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Abstract: In this paper, the natural frequencies (NFs) identification by finite element method (FEM)
is applied to a two degrees-of-freedom (2-DOF) planar robot, and its validation through a novel
experimental methodology, the Multiple Signal Classification (MUSIC) algorithm, is presented. The
experimental platforms are two different 2-DOF planar robots with different materials for the links
and different types of actuators. The FEM is carried out using ANSYS™ software for the experiments,
with vibration signal analysis by MUSIC algorithm. The advantages of the MUSIC algorithm against
the commonly used fast Fourier transform (FFT) method are also presented for a synthetic signal
contaminated by three different noise levels. The analytical and experimental results show that
the proposed methodology identifies the NFs of a high-resolution robot even when they are very
closed and when the signal is embedded in high-level noise. Furthermore, the results show that
the proposed methodology can obtain a high-frequency resolution with a short sample data set.
Identifying the NFs of robots is useful for avoiding such frequencies in the path planning and in the
selection of controller gains that establish the bandwidth.

Keywords: natural frequencies; finite element method; MUSIC algorithm; spectral analysis; 2-DOF
planar robot

1. Introduction

During the last decade, robots, in particular those with servomotors, have gained
momentum in diverse areas such as rehabilitation systems [1–3], human interaction sys-
tems [4], bio-inspired systems [5–8], and in surgery [9]. In general, their functionality
depends on their performance trajectory; in this regard, an essential aspect to be consid-
ered in each programmed task is the value of the natural frequencies (NFs) of the robot,
which can magnify the robot vibrations, affecting its performance [10–14]. Hence, it is of
paramount importance to implement a method to accurately identify the NFs in order to
obtain the best performance of the robot.

In literature, different strategies based on FEM and experimental procedures to es-
timate NFs in robots have been presented [15–18]. FEM is the most used experimental
procedure for vibration measurements integrated with signal processing techniques be-
cause it can estimate the real behavior of robots [19–24]. Although FEM provides results
that are very close-to-real [25], it is necessary to perform an experimental validation of
the behavior of the robot to identify the NFs with accuracy [26]. An important step of
the experimental procedure is the use of a signal processing technique to estimate the
NFs of robots [22]. In this regard, Fourier-based methods [19–23] and wavelet transform
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(WT) [24,27] have been the most commonly employed methods for performing this task.
For example, Min et al. employed the Fourier transform method to identify the NFs of an
STR6-05 robotic arm, a 6-DOF heavy load manipulator, to develop a collision detection
method based on vibration signals [22]. Similar work was presented by Yuan et al. [23],
who applied Fourier transform to estimate the NFs of a robotic manipulator of 6 DOF in
order to reduce its vibrations in a specific frequency range using a magnetorheological
elastomer absorber on a spindle. Moreover, a swept sinusoidal signal for measuring the
vibration response of the robot was used.

On the other hand, Chen et al. used the WT method for NFs identification of a simulated
4-DOF system subjected to forced excitations [28]. Klepka et al. applied the WT method for
estimating the NFs of a simulated 2-DOF system [29]. The works presented above [19–24,27]
have presented promising results for estimating the NFs of robots [19–24,27]; nevertheless,
when a system or robot presents closed NFs, the methods presented are not efficient for
identifying them [19]. Besides, Fourier-based methods are affected by noisy signals in
complex systems and require a large number of samples [30], and an appropriate selection
of the decomposition level and wavelet mother is necessary for WT to estimate the NFs
appropriately [28]. For these reasons, it is essential to implement a signal processing
technique for estimating the NFs of a robot under noisy signals with accuracy, especially
closed NFs, using a small amount of data to avoid wear and tear on the robot during testing.

In recent years, a technique called the MUltiple Signal Classification (MUSIC) algo-
rithm has provided promising results for analyzing induction motors [31,32], evaluating the
behavior of civil structures [33–35], and impact-source-localization in composite structures
under deformation conditions [36], among other applications. This technique presents di-
verse advantages such as noise immunity and high resolution and does not require a large
amount of experimental information to estimate the frequencies contained in the analyzed
signal with high accuracy [33]. It is also important to mention that the MUSIC algorithm
provides an increased detectability of frequencies with a low amplitude as measured in
robots [19,22,29], which is a significant advantage in this task. Hence, the MUSIC algorithm
could provide an excellent alternative for estimating the NFs of robots.

