Recognition of Abnormal Chest Compression Depth Using One-Dimensional Convolutional Neural Networks
Abstract
:1. Introduction
2. Methods
2.1. Data Preparation Procedures
2.1.1. Training Data Collection
2.1.2. Data Preprocessing
2.1.3. CC Pulse Recognition
- Step 1:
- Establish two sliding windows. One (Sliding window A) stores the sampled value, and the other (Sliding Window B) stores the filtered result.
- Step 2:
- Conduct threshold monitoring on the Sliding Window B and determine the threshold value when the static gravity value shows a change of (according to the statistical results, experience value is between 21 and 32).
- Step 3:
- Cut the wave in Sliding Window B. Select the optimal point from Window B or A as the starting point and the pulse end point as the termination point; physically this describes a compression process. In the cutting wave, the hand speed is zero when the compression reaches the lowest point position.
- Step 4:
- Identify the CC pulse according to three restrictions.
2.2. Solution Based on 1D-CNN Model
2.2.1. One-Dimensional LeNet5 Model
2.2.2. Data Feature Analysis and Labeling
2.2.3. Improvement of 1D-LeNet5 Model
3. Experiments and Results
3.1. Comparison of Different Filter Size
3.2. Comparison of Different Numbers of CNN Layer
3.3. Comparison of Different Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area Under Curve |
CC | Chest compression |
CCD | CC depth |
CPR | Cardiopulmonary resuscitation |
CNN | Convolutional neural network |
1D-CNN | One-dimensional CNN |
DNN | Deep neural networks |
DAE | Autoencoder |
DAENet | DAE network |
ECS | Emergency care simulator |
FLOPs | Floating point operations |
IR-UWB | Ultrasonic/Impulse radio-ultra wideband |
KNN | K-Nearest Neighbor |
LSTM | Long short-term memory |
ROC | Receiver operating characteristic curve |
References
- Lixiang, W. 2016 China CPR training expert consensus. Chin. J. Disaster Med. 2017, 5, 1–23. [Google Scholar]
- Wutzler, A.; Bannehr, M.; von Ulmenstein, S.; Loehr, L.; Firster, J.; Khnle, Y.; Finn, A.; Storm, C.; Haverkamp, W. Performance of chest compressions with the use of a new audio visual feedback device: A randomized manikin study in health care professionals. Resuscitation 2015, 87, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Yu, B.G.; Oh, J.H.; Kim, T.W. Novel chest compression depth measurement sensor using IR-UWB for improving quality of cardiopulmonary resuscitation. IEEE Sens. J. 2017, 17, 3174–3183. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Vaughan, R. Deep Learning Radar Design for Breathing and Fall Detection. IEEE Sens. J. 2020, 20, 5072–5085. [Google Scholar] [CrossRef]
- Dellimore, K.; Scheffer, C. A modeling approach to the effects of force guided versus depth guided compression during cardiopulmonary resuscitation on different chests and back support surfaces. Resuscitation 2013, 84, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Myklebust, H.; Fossan, H. System for Measuring and Using Parameters During Chest Compression in a Life-Saving Situation or a Practice Situation, and Also Application Thereof. U.S. Patent No. 6,306,107, 23 October 2001. [Google Scholar]
- Lotfi, B.; Huang, L. An approach for velocity and position estimation through acceleration measurements. Measurement 2016, 90, 242–249. [Google Scholar] [CrossRef]
- Perkins, G.D.; Kocierz, L.; Smith, S.C.; McCulloch, R.A.; Davies, R.P. Compression feedback devices over estimate chest compression depth when performed on a bed. Resuscitation 2009, 80, 79–82. [Google Scholar] [CrossRef]
- Song, Y.; Oh, J.; Chee, Y. A new chest compression depth feedback algorithm for high-quality CPR based on smartphone. Telemed. Helth 2015, 21, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Boussen, S.; Ibouanga-Kipoutou, H.; Fournier, N.; Raboutet, Y.G.; Llari, M.; Bruder, N.; Arnoux, P.J.; Behr, M. Using an inertial navigation algorithm and accelerometer to monitor chest compression depth during cardiopulmonary resuscitation. Med. Eng. Phys. 2016, 38, 1028–1034. [Google Scholar] [CrossRef]
- Minami, K.; Kokubo, Y.; Maeda, I.; Hibino, S. Real-time feedback of chest compressions using a flexible pressure sensor. Resuscitation 2016, 99, e11–e12. [Google Scholar] [CrossRef]
- Rim, B.; Sung, N.J.; Min, S.; Hong, M. Deep Learning in Physiological Signal Data: A Survey. Sensors 2020, 20, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, B.; Yang, J.; Wang, P.; Yan, R. LSTM-Based Auto-Encoder Model for ECG Arrhythmias Classification. IEEE Trans. Instrum. Meas. 2020, 69, 1232–1240. [Google Scholar] [CrossRef]
- Narendra, N.P.; Alku, P. Glottal Source Information for Pathological Voice Detection. IEEE Access 2020, 8, 67745–67755. [Google Scholar] [CrossRef]
- Kadiri, S.R.; Alku, P. Analysis and Detection of Pathological Voice Using Glottal Source Features. IEEE J. Sel. Top. Signal Process. 2020, 14, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Tam, S.; Boukadoum, M.; Campeau-Lecours, A.; Gosselin, B. A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging HD-sEMG and Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 232–243. [Google Scholar] [CrossRef]
- El Maachi, I.; Bilodeau, G.A.; Bouachir, W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst. Appl. 2020, 143. [Google Scholar] [CrossRef]
- Bao, Y.; Yin, J.; Liu, S. Assessment of chest cardiac compression in convolutional neural network based on weak supervised learning strategy. Chin. J. Sci. Instrum. 2019, 40, 203–213. [Google Scholar]
- Abdoli, S.; Cardinal, P.; Koerich, A.L. End-to-end environmental sound classification using a 1D convolutional neural network. Expert Syst. Appl. 2019, 136, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yin, S.; Chang, Y.; Gao, T. A Fault Diagnosis Method of Rotating Machinery Based on One-Dimensional, Self-Normalizing Convolutional Neural Networks. Sensors 2020, 20, 3837. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaeemzadeh, A.; Rahnavard, N.; Shah, M. Norm-Preservation: Why Residual Networks Can Become Extremely Deep? IEEE Trans. Pattern Anal. Mach. Intell. 2020, 1. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Geoffrey, H.; Alex, K.; Ilya, S.; Ruslan, S. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Adam, P.; Sam, G.; Soumith, C.; Gregory, C. Pytorch. 2019. Available online: https://pytorch.org/ (accessed on 25 January 2021).
