-DSCNN in floating-point calculation had the second-best performance, which was 0.9414 , while it had the lowest score of 0.2443 when it operated in 8-bit fixed-point arithmetic. The OI-DSCNN, without bias, operated in 8-bit fixed-point arithmetic had a decent score of 0.9371 . Although the accuracy score OI-DSCNN had a narrowed gap between CNN, CNN+SVM [22], and OI-DSCNN in floating-point arithmetic, OI-DSCNN requires less memory and DSP resources in parallel kernel-operations. Decision tree (DT), multilayer perception (MLP) [46], and principal component analysis with decision tree (PCA+DT) [25] had scores of 0.25 , 0.7757 , and 0.2686 , respectively.

As the bit width of the output on WDCU, PCU, and FCU blocks are 20-bit, 22-bit, and 22-bit signed fixed points, respectively, the goal of each quantization unit in WDCU, PCU, and FCU is to intercept 8 bits of the result as the final output. Seven samples for each medicine were randomly selected to overview the effectiveness of quantization, as shown in Figure 7. The feature map is reshaped into a one-dimensional matrix for visualization. It can be seen from Figure 7a that the input can maintain a similar distribution after being quantized from floating-point to 8-bit fixed point. It can be noticed that the quantized output of saturation and flooring will losses some information because some lower bits are cut off, and some tiny spikes may be cut off because of the saturation, as shown in Figure 7b–f. However, there is not much difference between the distribution of the actual output and the quantized output distribution. This quantization method does not require any calculations during the implementation period, as long as the saturation cut off and flooring are performed, which is very suitable for FPGAs.

OI-DSCNN in 8-bit fixed point operating utilizes less computing resources which can be implemented in some low-cost FPGA platforms. Table 7 demonstrated the resource utilization of OI-DSCNN in the Arty z7-7020 platform. On such a restricted DSP-resource the platform, the algorithm was successfully implemented. A few slice look-up tables (LUTs), registers, and BRAM resources have been consumed, which can be used by the remaining resources to implement other functions.

Finally, a crosswise comparison in commonly used platforms was conducted. Table 8 illustrated the performance comparison of OI-DSCNN on Raspberry Pi 4B which is made in UK Raspberry Pi foundation, CPU, GPU, and Arty z7-7020 platforms. The frequency of the system clock in the Arty Z7-7020 platform was 100MHz. We collected CPU and GPU runtime from PyTorch functions p r o f i l e r . A random sample in the test set was used to test the time for each platform to run OI-DSCNN inference. The model implemented in the Arty platform had a noticeable advance compared to other platforms, where it was 38 times faster than computing in i7-10875H. After that, test set was used to evaluate the average inference time of each platform. Each odor processing time on Arty Z7 is 20.8 μ s, which was better than other platforms. It can be seen that GPU is suitable for training using batch processing models but not for the inference process, especially when the odor data set is small.

5. Conclusions

In this paper, a lightweight OI-DSCNN is proposed for odor identification. The implementation of separable depthwise convolution and the Winograd algorithm could reduce the number of convolution parameters and accelerate the odor identifying rate. Additionally, the SF-KL is designed to quantize the outputs of each layer of OI-DSCNN and maintain high accuracy. Finally, the OI-DSCNN is successfully implemented in Zynq-7020. The experimental result demonstrates the effectiveness of the system. In summary, OI-DSCNN implemented in FPGA contains fewer parameters and runs faster with higher accuracy. The integration of odor identification algorithms on odor collection devices will become a trend for designing lighter and real-time processing e-noses. Therefore, the integration of e-nose with the balance of performance and cost must be taken into account. Some techniques may be considered to optimize the model, such as better quantization methods and specific parameter reduction strategies. Moreover, FES, a technology that obtains more information from sensors, can be applied to our future research.

Supplementary Materials

The following are available online at https://www.mdpi.com/1424-8220/21/3/832/s1, Section S1: WDCU Design, Section S2: PCU Design, Section S3: FCU Design.