This paper identifies the NFs of two different experimental platforms of a 2-DOF
planar robot by FEM and its validation through the MUSIC algorithm. The FEM for
two experimental platforms is presented. The experiment consists of an impulse-based
trajectory applied to the end effector of the robot in order to excite it and obtain the response;
then, the measured vibration signals are processed by the MUSIC algorithm and the fast
Fourier transform (FFT) method [37] to identify the NFs. The experimental results show
that the MUSIC algorithm can identify the NFs of the 2-DOF planar robot with a short
sample data set and higher accuracy than the FFT method. Furthermore, the error between
the MUSIC and the FEM results is lower than that obtained with FFT and the FEM results.

2. System Description

In this section, the general description of the two cases of study used in the experi-
mentation and the dynamic model is presented.

2.1. Description of 2-DOF Planar Robot

Figure 1 shows the parameters of a 2-DOF planar robot with revolute joints that is
evaluated in this work. The joint variable are represented by qi, the length of the links is li,
the link mass is mi, the moments of inertia with respect to the Z-axis are denoted by Ii, for
i = 1, 2, and the end effector is indicated by P.

The analyzed 2-DOF platforms in this work are presented in Figure 2, where the
fixed reference frame has dashed lines and Ax, Ay, Az correspond to the accelerometer
coordinate system attached to the end effector of the robot. Table 1 presents characteristics,
such as the actuator models, material links, and weights of the two experimental platforms
of 2-DOF. Table 2 presents the characteristics of the actuators, i.e., weight, dimension, and
maximum torque, employed in the analyzed planar robots [38].
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Table 1. Characteristics of the two experimental platforms of 2-DOF.

Case of Study 1 Case of Study 2

Actuators Dynamixel AX-12 Dynamixel MX-28
Material link Polymeric Aluminum 6061
Total weight 0.16 kg 0.7475 kg

l1 0.093 m 0.14 m
l2 0.081 m 0.081 m

m1 0.0219 kg 0.0566 kg
m2 0.0219 kg 0.0712 kg
I1 8.317× 10−6 kg·m2 1.11× 10−4 kg·m2

I2 8.317× 10−6 kg·m2 3.59× 10−5 kg·m2
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Table 2. Properties of the actuators.

Dynamixel AX-12 Dynamixel MX-28

Weight 0.0546 kg 0.072 kg
Dimensions 0.032 m × 0.05 m × 0.04 m 0.0356 m × 0.0506 m × 0.0355 m
Max. torque 1.52 N·m 2.5 N·m

2.2. Dynamic Model

The simplified dynamic model of a 2-DOF robot is given by [39]:

M(q)
..
q + C

(
q,

.
q
) .
q + g(q) = τ (1)

where q ∈ R2 is the vector of the generalized joint coordinates,
.
q,

..
q ∈ R2 are the vec-

tors of joint velocities and acceleration, respectively, M(q) ∈ R2×2 is the inertia matrix,
C
(
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.
q
) .
q ∈ R2 is the vector of centrifugal and Coriolis forces, g(q) ∈ R2 is the vector of

gravitational forces, and τ ∈ R2 is a vector of forces applied by the actuators. The C
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q
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g(q) =
∂u(q)

∂q
(3)

where
.

M(q) ∈ R2×2 is the time derivative of the inertia matrix, while u(q) ∈ R is the
potential energy of the robot.

3. Natural Frequencies Identification

Figure 3 shows the block diagram of the proposed methodology for estimating the
NFs of a 2-DOF planar robot using the MUSIC method and FEM.
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Figure 3. The schematic diagram for the proposed methodology.

