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Abstract: With the development of smart vehicles and various vehicular applications, Vehicular Edge
Computing (VEC) paradigm has attracted from academic and industry. Compared with the cloud
computing platform, VEC has several new features, such as the higher network bandwidth and the
lower transmission delay. Recently, vehicular computation-intensive task offloading has become a
new research field for the vehicular edge computing networks. However, dynamic network topology
and the bursty computation tasks offloading, which causes to the computation load unbalancing for
the VEC networking. To solve this issue, this paper proposed an optimal control-based computing
task scheduling algorithm. Then, we introduce software defined networking /OpenFlow framework
to build a software-defined vehicular edge networking structure. The proposed algorithm can
obtain global optimum results and achieve the load-balancing by the virtue of the global load
status information. Besides, the proposed algorithm has strong adaptiveness in dynamic network
environments by automatic parameter tuning. Experimental results show that the proposed algorithm
can effectively improve the utilization of computation resources and meet the requirements of
computation and transmission delay for various vehicular tasks.

Keywords: software-defined vehicular edge networking; resource allocation; computation task
scheduling; optimal control

1. Introduction

With the development of the intelligent connected vehicles, more and more vehicular
terminal devices have begun to participate in data task collection and processing [1-4],
such as autonomous driving, virtual reality, and computation-intensive tasks. [5] presented
a traffic management service, called ABATIS, to optimize the routes for vehicles. In cloud
computing paradigm, the collected data and processing tasks have been uploaded to a
centralized data center far away from Internet of vehicles [6]. After the task execution
is completed, the processing results will be transmitted back to the task initiator. Hence,
enormous sensed data and the encapsulated computation-intensive tasks transmission have
put severe strain on the mobile network, especially in terms of bandwidth consumption.
With the ever-increasing amount of network traffic, the network congestion frequently
happens and degrades the quality of service (QoS) for delay-sensitive tasks [7-9].

Recently, a Vehicular Edge Computing (VEC) paradigm was presented, as shown
in Figure 1. A vehicle can offload some complex delay-sensitive tasks to edge cloud
due to the limited computing, storage, communication capacity [8,10,11], as shown in
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Figure 2. There are existing works focusing on the task offloading and resource allocation.
For example, Chen [12] exploits Lyapunov optimization theory to maximize the long-term
performance of networking system, such as lower task execution delay and task migration
delay. Although Lyapunov optimization algorithm can be designed and implemented,
it is not suitable to complex and highly dynamic network environments. Literature [13]
proposed the Cloud Computing Management Unit (CCMU) to optimize the allocation of
computing resources. In [13], CCMU uses the Markov decision process to give the opti-
mization decisions. Although the MDP has been developed a general algorithm (Bellman
Equation), the convergence speed of MDP is still slow for the state space of continuous
variables. Overall, it is difficult to achieve the load balancing effect for the existing task
offloading and resource allocation algorithms. How to reasonably allocate computing and
communication resources is still a challenge for the VEC networking. In our previous
research, our work is the exploiting the modern control theory to model the computation
task optimal scheduling in vehicular edge networks [14]. This paper is the extension of
the conference paper [14]. In this paper, we proposed an Optimal Control-based com-
puting Task Scheduling algorithm (OCTS). The proposed OCTS method has significantly
improved the previous work in the following aspects: (1) Introducing VEC architecture
and assumptions; (2) using the software-defined network (SDN)/OpenFlow to collect the
necessary network parameters for task scheduling; (3) optimizing task migration delay and
avoiding network congestion by adjusting the weight value . When the network delay
is higher than the threshold value, it can be reduced by increasing weight value ¢; (4) en-
hancing the experimental verification; and (5) comparisons with the existing approaches.

m Un-Compute task H Computed task

<+— Vehicle trajectory <« — The path of the task

Figure 2. Illustration of Vehicular Edge Computing (VEC) network application scenario.
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The remainder of this paper is organized as follows. Section 2 gives the related
work. Section 3 describes the network scenario and system model. Section 4 presents the
vehicular task queuing model. Section 5 proposes the optimal control-based computing
task scheduling algorithm. Section 6 presents our empirical studies. Section 7 concludes
this paper.