Author Contributions

Conceptualization, Z.M. and D.L.; methodology, Z.M.; software, Z.M.; validation, T.W.; formal analysis, Z.M.; investigation, T.W.; resources, Z.M.; data curation, Z.M.; writing—original draft preparation, Z.M.; writing—review and editing, T.W. and Y.C.; visualization, Z.M. and X.L.; supervision, D.L.; project administration, D.L.; funding acquisition, D.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Natural Science Foundation of China grant number 61571140.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

	FPGA
	Field-Programmable Gate Array

	OI-DSCNN
	Odor Identification with Depthwise Separable Convolutional Neural Network

	CNN
	Convolutional Neural Network

	WDCU
	Winograd Depthwise Convolution Unit

	PCU
	Pointwise Convolution Unit

	FCU
	Fully Connected Unit

	KL_divergence
	Kullback-Leibler Divergence

	DMA
	Direct Memory Access

	BRAM
	Block RAM

	DRAM
	Distributed RAM

	PL
	Programmable Logic

	PS
	Processing System

References

	

Hines, E.; Llobet, E.; Gardner, J. Electronic noses: A review of signal processing techniques. IEE Proc.-Circuits Dev. Syst. 1999, 146, 297–310. [Google Scholar] [CrossRef]

	

Fuentes, S.; Summerson, V.; Gonzalez Viejo, C.; Tongson, E.; Lipovetzky, N.; Wilkinson, K.L.; Szeto, C.; Unnithan, R.R. Assessment of Smoke Contamination in Grapevine Berries and Taint in Wines Due to Bushfires Using a Low-Cost E-Nose and an Artificial Intelligence Approach. Sensors 2020, 20, 5108. [Google Scholar] [CrossRef] [PubMed]

	

Wei, H.; Gu, Y. A Machine Learning Method for the Detection of Brown Core in the Chinese Pear Variety Huangguan Using a MOS-Based E-Nose. Sensors 2020, 20, 4499. [Google Scholar] [CrossRef] [PubMed]

	

Li, W.; Leung, H.; Kwan, C.; Linnell, B.R. E-nose vapor identification based on Dempster–Shafer fusion of multiple classifiers. IEEE Trans. Instrum. Meas. 2008, 57, 2273–2282. [Google Scholar] [CrossRef]

	

Kish, L.B.; Smulko, J.; Heszler, P.; Granqvist, C.G. On the sensitivity, selectivity, sensory information and optimal size of resistive chemical sensors. arXiv 2007, arXiv:physics/0701249. [Google Scholar] [CrossRef]

	

Schmera, G.; Kwan, C.; Ajayan, P.; Vajtai, R.; Kish, L.B. Fluctuation-enhanced sensing: Status and perspectives. IEEE Sens. J. 2008, 8, 714–719. [Google Scholar] [CrossRef]

	

Kwan, C.; Schmera, G.; Smulko, J.M.; Kish, L.B.; Heszler, P.; Granqvist, C.G. Advanced agent identification with fluctuation-enhanced sensing. IEEE Sens. J. 2008, 8, 706–713. [Google Scholar] [CrossRef]

	

Ayhan, B.; Kwan, C.; Zhou, J.; Kish, L.B.; Benkstein, K.D.; Rogers, P.H.; Semancik, S. Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification. Sens. Actuators B Chem. 2013, 188, 651–660. [Google Scholar] [CrossRef]

	

Aouadi, B.; Zaukuu, J.L.Z.; Vitális, F.; Bodor, Z.; Fehér, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue—Critical Overview. Sensors 2020, 20, 5479. [Google Scholar] [CrossRef]

	

Wu, Z.; Zhang, H.; Sun, W.; Lu, N.; Yan, M.; Wu, Y.; Hua, Z.; Fan, S. Development of a Low-Cost Portable Electronic Nose for Cigarette Brands Identification. Sensors 2020, 20, 4239. [Google Scholar] [CrossRef]

	

Wu, Y.; Liu, T.; Ling, S.H.; Szymanski, J.; Zhang, W.; Su, S.W. Air quality monitoring for vulnerable groups in residential environments using a multiple hazard gas detector. Sensors 2019, 19, 362. [Google Scholar] [CrossRef] [PubMed]

	

Lu, B.; Fu, L.; Nie, B.; Peng, Z.; Liu, H. A Novel Framework with High Diagnostic Sensitivity for Lung Cancer Detection by Electronic Nose. Sensors 2019, 19, 5333. [Google Scholar] [CrossRef] [PubMed]

	

