Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences
Abstract
:1. Introduction
2. Design Problem and Models of Butler Matrix Components
2.1. Design Problem
2.2. Models of Butler Matrix Components
2.3. Butler Matrix Representations
2.4. Optimization Algorithms
2.4.1. Trust-Region-Based Optimization
2.4.2. Bisection-Based Heuristic
- Set i = 0, x0.1, and x0.2; set Δx = |x0.1 − x0.2|; set x(0) = 0.5(x0.1 + x0.2).
- Generate interval [x1(i), x2(i)] around the point x(i), where x1(i) = x(i) − αΔx and x2(i) = x(i) + αΔx.
- If U(x1(i))U(x2(i)) ≥ 0, set , i = i + 1 and go to step 2; otherwise go to step 4.
- Set x(i+1) = 0.5(x1(i) + x2(i)), x1(i+1) = x1(i), x2(i+1) = x2(i), i = i + 1.
- If U(x1(i))U(x(i)) < 0, set x2(i) = x(i) and go to step 7; otherwise go to step 6.
- If U(x(i))U(x2(i)) < 0, set x1(i) = x(i) and go to step 7.
- If |x(i) − x(i−1)| ≤ ε, set x* = x(i) and END; otherwise go to step 4.
3. Methodology
3.1. Synthesis of Butler Matrix and Its Components
3.2. Sequential Design of BM Components
- Decompose ideal BLC model to individual TLs.
- Use electrical parameters of TLs as the reference for development of miniaturized BLC sections.
- Optimize the BLC sections to match electrical parameters of the reference TLs.
- Construct miniaturized BLC using the optimized cells and define the vector of its design parameters xg.k.
- Optimize compact BLC using objective function (11) and algorithm of Section 2.4.1.
3.3. Butler Matrix Optimization and Fine-Tuning
3.4. Summary of the Design Framework
- Define the desired performance of the Butler matrix.
- Perform synthesis of the BM structure using (4)–(6).
- Perform fine-tuning of the crossover to match length of its TLs and extract βc (cf. Section 3.2).
- Use (7), (9), (10) to synthesize the BLCs.
- Adjust performance of synthesized BLCs through minimization of (11).
- Set k = 1.
- Perform topology development of kth miniaturized BLC and optimize its EM model.
- If k = 2, go to step 9; otherwise set k = k + 1 and go to step 7.
- Optimize ideal models of phase shifters through minimization of (12), set p = 1.
- Generate initial dimensions of pth PS and optimize its EM model (cf. Section 3.2).
- If p = 4, go to step 12; otherwise set p = p + 1 and go to step 10.
- Optimize composite model of the BM.
- Perform fine-tuning of the BM.
4. Numerical Results and Experiment
4.1. Butler Matrix 1
4.2. Butler Matrix 2
4.3. Numerical and Experimental Validation
4.4. Comparison with Benchmark Structures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, C.; Pan, L.; Jiao, Y.; Jia, J. A High-Performance Transmitarray Antenna with Thin Metasurface for 5G Communication Based on PSO (Particle Swarm Optimization). Sensors 2020, 20, 4460. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.I.; Hussain, N.; Iqbal, A.; Rahman, M.; Forsat, M.; Mirjavadi, S.S.; Amin, Y. Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals. Sensors 2020, 20, 3926. [Google Scholar] [CrossRef] [PubMed]
- Lian, R.; Wang, Z.; Yin, Y.; Wu, J.; Song, X. Design of a Low-Profile Dual-Polarized Stepped Slot Antenna Array for Base Station. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 362–365. [Google Scholar] [CrossRef]
- Alhalabi, R.A.; Rebeiz, G.M. High-Efficiency Angled-Dipole Antennas for Millimeter-Wave Phased Array Applications. IEEE Trans. Antennas Propag. 2008, 56, 3136–3142. [Google Scholar] [CrossRef]