2. Related Works

With the development of Internet of vehicles, more and more vehicular applications
have been developed to meet the QoS requirements of mobile users. Due to the limited
computing, storage, and communication capacities of mobile terminals, the vehicle itself
cannot be able to meet the QoS requirements of various applications. Although cloud
computing has large computing power, the transmission delay between vehicles and cloud
computing platform is significant [15]. Hence, it is not sufficient for the latency-sensitive
applications. The edge computing servers are closer to the mobile terminals, which can
effectively reduce task execution and migration delay [8].

Nowadays, some researchers have focused on the mobile task offloading and resource
allocation. A previous study [16] proposed a joint optimal VEC server selection and of-
floading (JSCO) Algorithm to address resource allocation for a multiuser multi-server VEC
system. Fan [17] proposed a collaborative optimization migration and caching model to
improve the performance of edge task execution. Then, the optimization problem with
two independent sub-problems was solved. Next, the resource management algorithm
was designed to jointly schedule task and its migration. The experimental results show
that the proposed model can reduce the latency of task execution. Another study [18]
studied the average delay minimization problem for component-based linear applications
in vehicular ad-hoc networks and proposed a delay-optimization based ant colony opti-
mization algorithm (DoACO). This optimization problem with the stringent constraint
conditions has been proved a NP hard problem. Liu [19] presented the optimization prob-
lem with the energy consumption, execution delay, and price cost constraints. Specifically,
energy consumption, execution delay, and computing capacity were explicitly and jointly
considered. On the basis of theoretical analysis, a multi-objective optimization problem
with joint conditions was presented. To minimize the power consumption, execution delay,
and price cost, the multi-objective optimization problem was solved by the scaling scheme
and the interior point method. Another study [20] proposed a resource-sharing scheme for
data center collaboration, which stipulated that each data center uses buffer to store service
requests for local execution. When the bulffer is full, the request is migrated to an adjacent
data center and accepted if the current queue length is below the pre-defined threshold in
the data center. In this way, the blocking state and task execution latency of the data center
can be effectively reduced. Furthermore, previous research [21] studied three load sharing
schemes, namely no-sharing, random sharing, and minimum load sharing. After the
comparisons, they find that the minimum load sharing scheme is most suitable for making
full use of the cooperation among servers to realize the load balancing. Another study [22]
proposed another edge computing task scheduling model, which transformed the wait-
ing time minimization problem into an overall planning problem, and then carried out
optimal scheduling through dynamic programming. A previous study [23] proposed an
improved chaotic bat swarm algorithm. Based on the bat algorithm, chaos factors and
second-order oscillation were introduced to accelerate the update of dynamic parameters
and thus improve the convergence of the algorithm.

However, the proposed methods [12,20-28] result in unbalancing resource allocation
for vehicular tasks due to dynamic network environment driven by humans. In order to
achieve the load-balancing, literatures [29,30] used the idea of software defined network
to obtain the more network status parameters. SDN is an innovative network design,
implementation, and management method, which separates network control from for-
warding process to achieve better user experience [31]. Next, the collected network status
parameters are the input vector of the proposed optimization model. Experiments show
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that the proposed algorithms can significantly reduce task execution time. Although the
proposed algorithms can achieve the better results, the number of iterations being solved is
still large due to the high dimension input vector. Hence, the presented solving algorithms
are not fundamentally suitable for delay-sensitive vehicular task execution.

3. VEC Architecture and Assumptions

In this section, we first introduce the networking layer architecture. Then, the software-
defined vehicular edge networking (SD-VEC) architecture and computation models are elab-
orated.