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In AI 2006: Advance in Artificial Intelligence; Sattar, A., Kang, B.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021. [Google Scholar]
- Kornycky, J.; Abdul-Hameed, O.; Kondoz, A.; Barber, B.C. Radio Frequency Traffic Classification Over WLAN. IEEE ACM Trans. Netw. 2017, 25, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Alex, K.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar]
- Li, F.; Liu, M.; Zhao, Y.; Kong, L.; Dong, L.; Liu, X.; Hui, M. Feature extraction and classification of heart sound using 1D convolutional neural networks. Eurasip J. Adv. Signal Process. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.U.; Tu, S.; Huang, Y.; Liu, G. CSFL: A novel unsupervised convolution neural network approach for visual pattern classification. AI Commun. 2017, 30, 311–324. [Google Scholar] [CrossRef]
1st Convolu-Tional Filter Size | Second Filter Shape | Iteration | Max/Min/Avg Accuracy Rate (%) | Max/Min/Avg F-Score (%) |
---|---|---|---|---|
5 | 1 × 5 | 500 | 95/65.83/82.62 | 95.16/73.55/88.488 |
5 | 1 × 5 | 1000 | 92.5/65/87.64 | 92.91/73.08/88.534 |
5 | 1 × 5 | 1500 | 95.83/65.83/88.166 | 95.93/73.55/89.918 |
5 | 1 × 5 | 2000 | 95/91.67/93.334 | 95.16/91.53/93.466 |
7 | 1 × 5 | 500 | 93.33/90.83/92 | 93.65/90.91/92.27 |
21 | 1 × 5 | 500 | 95/93.33/94.166 | 95.16/93.44/94.208 |
Filter Shape | Iteration | Max/Min/Avg Accuracy Rate (%) | Max/Min/Avg F-Score (%) |
---|---|---|---|
500 | 93.33/90.83/92 | 93.65/90.91/92.27 | |
500 | 97.5/90/94.79 | 9.52/89.29/94.62 | |
300 | 99.17/95/96.67 | 99.15/95.08/96.7 | |
1D-LeNet | 2000 | 95/91.67/93.33 | 95.16/93.44/94.208 |
1D-ALexNet | 300 | 95/93.33/94.305 | 95.16/93.22/94.208 |
Methods | Average ACC | Convolution Layers | Filter Shape | Total Param | Total FLOPs |
---|---|---|---|---|---|
Integration | 87.2 | - | Median filter | 9 | 7*200 |
Logistic | 61.66 | - | Sigmoid | - | - |
SVM | 54.1 | - | RBF | - | - |
Lenet-5 | 93.33 | 32*64*1088*128*64 | |||
1D-AlexNet | 95.8 | 32*64*128*256*1024 | |||
GammatoneNet [19] | 94.82 | 16*16*32*64*128 | |||
DAE [29] | 94.8 | 32*12*24*132 | |||
CPCNN4 | 94.79 | 32*64*128*1152 | |||
CPCNN5 | 96.67 | 32*64*128*196*896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Bao, Y.; Zhang, Y.; Ye, R.; Zhang, A. Recognition of Abnormal Chest Compression Depth Using One-Dimensional Convolutional Neural Networks. Sensors 2021, 21, 846. https://doi.org/10.3390/s21030846
Zhao L, Bao Y, Zhang Y, Ye R, Zhang A. Recognition of Abnormal Chest Compression Depth Using One-Dimensional Convolutional Neural Networks. Sensors. 2021; 21(3):846. https://doi.org/10.3390/s21030846
Chicago/Turabian StyleZhao, Liang, Yu Bao, Yu Zhang, Ruidong Ye, and Aijuan Zhang. 2021. "Recognition of Abnormal Chest Compression Depth Using One-Dimensional Convolutional Neural Networks" Sensors 21, no. 3: 846. https://doi.org/10.3390/s21030846
APA StyleZhao, L., Bao, Y., Zhang, Y., Ye, R., & Zhang, A. (2021). Recognition of Abnormal Chest Compression Depth Using One-Dimensional Convolutional Neural Networks. Sensors, 21(3), 846. https://doi.org/10.3390/s21030846