Firstly, an impulse-based trajectory was applied to the end effector of the robot in
order to excite the mechanism. The trajectory consisted of 64 impulses applied to the end
effector during an 8 s time window to each robot. The produced vibration signals were then
acquired using a triaxial accelerometer and sent to a personal computer (PC) through a data
acquisition system (DAS). Once the vibrations were measured, they were analyzed using
the MUSIC algorithm to estimate the NFs of the 2-DOF robots. The FEM was performed
for both 2-DOF robots in order to compare the obtained experimental results.
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3.1. Multiple Signal Classification Algorithm

The MUSIC algorithm was first introduced by [40,41]; it belongs to the family of
methods based on the decomposition of the observation space into signal and noise sub-
spaces [25]. MUSIC algorithm considers that a signal x(t) is a sum of R complex sinusoids
with a white noise additive, that is:

x(t) =
R

∑
k=1

Akej(2π fkt+ςk)+ω(t) (4)

where Ak is the amplitude of the sinusoid signal, fk is the frequency of the signal, ςk is
the phase of the kth space vector, ω(t) is the white noise, and R is known as the MUSIC
order. The sinusoid amplitude and frequency are not random or unknown. The phases of
the sinusoids are uncorrelated random variables, uniformly distributed over the interval
[−π, π]. The power spectrum of x(t) consists of a set of R impulses of area 2π|Ak| at
frequencies fk, for k = 1, 2, . . . , R, plus the power spectrum of the additive noise ω(t).
Based on the orthogonality of the signal and noise subspaces, the MUSIC pseudospectrum
PMUSIC of the current space, the vector, is given by the following frequency estimation
function [42]:

PMUSIC( f ) =
1

∑M
i=P+1|ei

Hvi|
2 (5)

where ei
H is the signal vector defined as ei

H( fi) = [1, e−j2π fi , . . . , e−j2π fi(M−1)], and vi is
the noise eigenvector. Equation (5) shows a maximum when, for a certain fk truly present
in the signal, the signal and noise subspaces are zero.

3.2. MUSIC Verification Using Simulation Signals

A numerical simulation was carried out to show the advantages of the MUSIC algo-
rithm for identifying the frequencies of the time signal, in particular for the two closed
ones, using few samples and a short sampling time. The FFT method was also employed
to compare both methods to demonstrate the benefits of the proposed technique over the
traditional FFT method. The analyzed signal simulates the free vibration of the robot with
N modes. This is given by:

j(t) =
N

∑
i=1

e−t Aicos(2π fit + ϕi) (6)

where Ai is the respective amplitude of the i-th mode, ϕi is the phase lag, and fi is the
damped natural frequency. According to Equation (6), the synthetic signal is generated
with the following parameters: N = 4, meaning that there are four natural frequencies,
f1 = 10 Hz, f2 = 11 Hz, f3 = 15 Hz, f4 = 30 Hz, and A1 = 10, A2 = 5, A3 = 1, A4 = 0.9,
for the amplitudes. It uses a sampling frequency of Fs = 500 Hz and a time window of
T = 10 s for generating a data set of 10,000 samples. Simulated proposed signals without
noise, with moderate-level noise, and with high-level noise, are shown in Figure 4.

The influences of white-noise levels on identification accuracies were also considered.
Figure 5 compares the NFs identification obtained by the MUSIC algorithm and that
obtained by the traditional FFT method. During the analysis, two noise levels were
considered in the signal: moderate-level (5dB) and high-level (0.01dB) noise, as well as a
free of noise signal [43].

Furthermore, Figure 5a–c demonstrates that the FFT method is not capable of identi-
fying the closed NFs, f3 = 10 Hz and f4 = 11 Hz, due to their low-frequency resolution,
which depends on the number of samples analyzed. Also, the frequency components
corresponding to f3 = 15 Hz and f4 = 30 Hz are not clearly identified because of two main
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reasons: (1) the nonstationary nature of the signal (as measured in a robot), and (2) the
noise contained in the signal [44].
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On the other hand, the MUSIC algorithm with an order of 8 can identify the four NFs
with high accuracy, as shown in Figure 5d–f. It is important to mention that the MUSIC
method is not susceptible to noise and presents a high resolution, allowing accurate identi-
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fication of frequency components in the analyzed signal, as demonstrated in Figure 5d–f.
These advantages are reliable for identifying the NFs of robots since their responses are
generally contaminated with high-level noise and present non-linear and nonstationary
properties, as described by [22].