3.1. SD-VEC Networking Layer Architecture

Figure 3 shows the SD-VEC networking layer architecture. In the user layer, when the
vehicles in the area covered by a Roadside Unit (RSU), they can send vehicular tasks to the
RSU with wireless connections. In the VEC layer. Each VEC server is connected with an
RSU. The RSU will forward these tasks to the VEC servers and then the VEC server will
execute these tasks and send them back to the requesting vehicles. The VEC servers in
different area are connected by the wired cables in the same local area network. The VEC
servers can send or receive tasks to or from other servers by these wired cables. In the
control layer, the SDN controller can connect with the VEC servers through wired cables.
The SDN controller can not only obtain the status information of servers and network,
such as the CPU utilization, memory usage, but also control the task migration among the
servers. The descriptions of symbols are shown in Table 1.

@ SDN Controller

Control

Layer

=
— =

Layer VEC
¥ _ RSU (i)
RER | 7 é D
s < ~ 5
2L oy
N - SN
User EnaR 'f Y
e | )
Layer ;N /}
/

Figure 3. Software-defined vehicular edge networking (SD-VEC) networking layer architecture.

3.2. Network Model Assumptions

We assume that the second layer includes N VEC servers, which are deployed near the
RSU. Each VEC server is equipped with an RSU thus the VEC servers and RSUs share the
same index. When the vehicles move into the coverage of the RSUs, they can offload their
computation tasks to corresponding RSUs via wireless link. The CPU frequency of a VEC
server i is denoted as f; and the corresponding clock period is h; = 1/ f;. All of the CPU
frequencies for VEC servers can be denoted as f = {f1,---- - , fi} and the corresponding
CPU clock periods can be denoted as h = {hy,--- - - ,hi},i € N.

Secondly, we assume that the received tasks by server i follow a Poisson distribution.
We denote A;(t) as the number of the tasks arriving at the VEC server i at time ¢, and the
task execution time on server i at time t is denoted as m!. = pf‘(t) is denoted as the
processing time to run tasks on a server i. All tasks arriving at the VEC servers are denoted
as A(t) € {Aq(t), -~ ,Ai(t)},i € N and their corresponding processing time can be
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denoted as p*(t) = {p}(t), -+ - ,pM(t)},i € N. To simplify the computation, we assume
that the task execution time is mlt x h; for a VEC serve i. Hence, the server i can take
hi x m! x A;(t) to process the tasks at time £.

Table 1. Description of the symbols.

Symbols Description
fi The CPU frequency of VEC server i
h; The CPU clock period of VEC server i
Ai(t) The number of the tasks arriving at VEC server i at time ¢
mf The task execution time on server i at time ¢
p?‘ The processing time to run tasks on server i
uji(t) The number of the tasks sent form server i to server j
T The task transmission time with no network congestion
ND; The task transmission time on server i
CD; The task execution time on server i
X; State variable for VEC server i
J The convergence cycle of the system at time ¢
x*(t) The optimal routing trajectory at time ¢
u*(t) The optimal control vector at time ¢
Crax Threshold value of CPU utilization

The optimum range of CPU utilization for a VEC server

G The vector form of ¢

D The execution time and transmission time incurred by offloaded task scheduling
¢ A coefficient which is used to adjust the weight of the offloaded task transmission time

hS)

Thirdly, during the work of this system, the network delay cannot be easily calculated.
In order to adjust and optimize the task schedule via the network state, we use the SDN to
obtain the network state. The network delay obtained by SDN is defined as D?, and the
maximum network delay defined by a user is defined as Dy,.

4. Vehicular Task queuing Model

Due to the limited computation capacity of a VEC server and the burst of task arrivals,
some VEC servers are busy, while others are free. The load imbalance will lead to a low
computation resources utilization and extra computation time. Hence, we have to schedule
tasks among VEC servers to alleviate the load imbalance.

We assume that we send tasks of server i to server j and the number of the tasks can
be denote as u;j(t). Specifically, if server i needs to process a large number of tasks at
time t while server j has to process a small number of tasks, the u;j(t) could be positive
number. Thus, the number of tasks which server i send to others can be denoted as

Nmax
u;.(t) = '21 u;j(t),j € N. According to the presented computation model, at time ¢ the
]:

VEC server i will take h; x m! x (A;(t) — u;.(t)) to process these tasks. Vehicular task

queuing model is shown as Figure 4. Next, we describe the task queuing model and task
computation model.