Liang, Z.; Tian, F.; Zhang, C.; Yang, L. A Novel Subspace Alignment-Based Interference Suppression Method for the Transfer Caused by Different Sample Carriers in Electronic Nose. Sensors 2019, 19, 4846. [Google Scholar] [CrossRef] [PubMed]

	

Wilson, A.D. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases. Sensors 2018, 18, 2613. [Google Scholar] [CrossRef] [PubMed]

	

Young, R.C.; Buttner, W.J.; Linnell, B.R.; Ramesham, R. Electronic nose for space program applications. Sens. Actuators B Chem. 2003, 93, 7–16. [Google Scholar] [CrossRef]

	

Qian, T.; Xu, R.; Kwan, C.; Linnell, B.; Young, R. Toxic vapor classification and concentration estimation for space shuttle and international space station. In International Symposium on Neural Networks; Springer: Berlin, Germany, 2004; pp. 543–551. [Google Scholar]

	

Ryan, M.A.; Zhou, H.; Buehler, M.G.; Manatt, K.S.; Mowrey, V.S.; Jackson, S.P.; Kisor, A.K.; Shevade, A.V.; Homer, M.L. Monitoring space shuttle air quality using the jet propulsion laboratory electronic nose. IEEE Sens. J. 2004, 4, 337–347. [Google Scholar] [CrossRef] [PubMed]

	

Ye, S.; Wang, Z.; Shen, J.; Shao, Q.; Fang, H.; Zheng, B.; Younis, A. Sensory qualities, aroma components, and bioactive compounds of Anoectochilus roxburghii (Wall.) Lindl. as affected by different drying methods. Ind. Crops Prod. 2019, 134, 80–88. [Google Scholar] [CrossRef]

	

Xu, M.; Yang, S.L.; Peng, W.; Liu, Y.J.; Xie, D.S.; Li, X.Y.; Wu, C.J. A novel method for the discrimination of semen arecae and its processed products by using computer vision, electronic nose, and electronic tongue. Evid. Based Compl. Alternat. Med. 2015, 2015, 753942. [Google Scholar] [CrossRef]

	

Wu, D.; Luo, D.; Wong, K.Y.; Hung, K. POP-CNN: Predicting Odor Pleasantness With Convolutional Neural Network. IEEE Sens. J. 2019, 19, 11337–11345. [Google Scholar] [CrossRef]

	

Wang, Y.; Diao, J.; Wang, Z.; Zhan, X.; Zhang, B.; Li, N.; Li, G. An optimized Deep Convolutional Neural Network for dendrobium classification based on electronic nose. Sens. Actuators A Phys. 2020, 307, 111874. [Google Scholar] [CrossRef]

	

Shi, Y.; Gong, F.; Wang, M.; Liu, J.; Wu, Y.; Men, H. A deep feature mining method of electronic nose sensor data for identifying beer olfactory information. J. Food Eng. 2019, 263, 437–445. [Google Scholar] [CrossRef]

	

Roussel, S.; Forsberg, G.; Steinmetz, V.; Grenier, P.; Bellon-Maurel, V. Optimisation of electronic nose measurements. Part I: Methodology of output feature selection. J. Food Eng. 1998, 37, 207–222. [Google Scholar] [CrossRef]

	

Carmel, L.; Levy, S.; Lancet, D.; Harel, D. A feature extraction method for chemical sensors in electronic noses. Sens. Actuators B Chem. 2003, 93, 67–76. [Google Scholar] [CrossRef]

	

Ali, A.A.S.; Djelouat, H.; Amira, A.; Bensaali, F.; Benammar, M.; Bermak, A. Electronic nose system on the zynq soc platform. Microprocess. Microsyst. 2017, 53, 145–156. [Google Scholar] [CrossRef]

	

SIfre, L.; Mallat, S. Rigid-Motion Scattering for Texture Classification. arXiv 2014, arXiv:1403.1687. [Google Scholar]

	

Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]

	

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]

	

Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the IEEE 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–3 November 2019; pp. 1314–1324. [Google Scholar]

	

Ayhan, T.; Yalçin, M.E. An Application of Small-World Cellular Neural Networks on Odor Classification. Int. J. Bifurcat. Chaos 2012, 22, 1250013. [Google Scholar] [CrossRef]

	

Qi, P.F.; Meng, Q.H.; Zeng, M. A CNN-based simplified data processing method for electronic noses. In Proceedings of the 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Montreal, QC, Canada, 28–31 May 2017; pp. 1–3. [Google Scholar]