- Rafii, V.; Nourinia, J.; Ghobadi, C.; Pourahmadazar, J.; Virdee, B.S. Broadband Circularly Polarized Slot Antenna Array Using Sequentially Rotated Technique for CC-Band Applications. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 128–131. [Google Scholar] [CrossRef]
- Ojaroudiparchin, N.; Shen, M.; Zhang, S.; Pedersen, G.F. A Switchable 3-D-Coverage-Phased Array Antenna Package for 5G Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1747–1750. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.C. Phased Array Antennas, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ogurtsov, S.; Koziel, S. Systematic Approach To Sidelobe Reduction In Linear Antenna Arrays Through Corporate-Feed-Controlled Excitation. IET Microw. Antennas Propag. 2017, 11, 779–786. [Google Scholar] [CrossRef]
- Ogurtsov, S.; Koziel, S. On Alternative Approaches to Design of Corporate Feeds for Low-Sidelobe Microstrip Linear Arrays. IEEE Trans. Antennas Propag. 2018, 66, 3781–3786. [Google Scholar] [CrossRef]
- Ogurtsov, S.; Koziel, S. A Conformal Circularly Polarized Series-Fed Microstrip Antenna Array Design. IEEE Trans. Antennas Propag. 2019, 68, 873–881. [Google Scholar] [CrossRef]
- Chu, H.; Li, P.; Guo, Y.-X. A Beam-Shaping Feeding Network in Series Configuration for Antenna Array With Cosecant-Square Pattern and Low Sidelobes. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 742–746. [Google Scholar] [CrossRef]
- Slomian, I.; Piekarz, I.; Wincza, K.; Gruszczynski, S. Microstrip Antenna Array With Series Feeding Network Designed With the Use of Slot-Coupled Three-Way Power Divider. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 667–670. [Google Scholar] [CrossRef]
- Wincza, K.; Gruszczynski, S. Microstrip Antenna Arrays Fed by a Series-Parallel Slot-Coupled Feeding Network. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 991–994. [Google Scholar] [CrossRef]
- Al Abbas, E.; Abbosh, A.M.; Bialkowski, K. Tunable In-Phase Power Divider for 5G Cellular Networks. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 551–553. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, K.-L.; Fang, D.-G.; Ehlert, M. An Integrated LTCC Millimeter-Wave Planar Array Antenna With Low-Loss Feeding Network. IEEE Trans. Antennas Propag. 2005, 53, 1232–1234. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Yoon, S.; Lee, Y.; Shin, H. A Miniaturized Butler Matrix Based Switched Beamforming Antenna System in a Two-Layer Hybrid Stackup Substrate for 5G Applications. Electronics 2019, 8, 1232. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Bang, J.; Choi, J. Dual-Circularly Polarized 60 GHz Beam-Steerable Antenna Array with 8 × 8 Butler Matrix. Appl. Sci. 2020, 10, 2413. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Kim, Y.-B.; Dong, H.-J.; Cho, Y.S.; Lee, H.L. Compact Switched-Beam Array Antenna with a Butler Matrix and a Folded Ground Structure. Electronics 2019, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Tajik, A. Shafiei Alavijehm A.; Fakharzadeh, M. Asymmetrical 4 × 4 Butler Matrix and Its Application For Single Layer 8 x 8 Butler Matrix. IEEE Trans. Ant. Prop. 2019, 67, 5372–5379. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, S.; Guo, Y.-X.; Tang, M.-C.; Bai, Y.-Y.; Wang, B.-Z. Circularly Polarized Beam-Steering Antenna Array With Butler Matrix Network. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1278–1281. [Google Scholar] [CrossRef]