S DY
F—

—

) X
&

. G

((K)

DX Un-Compute task
((ﬁ)) RSU network delay computing delay
Q VEC (a) (b)

Figure 4. Vehicular task queuing model.
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4.1. Task Queuing Model

Task scheduling not only can effectively decrease the task execution time of high
load servers, but also can increase computation resource utilization. However, the task
scheduling will increase the task transmission time of the VEC network. To calculate the
task transmission time, we assume that the tasks arrive at server i from other servers follow
a Poisson distribution. We also assume that the task transmission time is T when there is
no network congestion. As shown in Figure 4a, we use M/M/1 queuing model to build
the vehicular task queuing model. The task transmission time can be denoted as Equation

(1), where u;(t) = % Mjl‘(t).
=1
T

ND;(u;(t)) = 1—tu;(t)

)

4.2. Task Computation Model

As shown in Figure 4b, we use M/M/1 to build the vehicular task queuing model.
The task execution time is denoted as Equation (2).

CD; (1)) = Mz €N o)

where CD; is denoted as task execution time on a server i.

5. Problem Formulation and Optimal Task Scheduling Solving

Our goal is to reduce the load on each server as much as possible while satisfying the
network delay and computing delay of vehicular tasks.
The problem formulation with constraints is shown as Formula (3).

minJ(u fo (END(u(t)) + CD(u(t)))dt
st 5= (NG = 0)
Di(14.4(£)) < NDp, Vi € N
D;(u.t(t)) < CDmax, Vi € N

®)

In the Formula (3),

Ju(®) = [ @NDG(r) + CDu(r))ar @

is the performance index of the VEC system. ND(u(t)) and CD(u(t)) is the execution
time and transmission time incurred by offloaded task scheduling. When D* > Dy,
the increasing value of ¢ is to decrease D“. ¢ is a coefficient to adjust the weights of the
offloaded task transmission time. If we increase the value of ¢, the task transmission
time will decrease while the task execution time will increase. The adjustment of the ¢
value is used for dealing with the stringent time constraint vehicular tasks. Formula (3)
can be resolved by calculus of variations method, but before that, we need to set up the
corresponding state equations and state variables.

Firstly, the CPU utilization of a VEC server is denoted as a state variable. Next,
the various tasks with different QoS requirements from both vehicles and other mobile
terminals (laptop, smart phones, etc.) are denoted as the inputs of the system framework.
The inputs of the network system have clearly influenced on running state variables of this
system. The state variables of a VEC server i can be denoted as Equation (5).

h; x mt x (A;(t) + ui(t)) .
i hxmtx(/\()—i—ul())—kpf\(t),lEN ©
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Consequently, the running state vectors of the VEC system can be defined as Equation (6).

X = xi |,i€N (6)

Xn

Secondly, the running state equation of the VEC system is used to describe the rela-
tionship between the input of this system and the system state. The running state equation
of this system can be obtained, as shown in Equation (7).

. dX
== 7
x= @)
Furthermore, Formula (7) can be equivalently transformed into Formula (8).
x = A(t)x(t) + B(t)u(t) 8)

where the matrix A(t) represents the relationship among the state variables within the VEC
system. The matrix B(f) represents the state control variable, which is used to control and
track the variations of running states.

The CPU utilization over time can be represented by the vector x(t). The vector x(t) is
referred as the trajectory of the VEC system. The scheduled tasks among the VEC servers
can be denoted as u(t), namely the control vector. Through scheduling tasks among VEC
servers, we can effectively control the CPU utilization of VEC servers from the initial
running state to the final running state. In the entire running process, the offloaded task
execution time and migration time can be controlled in an optimum range during the
convergence cycle. Then, the convergence cycle of the VEC system can be denoted as
a functional variable J. If we get the minimum value of the vector f by using control
vector u(t) to control vector x(t) from the original state x(0) to the destination state x(t¢),
we could get an optimal routing trajectory for all offloaded tasks in the VEC system. Here,
the optimal routing trajectory is denoted as x*(t). fs is the time consumption for the
optimization process. The corresponding control vector is called optimal control vector,
which is denoted as u*(t).