	

Lekha, S.; Suchetha, M. Real-Time Non-Invasive Detection and Classification of Diabetes Using Modified Convolution Neural Network. IEEE J. Biomed. Health Inf. 2018, 22, 1630–1636. [Google Scholar] [CrossRef]

	

Yu, D.; Wang, X.; Liu, H.; Gu, Y. A Multitask Learning Framework for Multi-Property Detection of Wine. IEEE Access 2019, 7, 123151–123157. [Google Scholar] [CrossRef]

	

Jong, G.J.; Wang, Z.H.; Hsieh, K.S.; Horng, G.J. A Novel Feature Extraction Method an Electronic Nose for Aroma Classification. IEEE Sens. J. 2019, 19, 10796–10803. [Google Scholar] [CrossRef]

	

Xu, S.; Sun, X.; Lu, H.; Zhang, Q. Detection of Type, Blended Ratio, and Mixed Ratio of Pu’er Tea by Using Electronic Nose and Visible/Near Infrared Spectrometer. Sensors 2019, 19, 2359. [Google Scholar] [CrossRef] [PubMed]

	

Wang, P.; Hu, Q.; Zhang, Y.; Zhang, C.; Liu, Y.; Cheng, J. Two-Step Quantization for Low-bit Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4376–4384. [Google Scholar]

	

Park, E.; Ahn, J.; Yoo, S. Weighted-Entropy-Based Quantization for Deep Neural Networks. In Proceedings of the IEEE 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7197–7205. [Google Scholar]

	

Ding, W.; Huang, Z.; Huang, Z.; Tian, L.; Wang, H.; Feng, S. Designing efficient accelerator of depthwise separable convolutional neural network on FPGA. J. Syst. Arch. 2019, 97, 278–286. [Google Scholar] [CrossRef]

	

Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks. In Computer Vision—ECCV 2016; Springer: Cham, Switzerland, 2016; pp. 525–542. [Google Scholar]

	

Liu, Z.; Luo, W.; Wu, B.; Yang, X.; Liu, W.; Cheng, K.T. Bi-Real Net: Binarizing Deep Network Towards Real-Network Performance. Int. J. Comput. Vis. 2020, 128, 202–219. [Google Scholar] [CrossRef]

	

Lavin, A.; Gray, S. Fast algorithms for convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4013–4021. [Google Scholar]

	

Lu, L.; Liang, Y.; Xiao, Q.; Yan, S. Evaluating fast algorithms for convolutional neural networks on FPGAs. In Proceedings of the IEEE 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, CA, USA, 30 April–2 May 2017; pp. 101–108. [Google Scholar]

	

Li, H.; Fan, X.; Jiao, L.; Cao, W.; Zhou, X.; Wang, L. A high performance FPGA-based accelerator for large-scale convolutional neural networks. In Proceedings of the IEEE 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9. [Google Scholar]

	

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8026–8037. [Google Scholar]

	

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]

	

Benrekia, F.; Attari, M.; Bouhedda, M. Gas sensors characterization and multilayer perceptron (MLP) hardware implementation for gas identification using a field programmable gate array (FPGA). Sensors 2013, 13, 2967–2985. [Google Scholar] [CrossRef] [PubMed]

[image: Sensors 21 00832 g001 550]

Figure 1. The working principle of standard convolution and depthwise seperable convolution. In depthwise convolution, each convolution kernels is convoluted with each input channels. In pointwise convolution, convolution kernel is a 1 × 1 standard convolution.

Figure 1. The working principle of standard convolution and depthwise seperable convolution. In depthwise convolution, each convolution kernels is convoluted with each input channels. In pointwise convolution, convolution kernel is a 1 × 1 standard convolution.

[image: Sensors 21 00832 g001]

[image: Sensors 21 00832 g002 550]

Figure 2. Input data from PEN3 e-nose.

Figure 2. Input data from PEN3 e-nose.

[image: Sensors 21 00832 g002]

[image: Sensors 21 00832 g003 550]

Figure 3. The OI-DSCNN model.

Figure 3. The OI-DSCNN model.

[image: Sensors 21 00832 g003]

[image: Sensors 21 00832 g004 550]

Figure 4. An overview of the FPGA implementation architecture of OI-DSCNN. The red line is the control path. The green line is the weight path. The blue line is the data path.