Table 3 summarizes the NFs estimated by the FFT and MUSIC methods and the error
generated by both methods compared to the theoretical values. Observing Table 3, the
maximum errors for NFs identification using the FFT method and the proposed MUSIC
algorithm method are 6.6% and 1.66%, respectively. Hence, these results demonstrate
clearly that the MUSIC algorithm is immune to noise and can identify the NFs accurately.
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Table 3. Natural frequencies (NFs) identified by FFT and MUSIC methods.

Mode
Theoretical

Frequency (Hz)
FFT Method (Error %) MUSIC Method (Error %)

WN MLN HLN WN MLN HLN

1 10 10.3 (3) 10.5 (5.5) 10.5 (5.5) 10 (0.0) 10.01 (0.1) 10.01 (0.1)
2 11 NI NI NI 11 (0.0) 10.98 (0.18) 10.98 (0.18)
3 15 16 (6.6) 15.8 (5.3) NI 15 (0.0) 15.01 (0.06) 15.25 (1.66)
4 30 31 (3.3) NI NI 30 (0.0) 30.27 (0.9) 32.34 (1.06)

NI: not identified; WN: without noise; MLN: moderate-level noise; HLN: high-level noise.

4. Numerical and Experimental Results

This section presents the numerical and experimental results for the two study cases.
The numerical results were carried out by FEM using ANSYS™ software, and the experi-
mental results were obtained by the MUSIC algorithm and the FFT method.

4.1. Finite Element Analysis

In the first case of study, the components meshed with four-node solid tetrahedral
elements and the hex-dominant method contained in ANSYS™ software (shown in Figure 2a).
The material properties used in this model were acrylonitrile butadiene styrene (ABS)
polymer, with a mass density of ρ = 1040 kg/m3, an elastic modulus E = 2.045 GPa,
and a Poisson’s ratio v = 0.35; and polybutylene terephthalate (PBT) polymer, with
ρ = 1340 kg/m3, E = 1.93 GPa, and v = 0.3902. The model included 196,893 elements and
532,128 nodes.

The second case of study meshed mostly with four-node solid tetrahedral elements, and
also with the multizone method applied in the support and link l1 (shown in Figure 2b).
The material used for this case was aluminum 6061 with the properties ρ = 6280 kg/m3,
E = 69 GPa, v = 0.33; and ABS polymer material was used in the DAS base with the
properties mentioned above. This model had a total of 310,733 elements and 559,653 nodes.
In both cases of study, the links l1 and l2 were joined by the bounded connection method, and
the reduction gears were not considered individually due to computational complexity.
However, in the finite element model, the actuators were considered as a single body whose
mass and volume coincided with the real actuator.

After setting the parameters and constraints of the numerical model, a FEM is applied
to each case of study with the position shown in Figure 2 to calculate the NFs for each
robot. The numerical results obtained by ANSYS™ are presented in Figure 6. It should be
mentioned that the path of the end effector of the robot does not reach frequencies higher
than 110 Hz [20,23,24]; hence, in this paper, the first five NFs of the robot are considered,
which are inside this frequency range.

Figure 6a shows the first five NFs of the 2-DOF planar robot, which corresponds to
the first case of the study. The obtained NFs values are 19.765 Hz, 42.622 Hz, 63.427 Hz,
86.386 Hz, and 100.580 Hz, which correspond with the frequencies that could be excited
with the commonly used trajectories in this type of robot and result in undesirable robot
performance and lack of stability due to the resonance effect. Figure 6b presents the first
five NFs for the second case of study, where closed frequencies can appear because of
the geometrical effects of the aluminum structure, such as symmetry and similar physical
properties [45,46]. The obtained NFs values are 35.987 Hz, 38.866 Hz, 63.736 Hz, 77.029 Hz,
and 79.952 Hz. These results are subsequently validated with the proposed methodology
based on the MUSIC algorithm to identify NFs in the two cases of study.