Next, the status information of the servers, such as the CPU utilization and the network
bandwidth, is collected by the SDN controller. The offloaded task among these servers is
totally scheduled through the designed load-balancing app on a SDN controller. Optimized
task scheduling among VEC servers can improve the load imbalance for the VEC virtual
resources. Specifically, the VEC servers with higher load will migrate their tasks to that
with lower load. Furthermore, the CPU utilization of all the optimized VEC servers will
keep on optimum status level.

Finally, a threshold value Cpnax% for CPU utilization is pre-defined. When the CPU
utilization of a VEC server has just exceeded the pre-defined value, this time is set as the
initial state indexed by 0. In addition, the CPU utilization of a VEC server is assumed as
the optimization object. After time T, we can obtain the final optimization state. Hence,
we can the optimal range for all of the VEC servers between the initial state and the final
optimization state through tasks scheduling. Here, the optimum range of CPU utilization
for a VEC server is denoted as ¢(x(T), T) = 0, and the vector form of ¢(x(T),T) = 0 is
represented as G(x(t)) = 0 and the range of x(T) is setas S = {x(T)|G(x(t)) = 0}.

At last, the proposed Algorithm 1 is shown as below.
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Algorithm 1. OCTS

Input: Task arrival numbers, CPU usage of all SBSs, Control parameter ¢, J(u(t))
Output: Optimal control u* (), optimal trajectory x*(t)
.Fort=0;t<Tdo

. Calculate the expected CPU usage of SBSs C,%;

. Calculate the fitted curve A(t) and p*(t) based on task arrival numbers;
. Establish the state vector x based on step 2 and 3;

. Solving the extreme value of J(u(t));

. Get u*(t) and x*(t);

. Update the CPU usage of SBSs;

. End For

. Return uj(t), -~ - ,uy(t), -, up(f)

O 0 NI O Ul = Wi =

6. Experiments
6.1. Experiment Setup

In this section, the simulation experiments are designed and implemented to evaluate
the performance for the proposed optimal control-based computation task scheduling
in software-defined vehicular edge networking in terms of CPU utilization and delay.
The minimum configuration of a server is Core i3 CPU and 4G memory for performing the
experiment in real time.

We have presented the software-defined vehicular edge networking (SD-VEC) environ-
ments, as shown in Figure 5. As shown in this figure, the vehicle nodes firstly communicate
with its RSU node, and then the RSU node can obtain the flow tables through the RSU con-
troller, the vehicle nodes can route by the flow rules at last. Here, we choose the floodlight
v1.2 as the SDN controller. The combination of simulation of urban mobility (SUMO v1.8)
with instant virtual network (Mininet v2.2) as the base software platform are installed on
a computer equipped with i7 CPU and 8GB memory. SUMO can generate the mobility
pattern of the vehicles that is used by the Mininet. We chose the city of Luxembourg in
European cities as the simulation scenario. That is because Luxembourg SUMO Traffic
Scenario is well-known and frequently used to evaluate the VANETs communication sys-
tem. In this network experiment, there is an SDN controller, there are 5 VEC servers and
100 vehicles in a SD-VEC network. As shown in Figure 5, one VEC server can connect
20 vehicles at the beginning. To simplify the calculation, the computation capacity of
every VEC server is set to 1GHz and the task transmission time in the LAN is set to 10 ms
without network congestion. The event of vehicular task arrivals on a VEC server follows
the Poisson distribution, and every task will take 10° CPU cycles. The captured network
traffic in this paper is the time series with white Gaussian noise. The rest of simulation
experimental parameters are shown in Table 2.