Figure 4. An overview of the FPGA implementation architecture of OI-DSCNN. The red line is the control path. The green line is the weight path. The blue line is the data path.

[image: Sensors 21 00832 g004]

[image: Sensors 21 00832 g005 550]

Figure 5. Part of Chinese herbal medicines dataset.

Figure 5. Part of Chinese herbal medicines dataset.

[image: Sensors 21 00832 g005]

[image: Sensors 21 00832 g006 550]

Figure 6. Convolutional layer parameters for CNN, OI-DSCNN in Pytorch, and OI-DSCNN in Arty Z7.

Figure 6. Convolutional layer parameters for CNN, OI-DSCNN in Pytorch, and OI-DSCNN in Arty Z7.

[image: Sensors 21 00832 g006]

[image: Sensors 21 00832 g007a 550][image: Sensors 21 00832 g007b 550][image: Sensors 21 00832 g007c 550][image: Sensors 21 00832 g007d 550]

Figure 7. The input and output distribution of 7 classes of Chinese medicinal materials in OI-DSCNN. The left side of each subfigure is the distribution of OI-DSCNN at the floating point. The right side of each subfigure is the distribution of OI-DSCNN at an 8-bit fixed point.

Figure 7. The input and output distribution of 7 classes of Chinese medicinal materials in OI-DSCNN. The left side of each subfigure is the distribution of OI-DSCNN at the floating point. The right side of each subfigure is the distribution of OI-DSCNN at an 8-bit fixed point.

[image: Sensors 21 00832 g007a][image: Sensors 21 00832 g007b][image: Sensors 21 00832 g007c][image: Sensors 21 00832 g007d]

[image: Table]

Table 1. the OI-DSCNN model architecture.

Table 1. the OI-DSCNN model architecture.

	
Layer

	
Type

	
Filter Shape

	
Input Size

	
Depthwise separable convolution 1

	
Depthwise convolution

	
 1 ∗ 3 ∗ 10

	
 1 ∗ 120 ∗ 10

	
Pointwise convolution

	
 1 ∗ 1 ∗ 10 ∗ 6

	
 1 ∗ 118 ∗ 10

	

	
Max-pooling

	
 1 ∗ 2

	
 1 ∗ 118 ∗ 6

	
Depthwise separable convolution 2

	
Depthwise convolution

	
 1 ∗ 2 ∗ 6

	
 1 ∗ 59 ∗ 6

	
Pointwise convolution

	
 1 ∗ 1 ∗ 6 ∗ 10

	
 1 ∗ 58 ∗ 6

	

	
Max-pooling

	
 1 ∗ 2

	
 1 ∗ 58 ∗ 10

	
Fully connected 3

	
Fully Connected

	
 290 ∗ 7

	
 1 ∗ 29 ∗ 10

	
Classifier

	
Softmax

	
-

	
7

[image: Table]

Table 2. Sensor array details in PEN-3 e-nose.

Table 2. Sensor array details in PEN-3 e-nose.

	Sensor
	Sensor Sensitivity and General Description

	W1C
	Aromatic compounds.

	W5S
	Very sensitive, broad range of sensitivity, reacts to nitrogen oxides, very sensitive with negative signals.

	W3C
	Ammonia, used as sensor for aromatic compounds.

	W6S
	Mainly hydrogen.

	W5C
	Alkanes, aromatic compounds, less polar compounds.

	W1S
	Sensitive to methane. Broad range.

	W1W
	Reacts to sulfur compounds, H2S. Otherwise sensitive to many terpenes and sulfur-containing organic compounds.

	W2S
	Detects alcohol, partially aromatic compounds, broad range.

	W2W
	Aromatic compounds, sulfur organic compounds.

	W3S
	Reacts to high concentrations (>100 mg/kg) of methane–aliphatic compounds.

[image: Table]

Table 3. Settings of PEN-3 e-nose.

Table 3. Settings of PEN-3 e-nose.

	Options
	Settings

	Sample interval
	1.0 s

	Presampling time
	5.0 s

	Zero point trim time
	5.0 s

	Measurement time
	120 s

	Flushing time
	120 s

	Chamber flow
	150 mL/min

	Initial injection flow
	150 mL/min

[image: Table]

Table 4. Some specifications of Arty Z7-7020 development board.