A summary from the FEM analysis results of Figure 6 for the two cases of study is
shown in Table 4. As observed in Table 4, the NFs corresponding to the case of study 1 are
separated from each other. However, the case of study 2 presents closed frequencies, which
can be associated with the geometrical effects of the aluminum structure [45,46]. Hence,
the following step in the proposed methodology is to experimentally estimate the NFs with
FFT and MUSIC methods.
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Table 4. Summary of simulation results.

Natural Frequencies (Hz)

Mode Case of Study 1 Case of Study 2

1 19.765 35.987
2 42.622 38.866
3 63.427 63.736
4 86.386 77.029
5 100.580 79.952
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4.2. Experimental Setup

In the experiment, the vibration signal was acquired to identify the NFs of the robots. In
both cases, an InvenSense model MPU-6050 triaxial accelerometer was used for measuring
the vibration signals of robots, which was placed on the end effector of the robot (shown
in Figure 7). The accelerometer had a user-selectable full scale of ±2g,±4g,±8g, and ±16g
(g = 9.81 m/s2), with a resolution of 5× 10−4g over a 100 Hz bandwidth. A DAS composed
of an Atmel microcontroller and a 16-bit analog-to-digital converter was employed to acquire
the vibration signals. The vibration signals measured by the accelerometer were stored in
the DAS and sent to a PC using the USB protocol. The DAS used a sampling frequency of
1kHz during a time window of 8 s for every test, obtaining 8000 samples for each test.

Figure 7 shows the overall experimental setup for estimating the NFs of both robots.
In order to obtain the vibration response of the robots, they were excited using an impulse-
based trajectory. The trajectory was applied to the end effector of the robots, and consisted
of 64 impulses over 8 s. Figure 7a shows the first experimental setup, which consists of a 2-
DOF planar robot comprised of two servomotors from Dynamixel model AX-12 as actuators.
These servomotors worked with a half-duplex communication protocol, a baud-rate of
1 Mbps, a resolution of 10bits(0–1023) , and a maximum speed of 114 RPM. The second
experimental setup is shown in Figure 7b, where a 2-DOF planar robot with a different
configuration is analyzed, and includes two Dynamixel model MX-28 servomotors. They
also work with a half-duplex communication protocol, a baud-rate of 1 Mbps, a resolution
of 12bits(0–4095) , and a maximum speed of 116.62 RPM. For the experiments, the two
robots (presented in Figure 7) were fixed to a worktable by screws to avoid undesirable
vibrations that were not typical of the robot.

4.3. Experimental Results

This section presents the experimental results, which are compared with the FFT
method to show the effectiveness of the proposed method.

According to the proposed methodology, the vibration responses of both robots were
measured by applying an impulse-based trajectory, which was repeated ten times in both
cases. The signals were acquired using the same conditions, i.e., the same trajectory of
the end effector, the same 64 impulses, and a time window of 8 s. Figure 8a,b shows an
example of the vibration responses measured by the triaxial accelerometer, Ax, Ay, and Az,
for each 2-DOF planar robot, respectively.
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Once the vibration signals were acquired, the processing was carried out using the
MUSIC algorithm and the FFT method to make a comparison. Figure 9 shows the spectra
for the two cases of study; Figure 9a,b corresponds to the FFT method, while Figure 9c,d
corresponds to the MUSIC algorithm.

According to the obtained spectra, the FFT method cannot identify the closed NFs of
a robot because it is sensitive to noise. As shown in Figure 9a,b, the FFT method presents
a large number of undesirable peaks due to the amount of noise present in the signal
and fails to accurately discern the frequency components corresponding to the NFs of
the robot. Hence, the FFT method is susceptible to diverse problems when it is used for
analyzing noisy signals with nonstationary properties as measured in the robots, such as
the appearance of spurious frequencies, as observed in Figure 9a,b, because of the spectral
leakage, resolution, and the high-level of noise contained in the analyzed signals (see
Figure 8a,b) [47].

