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Abstract: Heat rate of a combined cycle power plant (CCPP) is a parameter that is typically used
to assess how efficient a power plant is. In this paper, the CCPP heat rate was predicted using an
artificial neural network (ANN) method to support maintenance people in monitoring the efficiency
of the CCPP. The ANN method used fuel gas heat input (P1), CO2 percentage (P2), and power output
(P3) as input parameters. Approximately 4322 actual operation data are generated from the digital
control system (DCS) in a year. These data were used for ANN training and prediction. Seven
parameter variations were developed to find the best parameter variation to predict heat rate. The
model with one input parameter predicted heat rate with regression R2 values of 0.925, 0.005, and
0.995 for P1, P2, and P3. Combining two parameters as inputs increased accuracy with regression R2

values of 0.970, 0.994, and 0.984 for P1 + P2, P1 + P3, and P2 + P3, respectively. The ANN model that
utilized three parameters as input data had the best prediction heat rate data with a regression R2

value of 0.995.

Keywords: artificial neural network (ANN); combined cycle power plant (CCPP); heat rate prediction

1. Introduction

Combined cycle power plants (CCPPs) are one of the power plants types that could
produce electricity with high efficiency and low air pollutant. However, the CCPPs pro-
duction cost is relatively higher than the coal-fired power plant due to prime energy costs.
Hence, operating CCPPs as efficiently as possible is required to decrease production costs.
CCPP highest efficiency could be achieved with maximum load and operating in base
load. Unfortunately, energy supply instability is a common problem of CCPPs in Indonesia.
This issue leads the CCPP management staff struggling to predict the performance of their
CCPP. Assessing historical performance data using machine learning will help to predict
the CCPP performance accurately.

Some literature about gas turbine (GT) or CCPP modeling with machine learning has
been studied. Wood [1] used the transparent open box (TOB) to predict the combined cycle
gas turbine’s power output. Liu et al. [2] predicted gas turbine performance with high
dimensional model representation (HDMR) and an artificial neural network (ANN). A
distributed control system (DCS) was utilized as a tool to provide selected input data. It
was presented that the holistic ANN model had a higher accuracy to predict gas turbine
performance. The ANN was utilized to describe the micro gas turbine performance and
effectively evaluate it in a real installation in any climate as presented by Bartolini et al. [3].
Anvari et al. [4] utilized an ANN on combined cooling heating and power (CCHP) to
predict GT performance prediction. Some underlying parameters were chosen as inputs
but did not include any fuel gas characteristics. Fast et al. [5] developed an ANN model
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to predict the performance of an industrial GT. Relative humidity, ambient pressure and
ambient temperature were used as input parameters. It was reported that the best possible
modeling of the plant was optimized for 10,000 epochs. Rossi et al. [6] reported ANN
modeling for baseline consumption of a combined heat and power plant. Elfaki et al. [7]
predicted the electrical output power of CCPP using the regression ANN model. Moreover,
ANN has been applied to other GT-based application [8–11]. ANN is also widely used in
power plants with multiple objectives. Smrekar et al. [12] predicted power generated by a
coal-fired power plant. Thermal efficiency and power plant pollutant were also predicted
with ANNs [13–16].

To date, there is no actual study predicting CCPP performance using fuel gas charac-
teristics such as gas heat units in million British thermal units (MMBTU) or CO2 percentage,
even though those two parameters are usually used in the gas purchase agreement between
the gas suppliers and power plant operator. Furthermore, the power plant operator usually
has a plant efficiency written in their contract with the regulator. Omar et al. [17] showed
that decreasing power generation leads to higher specific fuel consumption.

According to the research gap, this paper proposes a prediction method of CCPP heat
rate performance with gas heat unit in million British thermal units (MMBTUs), carbon
dioxide (CO2) percentage contain in the fuel gas and generated power in megawatts (MW)
as input parameters. Some studies above showed that ANN is effective in predicting gas
turbine performance. Therefore, an ANN was used as a machine learning tool to predict
the power plant heat rate.

2. Materials and Methods

Artificial neural networks are a technology-based on studies of the brain and nervous
system. These networks emulate a biological neural network, but they use a reduced set
of biological neural systems concepts. Specifically, ANN models simulate the electrical
activity of the brain and nervous system. Processing elements (also known as either
a neurodes or perceptrons) are connected to other processing elements. Typically, the
neurodes are arranged in a layer or vector, with the output of one layer serving as the input
to the next layer and possibly other layers. A neurode may be connected to all or a subset
of the neurodes in the subsequent layer, with these connections simulating the brain’s
synaptic connections. Weighted data signals entering a neurode simulate a nerve cell’s
electrical excitation and, consequently, the transference of information within the network
or brain. The input values to a processing element are multiplied by a connection weight
that simulates the strengthening of neural pathways in the brain. Through the adjustment
of the connection strengths or weights, learning is emulated in ANNs [18].