Table 4. Some specifications of Arty Z7-7020 development board.

	Item
	Specification

	Product variant
	Arty Z7-7020

	Zynq part
	XC7Z020-1CLG400C

	Look-up Tables (LUTs)
	53,200

	Flip-Flops
	106,400

	Block RAM
	630 KB

	DSPs
	220

	Clock Management Tiles
	4

	Processor
	650 MHz dual-core Cortex-A9 processor 512 MB DDR3 with 16-bit bus @ 1050 Mbps

	Memory
	16 MB Quad-SPI Flash with factory programmed 48-bit globally unique microSD slot

	expansion connectors
	Two standard Pmod ports Arduino/chipKIT Shield connector

[image: Table]

Table 5. The CNN model architecture.

Table 5. The CNN model architecture.

	Layer
	Type
	Filter Shape
	Input Size

	Convolution 1
	Standard convolution
	 10 ∗ 3 ∗ 6
	 10 ∗ 120 ∗ 1

	
	Max-pooling
	 1 ∗ 2
	 1 ∗ 118 ∗ 6

	Convolution 2
	Standard convolution
	 1 ∗ 2 ∗ 6 ∗ 10
	 1 ∗ 59 ∗ 6

	
	Max-pooling
	 1 ∗ 2
	 1 ∗ 58 ∗ 10

	Fully connected 3
	Fully connected
	 290 ∗ 7
	 1 ∗ 29 ∗ 10

	Classifier
	Softmax
	-
	7

[image: Table]

Table 6. Model performance comparison.

Table 6. Model performance comparison.

	
Model

	
Platform

	
5-Fold Accuracy

	
1

	
2

	
3

	
4

	
5

	
Average

	
MLP

	
PC

	
0.1143

	
0.2929

	
0.1643

	
0.2643

	
0.4143

	
0.25

	
DT

	
PC

	
0.65

	
0.8714

	
0.7571

	
0.8071

	
0.7929

	
0.7757

	
PCA + DT

	
PC

	
0.3857

	
0.2929

	
0.3857

	
0.1643

	
0.1143

	
0.2686

	
CNN

	
PC

	
0.9357

	
0.95

	
0.9571

	
0.9429

	
0.9429

	
0.9457

	
CNN + SVM

	
PC

	
0.8786

	
0.8714

	
0.9214

	
0.8643

	
0.8857

	
0.8843

	
OI-DSCNN

	
PC

	
0.9286

	
0.9429

	
0.9643

	
0.9357

	
0.9357

	
0.9414

	
OI-DSCNN(bias)

	
Arty Z7

	
0.2143

	
0.25

	
0.2643

	
0.2357

	
0.2571

	
0.2443

	
OI-DSCNN(nobias)

	
Arty Z7

	
0.9286

	
0.9357

	
0.9571

	
0.9357

	
0.9286

	
0.9371

[image: Table]

Table 7. Resource utilization of OI-DSCNN on FPGA.

Table 7. Resource utilization of OI-DSCNN on FPGA.

	Type
	Slice LUTs
	Slice Registers
	Block RAM Tile
	DSPs

	buff
	784
	1957
	9.5
	0

	Depthwise convolutional layer 1
	2305
	3164
	5
	40

	Pointwise convolutional layer 1
	1309
	1878
	3
	60

	Depthwise convolutional layer 2
	1434
	1980
	3
	24

	Pointwise convolutional layer 2
	1396
	2130
	5
	60

	Fully connected layer
	758
	1385
	0
	35

	Utilization
	7986
	12,494
	25.5
	219

	Avaliable
	53,200
	106,400
	140
	220

	Percent (%)
	15
	11.74
	18.21
	99.5

[image: Table]

Table 8. Comparison between Raspberry Pi, CPU, GPU, and FPGA implementations for OI-DSCNN.

Table 8. Comparison between Raspberry Pi, CPU, GPU, and FPGA implementations for OI-DSCNN.