- Balanis, C.A. Modern Antenna Handbook; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Tseng, C.-H.; Chen, C.-J.; Chu, T.-H. A Low-Cost 60-GHz Switched-Beam Patch Antenna Array with Butler Matrix Network. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 432–435. [Google Scholar] [CrossRef]
- Ren, H.; Arigong, B.; Zhou, M.; Ding, J.; Zhang, H. A Novel Design of 4×4 Butler Matrix with Relatively Flexible Phase Differences. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1277–1280. [Google Scholar] [CrossRef]
- Moody, H. The Systematic Design of The Butler Matrix. IRE Trans. Antennas Propag. 2004, 12, 786–788. [Google Scholar] [CrossRef]
- Der, E.T.; Jones, T.R.; Daneshmand, M. Miniaturized 4 × 4 Butler Matrix and Tunable Phase Shifter Using Ridged Half-Mode Substrate Integrated Waveguide. IEEE Trans. Microw. Theory Tech. 2020, 68, 3379–3388. [Google Scholar] [CrossRef]
- Ali, A.A.M.; Fonseca, N.J.G.; Coccetti, F.; Aubert, H. Design and Implementation of Two-Layer Compact Wideband Butler Matrices in SIW Technology for Ku-Band Applications. IEEE Trans. Antennas Propag. 2010, 59, 503–512. [Google Scholar] [CrossRef]
- Tian, G.; Yang, J.-P.; Wu, W. A Novel Compact Butler Matrix Without Phase Shifter. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 306–308. [Google Scholar] [CrossRef]
- Xu, H.-X.; Wang, G.-M.; Wang, X. Compact Butler Matrix Using Composite Right/Left Handed Transmission Line. Electron. Lett. 2011, 47, 1081. [Google Scholar] [CrossRef]
- Koziel, S.; Kurgan, P. Low-Cost Optimization Of Compact Branch-Line Couplers And Its Application To Miniaturized Butler Matrix Design. In Proceedings of the 44th European Microwave Conference, Rome, Italy, 6–9 October 2014; pp. 227–230. [Google Scholar] [CrossRef]
- Letavin, D.A.; Shabunin, S.N. Construction of a 4x4 Butler Microstrip Matrix with Reduced Dimensions. In Proceedings of the 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 14–15 May 2020; pp. 257–260. [Google Scholar] [CrossRef]
- Karamzadeh, S.; Rafii, V.; Kartal, M.; Virdee, B.S. Compact and Broadband 4 × 4 SIW Butler Matrix With Phase and Magnitude Error Reduction. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 772–774. [Google Scholar] [CrossRef]
- Lian, J.-W.; Ban, Y.-L.; Xiao, C.; Yu, Z.-F. Compact Substrate-Integrated 4 × 8 Butler Matrix With Sidelobe Suppression for Millimeter-Wave Multibeam Application. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 928–932. [Google Scholar] [CrossRef]
- Bhowmik, P.; Moyra, T. Modelling and Validation of a Compact Planar Butler Matrix by Removing Crossover. Wirel. Pers. Commun. 2017, 27, 788–5132. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Chang, C.-L. A Rigorous Design Methodology for Compact Planar Branch-Line and Rat-Race Couplers With Asymmetrical T-Structures. IEEE Trans. Microw. Theory Tech. 2012, 60, 2085–2092. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, M.; Zhang, H.; Arigong, B. A Novel Dual-Band Zero-Phase True Crossover With Arbitrary Port Impedance. IEEE Microw. Wirel. Components Lett. 2019, 29, 29–31. [Google Scholar] [CrossRef]
- Chu, H.N.; Ma, T.-G. An Extended 4×4 Butler Matrix With Enhanced Beam Controllability and Widened Spatial Coverage. IEEE Trans. Microw. Theory Tech. 2018, 66, 1301–1311. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Chen, H.-J. Compact Rat-Race Coupler Using Shunt-Stub-Based Artificial Transmission Lines. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 734–736. [Google Scholar] [CrossRef]