VISTA-mp0
Car2STA~ .
7VaSTA-eth0 ~
/_v2STA-ethl ~a

arzsw S~
7 V2SW-eth2 ~.
v2-eth0 Cominupnication
/ Car2 Y
V2-wiani ~.
~
/ Car2 N
(f()mmun}m(iun >
// === VIS AP0
/ = —Communicatior Car3STA
VISTA-mp0 — — — — | V3STA-eth0
CarlSTA RSU VISTA-ethl
VISTA-eth arsw
VISTA-ethl V3SW-eth2
arisw v3-eth0
VISW-eth2 Car3
vi-eth V3-wiani
Carl SDN Car3
vi-wlant Controller(Floodlight)
Carl

Figure 5. The communication architecture for SD-VEC.
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Table 2. Description of the simulation experimental parameters.

Impact Factors on CPU Utilization CPU Utilization of Servers 1to 5

1 2 3 4 5

The first set of servers without any impact 20 20 30 30 80
The impact of Lyapunov on the first set of servers 33 33 35 35 48
The impact of OCTS on the first set of servers 35 35 37 37 45
The second set of serverswithout any impact 20 20 30 30 90
The impact of Lyapunov on second set of servers 33 33 35 35 53
The impact of OCTS on the second set of servers 35 35 39 39 49

6.2. Performance Evaluation

Figure 6 shows the network topology of the experiment. In the figure, the SDN
Controller is connected with VEC by these cables, and the VECs is connected with the
vehicles by wireless.

Wireless
| Connections

Figure 6. Network topology of the experiment.

As shown in Figure 7, the initial average CPU utilization of the edge servers 1 to
4 is 20% and CPU utilization of the edge server 5 is 90%. The initial average memory
utilization of the edge servers 1 to 4 is 25% and memory utilization of the edge server
5 is 100%. The initial average disk utilization of the edge servers 1 to 4 is 23% and
memory utilization of the edge server 5 is 93%. The total experiment duration is 1000 s.
The experiments show that the usages of network load are uneven. Next, we simulated
the Lyapunov optimization algorithm to improve the efficiency of the task scheduling
on the edge servers. The average CPU utilization of servers 1 to 4 have increased from
20% to 30% and server 5 has decreased from 90% to 55%. The measurements of CPU
utilization in this figure show the CPU utilization curves of the five edge servers are
closer than that of without using any optimization. These results show the Lyapunov
optimization algorithm can achieve the goal of computation load balancing. Then, we used
the proposed OCTS optimization algorithm to schedule the offloaded task on the edge
servers. As shown in Figure 7, the CPU utilization of servers 1 to 4 have increased from 20%
to 35%, and the CPU usage of server 5 has decreased from 90% to 45%. The measurements
of CPU utilization in Figure 7 show the CPU utilization curves of the five edge servers are
closer than that of no optimization and using Lyapunov optimization. These experimental
results prove that our proposed OCTS method is better than the Lyapunov optimization
and no optimization methods in terms of computation load balancing. With the Lyapunov
optimization, the average memory utilization of servers 1 to 4 have increased from 25%
to 32% and server 5 has decreased from 100% to 65% while with the OCTS optimization,
the average memory utilization of servers 1 to 4 have increased from 25% to 38% and server
5 has decreased from 100% to 53%. With the Lyapunov optimization, the average disk
utilization of servers 1 to 4 have increased from 23% to 32% and server 5 has decreased
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from 93% to 63% while with the OCTS optimization, the average memory utilization of
servers 1 to 4 have increased from 23% to 35% and server 5 has decreased from 93% to 50%.
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Figure 7. The edge server usage comparisons between Lyapunov optimization and our pro-
posed method.

As shown in Figure 7, in the early stage of optimization, the effect of OCTS is not
as good as that of Lyapunov. This is because if too many vehicular tasks are migrated
at that time, there will be a high migration delay. When the load of the server drops,
the optimization effect of OCTS is obviously better than that of Lyapunov, because when
the computing delay of the server drops, the migration of a large number of vehicular tasks
will not lead to too high migration delay.

Hence, we can get a conclusion that the optimization effect for the proposed OCTS
algorithm is about 10% to 15% higher than the Lyapunov optimization method under
the same status conditions. Furthermore, the optimization effect for the proposed OCTS
algorithm is about 30% to 40% higher than no optimization method under the same
status conditions.