An ANN is comprised of an input layer, hidden layers and an output layer. All input
nodes have their weight connection of a neuron. Then the relationship between input
parameters and output parameters is learned through the iterative training process. Linear
and nonlinear activation functions are included in the ANN system, resulting in a good
prediction of nonlinear behavior systems.

The components of ANNs are neurons, transfer functions and predefined layers. In
a multilayer perceptron (MLP), the transfer function used are tan-sigmoid (tansig), log-
sigmoid (logsig), and linear purelin functions [19]. Tansig receives the signal in (−∞, +∞)
and converts them to output signal within a (−1, +1) range. Logsig receives the input
signals in the range of (−∞, +∞) and transfers them to the (0, 1) limit. Pureline is a linear
function that maps the input data between (−∞, +∞) and results in the identical data in
(−∞, +∞) interval [4].

Our proposed method for predicting heat rate in a CCPP was developed and demon-
strated for a 740 MW CCPP with configuration two GTs, two heat recovery Sseam genera-
tors (HRSGs), and one steam turbine. However, this paper only provides predictions with
configuration 1-1-1 (one GT and one HRSG stop) due to a lack of gas supply. Real operation
data were collected over one year (2019). Figure 1 presents this paper’s flowchart. The
input parameters in this paper were MMBTU, CO2 percentage and power generated in MW.
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Total generated power of the CCPP, from a GT and steam turbine, recorded by a distributed
control system (DCS) was used as an input parameter in this paper. Since the DCS did not
provide a fuel gas heating unit in MMBTUs and CO2 percentage, the gas supplier’s hourly
data were used. The gas provided by the supplier went to the combustion chamber and
was used as a fuel for the GT. The exhaust gas from the process was used to feed the HRSG.
Since the total heat from these two processes is equal to the gas supplied, the gas data from
supplier was used. Equation (1) was used to calculate the plant heat rate [20].

HR =
Mf x HHV

P
(1)

where: HR = Heat Rate (kcal/kWh); Mf = Fuel gas flow (kNm3/h); HHV = High Heating
Value (BTU/SCF); P = power output (MW).

One input parameter was used with the ANN to see the result in predicting the heat
rate. Two combined parameters were used with the ANN to see the result in predicting the
heat rate. And finally, the three combined parameters were used with the ANN to see the
result in predicting the heat rate. Fuel gas flow was recorded in a DCS and a High Heating
Value (HHV) recorded by the gas suppliers and used in this paper. As shown in Figure 1,
the generated power recorded by the DCS was the key to get clean data, as per 15 min of
data recorded by the DCS collected and evaluated. The data was normalized by rounding
it to the nearest multiple of five, then evaluated by comparing it with data 15 min before
and after. If the normalized data had an equal value with data 15 min before and after, the
data would continue to the next step. If the value was not equal, then it was terminated.
This step was necessary to determine whether the CCPP was in steady-state load condition
or not. The measured data were selected carefully to remove the transient during start-up,
shut down and load change. Finally, 4322 clean data were provided in steady-state power
plant conditions, as presented in Table 1. The input parameters were combined as shown
in Table 2 to find the best combination to predict heat rate.

A feed-forward backpropagation network type was implemented in all ANN models
and trained using gradient descent with momentum and adaptive learning rate back-
propagation (traingdx). Mean squared error (MSE) was used as the loss function. With
a back-propagation algorithm, the learning function changed the weight between the
neurons to reduce the difference. Since success implementation for power plant application
has been shown in other studies [2,5,8], the tansig and purelin activation function was
implemented in this paper. One hidden layer was used with purelin as a transfer function.
The total neuron used was one neuron. ANN structure for the model with one input
parameter is shown in Figure 2.
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Table 1. Actual operation data used.

No Fuel Gas Heat Input (MMBTU) 1 CO2 Percentage (%) Power Output (MW) Heat Rate (kcal/kWh)

1 2197.821 3.678 302.52 1878.26
2 2197.821 3.678 302.52 1878.26
3 2197.821 3.678 302.88 1876.03
4 2197.821 3.678 303.21 1873.99
5 2196.798 3.636 303.09 1874.17
6 2196.798 3.636 302.34 1878.82
7 2197.423 3.563 302.73 1876.23
8 2197.423 3.563 303 1874.56
9 2200.318 3.614 303.03 1876.92

10 2202.682 3.577 303.12 1876.68
. . . . . . . . . . . . . . .