- Ahmed, O.; Sebak, A.; Denidni, T. Compact UWB Printed Monopole Loaded With Dielectric Resonator Antenna. Electron. Lett. 2011, 47, 7–8. [Google Scholar] [CrossRef]
- Lin, C.-C. Compact Bow-Tie Quasi-Self-Complementary Antenna for UWB Applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 987–989. [Google Scholar] [CrossRef]
- Koziel, S.; Ciaurri, D.E.; Leifsson, L. Surrogate-Based Methods. In Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence; Koziel, S., Yang, X.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 356, pp. 33–59. [Google Scholar]
- Leal-Romo, F.D.J.; Rayas-Sanchez, J.E.; Chavez-Hurtado, J.L. Surrogate-Based Analysis and Design Optimization of Power Delivery Networks. IEEE Trans. Electromagn. Compat. 2020, 62, 2528–2537. [Google Scholar] [CrossRef]
- Feng, F.; Na, W.; Liu, W.; Yan, S.; Zhu, L.; Ma, J.; Zhang, Q.-J. Multifeature-Assisted Neuro-transfer Function Surrogate-Based EM Optimization Exploiting Trust-Region Algorithms for Microwave Filter Design. IEEE Trans. Microw. Theory Tech. 2020, 68, 531–542. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hong, J.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Conn, A.R.; Gould, N.I.M.; Toint, P.L. Trust Region Methods; Society for Industrial & Applied Mathematics (SIAM): Philadelphia, PA, USA, 2000. [Google Scholar]
- Bekasiewicz, A. Low-Cost Automated Design of Compact Branch-Line Couplers. Sensors 2020, 20, 3562. [Google Scholar] [CrossRef]
- Arfken, G. Mathematical Methods for Physicists, 3rd ed.; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Wong, Y.S.; Zheng, S.Y.; Chan, W.S. Quasi-arbitrary phase-difference hybrid coupler. IEEE Trans. Microw. Theory Tech. 2012, 60, 1530–1539. [Google Scholar] [CrossRef]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley Sons, Ltd.: Hoboken, NJ, USA, 2001; p. 497. [Google Scholar]
- Coello, C.A.C.; Van Veldhuizen, D.A.; Lamont, G.B. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer Science and Business Media LLC: New York, NY, USA, 2002. [Google Scholar]
- Kurgan, P.; Filipcewicz, J.; Kitlinski, M. Development of a Compact Microstrip Resonant Cell Aimed at Efficient Microwave Component Size Reduction. IET Microw. Antennas Propag. 2012, 6, 1291. [Google Scholar] [CrossRef]
- Tajik, A.; Fakharzadeh, M.; Mehrany, K. DC to 40-GHz Compact Single-Layer Crossover. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 642–644. [Google Scholar] [CrossRef]
- Ding, K.; Kishk, A.A. 2-D Butler Matrix and Phase-Shifter Group. IEEE Trans. Microw. Theory Tech. 2018, 66, 5554–5562. [Google Scholar] [CrossRef]
- Hassan, A.T.; Kishk, A.A. Efficient Procedure to Design Large Finite Array and Its Feeding Network With Examples of ME-Dipole Array and Microstrip Ridge Gap Waveguide Feed. IEEE Trans. Antennas Propag. 2020, 68, 4560–4570. [Google Scholar] [CrossRef]
- Mroczka, J. The Cognitive Process in Metrology. Measurement 2013, 46, 2896–2907. [Google Scholar] [CrossRef]
- Chen, B.; He, J.; Guo, Y.; Pan, S.; Ye, X.; Fan, J. Multi-Ports ([2n) 2×-Thru De-Embedding: Theory, Validation, and Mode Conversion Characterization. IEEE Trans. Electromagn. Compat. 2019, 61, 1261–1270. [Google Scholar] [CrossRef]