Secondly, we compare the CPU utilization among the no optimization, the local opti-
mization, and global optimization, as shown in Figure 8. Global optimization means that
we can get load and delay information for each server through the SDN controller. In this
figure, when the system runs without optimization, server 2 is about 20% CPU utilization
and server 4 is about 30% CPU utilization. When the system is under local optimization,
server 2 is about 20% CPU utilization and server 4 is about 45% CPU utilization. At this
time, server 5 offloads a large number of tasks to server 4, and server 2 remains idle due
to the lack of global performance status information. Tasks from server 5 is denied when
server 4’s CPU utilization is approaching the threshold.

90
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70 4 [ ] Server 4
_ [ Server 5
=2 60 .
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‘= 50
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g 10
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&5 304
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0 T T T
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Different optimization methods

Figure 8. CPU utilization comparisons among the local optimization, no optimization, and global
optimization methods.
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Hence, when the system is under the global optimization, the CPU utilization of
server 2 is about 33%, and that of server 4 is about 34%. The experimental results show
that our proposed algorithm can achieve more excellent load balancing effect than another
two methods.

Thirdly, we compare the no optimization with the OCTS optimization methods in the
terms of the delay metric in unit of millisecond. As shown in Figure 9, the proposed OCTS
method is compared with no optimization method in terms of both the task migration time
and the task processing time. The experimental results show that both the task processing
and task migration time for the servers 1 to 8 slightly increases when our proposed OCTS
method enables. Besides, although the task migration time for servers 9 and 10 have also
slightly increases, the task processing time of server 9 and 10 has obviously decreased.
After the OCTS optimization finished, the task processing time and the task migration time
among the edge servers have become approximately equal. The experimental results prove
that our proposed OCTS method can obviously improve the computation and network load
balancing. However, the task migration time needs to further optimize. In this evaluation,
we set the parameter ¢ equal to 1. Next, we try to adjust the value of parameter ¢ to
optimize the solving. The parameter ¢ is used to adjust the proportion of network delay
in the load balancing optimization process for reducing the task migration delay. That is
because the improvement of load balancing needs too large a number of task migrations
from one edge server to another edge server.
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Figure 9. Delay variations on individual servers.

Fourthly, we study the parameter ¢ optimization to reduce the task migration time.
Here, we set a counter for an edge server to count the number of vehicular tasks arriving at
the edge server. When the number of the offloaded task is up to 100, the counter will be
reset to 0. Besides, the task execution time and task migration time will be calculated again.
Then, we try to increase the value of parameter ¢ to show the variations of task execution
time and task migration time. As shown in Figure 10, compared with no optimization
method, the experimental results show that both the task processing time and the task
migration time of servers 1 to 8 decreases with the increasing of the value of ¢ when our
proposed OCTS method enables. Additionally, the task execution time of servers 9 and 10
are significantly reduced after the OCTS optimization. That is because a large number of
tasks are scheduled from edge servers 9 and 10 to other edge servers. Meanwhile, the task
migration time is doubled. That is because with the increasing value of parameter ¢,
the OCTS optimization method appears over fit. As the experimental results show, we can
come to the conclusion that there exists an optimal tradeoff between task execution time
and task migration time when ¢ is equal to 3.
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7. Conclusions

In this paper, we propose an optimal control-based resource allocation algorithm,
called OCTS, and exploit the software-defined networks framework to achieve the compu-
tation and network load balancing among the VEC servers in vehicular edge networking.
Our contributions are that () SD-VEC networking layer architecture is presented; 2) the
calculus of variations method in modern control theory is introduced to solve the optimal
load balancing strategy for the offloaded edge computation tasks; (3) the parameter adjust-
ment can optimize the task processing time and task migration time and meet the service
requirements of vehicular users. Simulation experimental results prove that our proposed
OCTS method can effectively reduce the load imbalance and improve the resource utiliza-
tion of idle edge servers. Our future work is to study the user behavior and predict the
load imbalance position in advance. According to the load utilization estimation, we can
effectively schedule the vehicular tasks to the idle VEC servers.
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