	
Platform

	
One Sample Performance

	
All Sample Performance

	
Time

	
Speedup

	
Average Time

	
Speedup

	
Raspberry Pi 4B

	
4.6 ms

	
 0.2 ×

	
366.5 μ s

	
 0.1 ×

	
i7-8750H

	
6.3 ms

	
 0.3 ×

	
57 μ s

	
 0.9 ×

	
i7-10875H

	
2.1 ms

	
 1.0 ×

	
52 μ s

	
 1.0 ×

	
NVIDIA GeForce MX250

	
1107 ms

	
-

	
6.325 ms

	
-

	
NVIDIA GeForce GTX 2060

	
910 ms

	
-

	
5.2 ms

	
-

	
Arty Z7-7020

	
57.3 μ s

	
 37 ×

	
20.8 μ s

	
 2.5 ×

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
¥ slongal fructusamomi WS cucuma hizoma mous
et gl aurant Zedowry zingiberis bark
Distebution of flatng poit nput Disrbution of -bit fised point input

Indes of dats poi Indes of data it

(a) Compare distribution of input betwveen floating point and -bit fixed point

media/file4.png
Pump

Zero gas
L —
—_—

obtain

Sampled
gas

Waste
—

Flow
controler

Sensor array

Gas sampling

h=120

Original data structure

reshape

w =10

Reshaped data structure

media/file18.png
Output value

Output value

Distribution of floating point depthwise Distribution of 8-bit fixed point

convolutional layer 1 output depthwise convolutional layer 1 output
1.75 - 801
1.50 1]
60 -
1.25 - O
=
E 50 -
=
1.00 - -
/ ’ i
& 40 -
=
0.75 1
© 30 A
0.50 -
20 A
0.25 - 10 -
0.00 - 0 u
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Index of data point Index of data point
(b) Compare distribution of output of depthwise convolutional layer 1 between floating point and 8-bit fixed point
Distribution of floating point pointwise Distribution of 8-bit fixed point
convolutional layer 1 output pointwise convolutional layer 1 output
3.0 120 -
ek 100 1)
=
2.0- = 80
-
=
1.5 - & 60 -
=
O '
1.0 / 40 ‘ ‘ ‘ "\
0.5 1 “\ , " //' £ / 20 - ‘ ... /A\ | \?{L
| L »/// ¢ f‘""‘-%
4/5 S s N N s
500 40 700 100 200 300 400 500 600 700
Inde}.; ot data pomt Index of data point

(c) Compare distribution of output of pointwise convolutional layer 1 between floating point and 8-bit fixed point

media/file3.jpg
s notge 1|] e

Gas sampling Original data structure. Reshaped daa structure.

media/file14.jpg
g,
o dnt ot s da ot
(9 Compreditbtonf ot dephwo vl e e i i v £ e pe
Dot of g pot i [

conolutonal lger | utput poinivise consolutional lyer 1 outpot

Index of data point

1 between flosting point and St fixed point

media/file7.jpg
Memory.

Ps

media/file10.png
2 e ——— 3 - ————
= 2 5
betel 14 1.0 1
T T T T T T T 0 — T T
0 50 100 0 100 50 100 50 100
S —— X_'
1 25 4 5.0 - 10 -
galangal 2.5
015 T T e — --— T or—rr———7
0 50 100 0 100 50 100 50 100
20 - —]
fl‘llCtllS. 500 1o 10
amomi
04 , , o L — | g lreaa—— [EE——————
0 50 100 0 100 50 100 50 100
10 -
fructus 25 - 10 - 5 -
aurantu o . 0- 0.
0 50 100 0 100 50 100 50 100
5.0 — 41 ———————] 20-
curcuma .. 5 é — 5 -
Zedoar}' T T T T T 0 B o T T 0 - T T T
0 50 100 0 100 50 100 50 100
5.0 A
3 L ———
rhizoma 2 — i % 2.5 - 10
zingiberis 1 = 1 0
T T T T T - - T
0 50 100 0 100 50 100 50 100
20 + —_
moutan 10 ~ 25 - 5 -
bark
0 - T 0 T 0 i e B S— 0 --

50

100

100

50

100

50

100

media/file19.png
Output value

Output value

Distribution of floating point depthwise
convolutional layer 2 output

100 150 200 250 300

Index of data point

350

Distribution of 8-bit fixed point
depthwise convolutional layer 2 output

120 -

100 -

0
(@)

Output value
(o))
o

B
o

20 A

100 150 200 250 300 350

Index of data point

(d) Compare distribution of output of depthwise convolutional layer 2 output between floating point and 8-bit fixed point

Distribution of tloating point pointwise

convolutional layer 2 output

il
o- "" " N ’W |

20 500

Index of data pomt

600

Distribution of 8-bit fixed point
pointwise convolutional layer 2 output

120 -

100 -

80 - |

60 -

Output value

40 -

I

\
{
“]‘M\" Al | "

20 -

1!