4313 2165.601 3.719 305.01 1816.48
4314 2165.601 3.7190 303.66 1824.56
4315 2165.601 3.7190 304.17 1821.5
4316 2165.601 3.7190 304.68 1818.45
4317 2157.497 3.595 303.87 1816.67
4318 2155.63 3.716 302.85 1820.62
4319 2155.63 3.716 303.3 1817.92
4320 2151.122 3.901 302.07 1823.05
4321 2150.759 3.804 301.86 1823.44
4322 2150.759 3.804 302.28 1820.91

1 Milion British Thermal Unit.

Table 2. Input and output parameter for the artificial neural network (ANN) model.

Group Variation Parameter Description Output Parameter

One input Parameter
P1 Fuel gas energy (MMBTU) heat rate
P2 CO2 percentage (%) heat rate
P3 Power (MW) heat rate

Two input Parameters
P1 + P2 Fuel gas energy (MMBTU) & CO2 percentage (%) heat rate
P1 + P3 Fuel gas energy (MMBTU) & Power (MW) heat rate
P2 + P3 CO2 percentage (%) & Power (MW) heat rate

Three input parameters P1 + P2 + P3 Power (MW) & Fuel gas energy (MMBTU) heat rate
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Figure 2. ANN structure for one input parameter (P1, P2 and P3).

Two input parameters were combined as presented in the Table 2. In these models,
two hidden layers were used. The first hidden layer used four neurons as a rule of thumb
of the hidden layer as the input layer square, and the second hidden layer used 1 neuron.
The transfer function used in the first hidden layer was tansig, and the second hidden
layer used purelin as a transfer function. The ANN structure for the model with two input
parameters is shown in Figure 3.
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Figure 3. ANN structure for two input parameters (P1 + P2, P1 + P3 and P2 + P3).

The last model was the combination of all three input parameters. Two hidden layers
were used, with the first hidden layer using nine neurons as a rule of thumb of the hidden
layer as the input layer square, and the second layer used 1 neuron. The first layer used
tansig as a transfer function, and the second layer used purelin as a transfer function.
Figure 4 shows the ANN structure for the model with three input parameters:
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The output parameter for all models was the plant heat rate, since the plant heat
rate was usually used in a contractual agreement to judge whether the power plant was
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operated efficiently or not. Each model used 10,000 epoch iterations and 1000 validation
checks. Data used for training was 50%, while 25% was used for validation and the other
25% used for the test.

3. Results
3.1. One Input Parameter

Utilizing only one parameter, each model failed to execute until ten thousand iterations.
Each model always met the maximum validation check. P2 had the highest iteration check
among them with 1534 iteration, while P1 and P3 were only able to execute 1031 and 1025
iteration, respectively. Figure 5 shows training data for P1, P2 and P3, while Figures 6–8
shows their regression. P1 and P3 show R2 for all data of 0.925 and 0.954, respectively. P2
only resulted in R2 0.048. With low R2 results from these ANN models, we could see that
with only one parameter, the ANN did not meet the expectation of predicting the heat rate.
Moreover, with only CO2 percentage as an input parameter, it could not predict the power
plant heat rate.
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3.2. Two Input Parameters

According to the training results in Figure 9, two input parameters were used in
model P1 + P2, P1 + P3, and P2 + P3. P1 + P2 failed to execute 10,000 iteration to reach the
maximum validation check allowance, while P1 + P3 and P2 + P3 successfully executed up
to 10,000 iterations. P1 + P2 was only able executed up to 5346 iterations. Figures 10–12
show the model P1 + P2, P1 + P3, and P2 + P3 regressions R2 were 0.970, 0.994, and 0.984,
respectively. It was shown that utilized fuel gas input and power output could predict the
power plant heat rate more accurately than fuel gas input with CO2 percentage or CO2
percentage with power output.
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3.3. Three Input Parameters

All three input parameters are combined in this section, and the training results are
presented in Figure 13. Ten thousand iterations were successfully executed with zero
validation checks. Figure 14 shows that the regression R2 for model g was 0.995, which was
the highest number among all models. Based on these results, utilizing fuel gas input, CO2
percentage and power output together as input parameters in ANN could lead to more
accurate power plant heat rate prediction.
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Twenty five percent of 4322 data were used as test data to evaluate the ANN model
performance. As many as 1081 data, as shown in Tables 3 and 4, were obtained, and the
absolute error percentage was used to see which data had the lowest error numbers. As
shown in Table 5, P1 + P2 + P3 had the lowest average error with 0.19%, and P2 had
the highest average error with 1.84%. P1 maximum error was the highest as shown in
Figure 15 and Table 4 with 7.83%, and the maximum error of P1 + P2 + P3 was the lowest
with 1.4681%.