- Ji, B.; Chen, Z.; Chen, S.; Zhou, B.; Li, C.; Wen, H. Joint Optimization for Ambient Backscatter Communication System With Energy Harvesting for IoT. Mech. Syst. Signal Process. 2020, 135, 106412. [Google Scholar] [CrossRef]
Excitation | Port P1 | Port P2 | Port P3 | Port P4 |
---|---|---|---|---|
RBW (dB) | −21.2 | −15.5 | −17.3 | −16.1 |
IBW (dB) | 18.4 | 17.6 | 17.6 | 18.1 |
ΔMBW (dB) | 0.79 | 0.75 | 0.74 | 0.45 |
ΔMf0 (dB) | 0.51 | 0.45 | 0.41 | 0.14 |
Target phase (°) | −30 | 150 | −120 | 60 |
ΔPBW (°) | ±4.9 | ±4.7 | ±4.0 | ±4.3 |
ΔPf0 (°) | ±1.6 | ±1.3 | ±2.5 | ±2.6 |
Method | EM Model Type | No. of Model Evaluations | Cost | Total Cost | Performance Figures * | ||||
---|---|---|---|---|---|---|---|---|---|
(RBe) | (h) | (RBe) | (h) | RBW (dB) | ΔMf0 (dB) | ΔPf0 (°) | |||
Direct | RBe | 134 | 134 | 91.6 | 134 | 91.6 | −15.2 | 0.59 | ±3.2 |
This work | BLC # | 60 | 6.6 | 4.5 | 19.4 | 13.2 | −15.5 | 0.51 | ±2.6 |
PS # | 120 | 1.8 | 1.2 | ||||||
RBe | 11 | 11 | 7.5 |
Excitation | Port P1 | Port P2 | Port P3 | Port P4 |
---|---|---|---|---|
RBW (dB) | −14.9 | −17.1 | −18.3 | −14.5 |
IBW (dB) | 20.1 | 20.7 | 20.7 | 20.1 |
ΔMBW (dB) | 0.68 | 0.93 | 0.68 | 0.50 |
ΔMf0 (dB) | 0.38 | 0.52 | 0.28 | 0.10 |
Target phase (°) | −30 | 150 | −120 | 60 |
ΔPBW (°) | ±3.6 | ±4.3 | ±3.8 | ±3.1 |
ΔPf0 (°) | ±1.3 | ±1.0 | ±1.6 | ±2.1 |
Excitation * | Port P1 | Port P2 | Port P3 | Port P4 |
---|---|---|---|---|
RBW (dB) | −17.6 | −10.8 | −14.5 | −9.1 |
IBW (dB) | 15.8 | 14.5 | 10.3 | 10.9 |
ΔMBW (dB) | 2.01 | 2.75 | 3.99 | 1.05 |
ΔMf0 (dB) | 1.34 | 1.91 | 2.59 | 0.85 |
Target phase (°) | −30 | 150 | −120 | 60 |
ΔPBW (°) | ±14.3 | ±9.06 | ±18.4 | ±9.23 |
ΔPf0 (°) | ±7.48 | ±7.83 | ±10.9 | ±8.79 |
Designs | Performance Figures * | Size | Relative Size (%) $ | |||||
---|---|---|---|---|---|---|---|---|
f0 (GHz) | BW & (%) | ΔMf0 (dB) | Δθ1–4 (°) | ΔPf0 (°) | Dimensions (mm × mm) | Dimensions (λg × λg) | ||
Conventional [21] | 1.0 | 7.0 | 0.60 | −45, 135, −135, 45 | ±4.0 | 233 × 191 | 1.29 × 1.06 | 100 |
[23] | 5.8 | 7.3 | 0.45 | −30, 150, −120, 60 | ±3.8 | 71.4 × 119 | 1.89 × 3.15 | 437 |
[27] | 6.0 | 7.2 | 0.40 | −45, 135, −135, 45 | ±0.9 | 58.9 × 57.9 | 1.96 × 1.93 | 279 |
[16] | 28 | 3.2 | 4.70 | −45, 135, −135, 45 | ±16 | 16.8 × 14.9 | N/A # | N/A # |
[28] ! | 1.8 | 5.5 | 2.40 | −45, 135, −135, 45 | ±5.9 | 99.5 × 127 | 0.82 × 1.04 | 62.8 |
[30] | 1.0 | 5.9 | 2.30 | −45, 135, −135, 45 | ±1.8 | 164 × 121 | 1.00 × 0.74 | 54.1 |
[29] | 1.0 | N/A | 1.20 | −45, 135, −135, 45 | ±1.0 | 87.8 × 82.4 | 0.49 × 0.46 | 16.3 |
This work (BM1) | 2.6 | 8.4 | 0.51 | −30, 150, −120, 60 | ±2.6 | 24.0 × 29.0 | 0.34 × 0.42 | 10.5 |
This work (BM2) | 2.6 | 7.6 | 0.52 | −20, 160, −110, 70 | ±2.1 | 25.9 × 29.6 | 0.37 × 0.42 | 11.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekasiewicz, A.; Koziel, S. Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences. Sensors 2021, 21, 851. https://doi.org/10.3390/s21030851
Bekasiewicz A, Koziel S. Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences. Sensors. 2021; 21(3):851. https://doi.org/10.3390/s21030851
Chicago/Turabian StyleBekasiewicz, Adrian, and Slawomir Koziel. 2021. "Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences" Sensors 21, no. 3: 851. https://doi.org/10.3390/s21030851
APA StyleBekasiewicz, A., & Koziel, S. (2021). Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences. Sensors, 21(3), 851. https://doi.org/10.3390/s21030851