.4

0 200 500

Index of data pomt

(e) Compare distribution of output of pointwise convolutional layer 2 output between floating point and 8-bit fixed point

600

media/file11.jpg
@ Comparison of the number ofthe convolutional (b) Compare the memory consumption o the convo-
lyer parameters. Iutional layer parameters.

media/file6.png
| LFTT 29
L0 s s] '
o T b

0

~
~
ves ~
~

]

vee |

1,
\
\

120 118 118 59 58 58 26

o
A A e o T \\ T A \1 :

Depthvylse Pomtmse Max-pooling Depthwlse Pomtw.lse Max-pooling ~ Full connected
convolutional convolutional convolutional convolutional
layer layer layer
layer layer layer layer

media/file15.jpg
‘Distribution of floating point depihwise
‘convolutional syer 2wt

Distribution of 8-bi fixed point
depthwise conlutional layr 2 output

H

Output value

®

s

T W W W
e of data point

Distibution of foating point pointsise
convolutionallaer 2 owput

Index o dta point

@) Compare distrbtionof utput fdepthie convoltiona oy 2 utput bt i point nd S5t e point

Distibuton o 8- i point
pointsise comvolutional layer 2 owput

Index of dats point

Indes of data point

(e)Compase istibution of output of ointwie convolutiona ayer 2 output between lsting point and Bt fied poiat

nav.xhtml

 sensors-21-00832

 		
 sensors-21-00832

media/file2.png
Hx

Wy

M
) m
| |H

Wk

m

Al
Cn\

Cout

o

kY
%

=

C;‘ Hg

“"rK

(a) Standard convolution

b

Depthwise convolution

Winter

Hinter

Pointwise convolution

(b) Depthwise separable convolution

[l
[]
L]
Hy
Cout
Wy
,\ .
Cout % 0
) =] "
LT
m 1 WY

Hy

media/file20.png
20 A

10 -

Output value

—10 -

Distribution of floating point fully
connected layer output

o

0 1 2 3 4 5 6

Index of data point

U ~
o 9]

N
w

Output value
N
(92}

I
wn
(o]

—75 -

—100 A

—125 -

Distribution of 8-bit fixed point tully
connected layer output

o

0 1 2 3 4 5 6

Index of data point

(f) Compare distribution of output of fully connected layer between floating point and 8-bit fixed point

media/file5.jpg
.w » - - » ;
D imigtr P i Powaifin. -
"NETT e W G s A
it comotmont M SRL o Moy Pl et

er layer b layer layer e e

media/file1.jpg
1;.

m_% FF

4 %,1

media/file16.jpg
Distribution of floating point fully Distribution of $-bi fixed point fully
conected ayer ovtput connected layer cutput

Indes of data point Index of dota point

(6 Compare distebution of output o ull connected layer between floating point and 8-bitfed point

media/file12.png
B CNN 316 (blt) B CNN

s OI-DSCNN(Pytorch) 10000 { ™= oI-DSCNN(Pytorch)
300 { ™ OFDSCNN(Arty Z7) mn O-DSCNN(Arty Z7)

10,112

250 1 8000

200 1
6000 -

150 -

4000 -

100 -

2000 -
50 1

Convl Conv2 Total Convl Conv2 Total

(a) Comparison of the number of the convolutional (b) Compare the memory consumption of the convo-
layer parameters. lutional layer parameters.

media/file9.jpg

media/file0.png

media/file17.png
Input value

betel galangal fructus amomi

Distribution of floating point input

1.00 -

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 -

—0.50 -

—0.75 -

—1.00-

0 200 400 600 800
Index of data point

1000

1200

]
fructus

aurantii

0/] I
curcuma rhizoma moutan
zedoary zingiberis bark

Distribution of 8-bit fixed point input

100 -

50 -

Input value
o

|
u
o

—100 -

200 400 600 800 1000 1200
Index of data point

(a) Compare distribution of input between floating point and 8-bit fixed point

media/file8.png
Memory

A

vy

A

PS

\ 4

DMA

v

Input Buffer

DCU Output Buffer

PCU Output Buffer

PL