Table 3. Test data for P1, P2, P3 and P1 + P2.

No Actual P1 Error P2 Error P3 Error P1 + P2 Error

1 1930.12 1961.38 1.62% 1858.55 3.71% 1962.81 1.69% 1928.67 0.08%
2 1943.56 1961.38 0.92% 1858.55 4.37% 1965.96 1.15% 1928.67 0.77%
3 1918.19 1962.03 2.29% 1858.32 3.12% 1960.44 2.20% 1929.10 0.57%
4 1930.22 1962.03 1.65% 1858.32 3.72% 1963.29 1.71% 1929.10 0.06%
5 1927.70 1962.03 1.78% 1858.32 3.60% 1962.69 1.82% 1929.10 0.07%
6 1929.72 1962.03 1.67% 1858.32 3.70% 1963.17 1.73% 1929.10 0.03%
7 1933.59 1962.41 1.49% 1858.15 3.90% 1964.12 1.58% 1929.30 0.22%
8 1928.04 1962.41 1.78% 1858.15 3.63% 1962.81 1.80% 1929.30 0.07%
9 1936.64 1962.41 1.33% 1858.15 4.05% 1964.83 1.46% 1929.30 0.38%
10 1927.54 1962.41 1.81% 1858.15 3.60% 1962.69 1.82% 1929.30 0.09%

1072 1816.48 1811.50 0.27% 1860.87 2.44% 1814.07 0.13% 1821.54 0.28%
1073 1824.56 1811.50 0.72% 1860.87 1.99% 1816.74 0.43% 1821.54 0.17%
1074 1821.50 1811.50 0.55% 1860.87 2.16% 1815.73 0.32% 1821.54 0.00%
1075 1818.45 1811.50 0.38% 1860.87 2.33% 1814.72 0.21% 1821.54 0.17%
1076 1816.67 1814.29 0.13% 1860.40 2.41% 1816.32 0.02% 1822.70 0.33%
1077 1820.62 1814.93 0.31% 1860.86 2.21% 1818.34 0.13% 1822.98 0.13%
1078 1817.92 1814.93 0.16% 1860.86 2.36% 1817.45 0.03% 1822.98 0.28%
1079 1823.05 1816.47 0.36% 1861.58 2.11% 1819.88 0.17% 1823.71 0.04%
1080 1823.44 1816.60 0.38% 1861.20 2.07% 1820.30 0.17% 1823.74 0.02%
1081 1820.91 1816.60 0.24% 1861.20 2.21% 1819.47 0.08% 1823.74 0.16%

Table 4. Test data for P1 + P3, P2 + P3 and P1 + P2 + P3.

No Actual P1 + P3 Error P2 + P3 Error P1 + P2 + P3 Error

1 1930.12 1930.85 0.04% 1935.11 0.26% 1932.78 0.14%
2 1943.56 1938.25 0.27% 1939.50 0.21% 1943.22 0.02%
3 1918.19 1924.42 0.32% 1932.04 0.72% 1923.87 0.30%
4 1930.22 1931.08 0.04% 1935.93 0.30% 1933.33 0.16%
5 1927.70 1929.69 0.10% 1935.12 0.38% 1931.35 0.19%
6 1929.72 1930.80 0.06% 1935.77 0.31% 1932.94 0.17%
7 1933.59 1932.52 0.06% 1937.24 0.19% 1935.61 0.10%
8 1928.04 1929.45 0.07% 1935.46 0.38% 1931.22 0.16%
9 1936.64 1934.19 0.13% 1938.21 0.08% 1938.01 0.07%
10 1927.54 1929.17 0.08% 1935.29 0.40% 1930.82 0.17%

1072 1816.48 1821.28 0.26% 1820.62 0.23% 1820.14 0.20%
1073 1824.56 1827.36 0.15% 1822.06 0.14% 1826.51 0.11%
1074 1821.50 1825.09 0.20% 1821.52 0.00% 1824.12 0.14%
1075 1818.45 1822.79 0.24% 1820.98 0.14% 1821.71 0.18%
1076 1816.67 1821.52 0.27% 1822.22 0.31% 1820.36 0.20%
1077 1820.62 1825.02 0.24% 1822.91 0.13% 1824.36 0.21%
1078 1817.92 1822.98 0.28% 1822.44 0.25% 1822.22 0.24%
1079 1823.05 1825.82 0.15% 1823.51 0.02% 1825.79 0.15%
1080 1823.44 1826.54 0.17% 1823.79 0.02% 1826.29 0.16%
1081 1820.91 1824.65 0.21% 1823.35 0.13% 1824.34 0.19%
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Table 5. Test result error summary.

Input Parameter Max Error Average Error

P1 7.84% 0.73%
P2 4.81% 1.84%
P3 5.42% 0.58%

P1 + P2 5.80% 0.49%
P1 + P3 2.10% 0.23%
P2 + P3 5.14% 0.41%

P1 + P2 + P3 1.47% 0.19%
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4. Discussion

The experimental results showed that ANN could predict CCPP heat rate performance
with correct input parameters. Those models with one input parameter were not able to
execute 10,000 epoch iterations. The ANN always met the maximum validation check
allowances. Combining two parameters could lead to a better heat rate prediction. P1 + P3
that used fuel gas heat input and power output was a more accurate model than the other
models with two input parameters. P1 + P2 was the only two parameter input that did not
meet the iteration expected. The training stopped at 5346 iterations because the validation
check met the maximum allowance. The combination of P2 + P3 could meet the expected
iteration. However, the R2 regression was only 0.984, and the validation check was 17.
Combining three input parameters, P1 + P2 + P3, could produce better accuracy. Table 6
shows that P1 + P2 + P3 led to the highest regression R2 value. It also had a zero validation
check. A validation check refers to the number of errors from the dataset. Lower validation
checks could lead to higher accuracy from the model to predict the desired data. The
experiment data showed that adding CO2 percentage as an input parameter could lead to
higher accuracy in predicting CCPP heat rate value. All the variation had average error
data lower than 2%. This indicates that the NN could predict heat rate accurately, and the
P1 + P2 + P3 with the lowest error data could be the best variation to predict heat rate.
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Table 6. CCPP heat rate actual prediction with ANN.

No Actual Prediction Error

1 2462.34 2404.59 2.35%
2 2429.13 2436.05 0.28%
3 2461.90 2433.80 1.14%
4 2446.28 2431.91 0.59%
5 2443.30 2414.70 1.17%
6 2433.57 2431.62 0.08%
7 2460.70 2434.82 1.05%
8 2462.24 2438.58 0.96%
9 2436.63 2451.69 0.62%
10 2447.93 2437.34 0.43%

1019 2447.89 2447.84 0.00
1020 2451.29 2430.37 0.01
1021 2445.20 2444.25 0.00
1022 2439.77 2394.99 0.02
1023 2420.73 2431.86 0.00
1024 2453.71 2437.44 0.01
1025 2423.18 2422.99 0.00
1026 2409.58 2432.12 0.01
1027 2439.65 2412.53 0.01
1028 2431.93 2421.86 0.00

Input parameter, P1 + P2 + P3 as listed in Table 5, were used in ANN method to
predict the actual heat rate as presented in Table 6 with 1028 data predictions. The average
error for prediction was 2.52% with max error value 10.88%

5. Conclusions

Based on our experiment, the conclusions obtained are as follows:

• Utilizing one parameter as an input could not bring an accurate heat rate prediction.
The ANN regression R2 value for fuel gas energy (MMBTU), CO2 percentage (%), and
power output (MW) were 0.925, 0.005, and 0.954, respectively.

• The regression R2 values for two input parameters, where fuel gas energy (MMBTU) +
CO2 percentage (%), fuel gas energy (MMBTU) + Power (MW), and CO2 percentage
(%) + Power (MW), were 0.970, 0.994, and 0.984, respectively.

• The combination of all three parameters showed the best result of the ANN model.
The regression R2 value was 0.995 with zero validation check and the lowest average
error data.

• The three parameter combination resulted in the lowest average error in experimental
data with 0.19%

• Utilizing fuel gas energy (MMBTU), CO2 percentage (%), and power output (MW) as
inputs can lead to an accurate CCPP heat rate prediction.

This experiment was successful given that an accurate CCPP heat rate prediction was
made with three input parameters. Adding more parameters like GT model, equivalent
operating hours, trip history, or other parameters, might lead to a more accurate and more
widely applicable ANN in predicting CCPP heat rate.
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