On the other hand, the MUSIC algorithm can identify the NFs of a robot even when the
signal contains a high-level noise. Figure 9c shows that the MUSIC algorithm can accurately
estimate the NFs since it is not affected by noise, which enables more accurate identification
of the NFs compared with the FFT method. Additionally, Figure 9d shows that the proposed
method can identify the closed frequencies in the second case of study with high accuracy.
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Unlike the FFT method, the proposed method can identify low-amplitude frequencies,
which is advantageous because the NFs of a robot can have a small amplitude.
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As shown in Figure 9c,d, the MUSIC algorithm can identify the NFs with higher
frequency-resolution than the FFT method, even when the signal is embedded in a high-
level noise and with a short sample data set. Table 5 shows the values of the first five
identified NFs by the proposed methodology in the two cases of study.

Table 5. Experimental results for the MUSIC algorithm and the FFT method.

Natural Frequencies (Hz)

Mode Case of Study 1 Case of Study 2

MUSIC FFT MUSIC FFT

1 19.53 20 34.79 40.5
2 38.94 34 38.33 40.5
3 63.35 63.5 62.99 61.5
4 86.3 85.5 77.03 81.5
5 101.3 103 80.93 81.5

5. Results and Discussion

Table 6 shows the values of the first five identified NFs by the FFT method and the
MUSIC algorithm, as well as their corresponding analytical values obtained by FEM for
the two cases of study. As it is shown, the MUSIC algorithm can identify the NFs at a very
similar level when compared with the analytical calculation from FEM. Besides, the MUSIC
algorithm does not require a long time window to provide a high-frequency resolution,
avoiding wear on the actuators during testing through a short robot testing time. On the
other hand, the FFT method presents a significant difference compared to FEM due to the
noise present in the signal; this is a significant advantage of the proposed methodology
because most of the real signals have a considerable noise level.
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Table 6. Comparison of natural frequencies.

Natural Frequencies (Hz)

Case of Study 1 Case of Study 2

Modes FEM FFT MUSIC FEM FFT MUSIC

1 19.765 20 19.53 35.987 40.5 34.79
2 42.622 34 38.94 38.866 40.5 38.33
3 63.427 63.5 63.35 63.736 61.5 62.99
4 86.386 85.5 86.3 77.029 81.5 77.03
5 100.580 103 101.3 79.952 81.5 80.93

Figure 10 shows the percentages of similarity between the results of the MUSIC
algorithm and FFT method against FEM. These values are obtained by:

E% =
abs( f − r)

r
× 100 (7)

where f is the analytical calculation results, r is the experimental results (MUSIC or FFT),
and E% is the error percentage for the corresponding modes.
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from FEM.

Observing Figure 10, the results of the FEM analysis by ANSYS™ using the two cases
of study provide an acceptable accuracy compared with experimental results obtained with
the MUSIC algorithm, i.e., the results of FEM are close-to-real, with a maximum error of
9.46% for the case of study 1 (denoted by the solid blue line) and 3.44% error for the case
of study 2 (denoted by the dotted blue line). However, if the FEM results are validated
using the experimental results of the FFT method, the percentage error is more significant,
at 20.22% (denoted by the solid black line) and 11.14% (denoted by the dotted black line)
for the cases of study 1 and 2, respectively. In this regard, the proposed methodology can
contribute to the planning of the trajectories of the robot. It will also be useful for the
selection of controller gains to avoid exciting the robot in the NFs and assist in the correct
selection of notch filters at the output of a controller.

Notice that the MUSIC algorithm requires the previous selection of the algorithm
order, which is chosen according to the number of frequencies or components found in
the analyzed signal. In this regard, the number of frequencies contained in the signal is
unknown, but it is known that the trajectories used in this type of robot are in the range
from 0 Hz to 110 Hz [20,23]. In this sense, the FEM results allow the selection of the MUSIC
algorithm order because they provide the number of natural frequencies contained in
the range of interest (0 Hz to 110 Hz), showing that an order of 10 is the most reliable
for identifying the main NFs contained in the signal. On the other hand, the MUSIC
algorithm presents more computational complexity than the FFT; however, it is superior to
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the FFT method for identifying the NFs of both robots under noisy signals. The numbers
of operations for computing the FFT (OpFFT) [48] and MUSIC (OpMUSIC) [49] are given
by the following equations:

OpFFT = Nlog2N (8)

OpMUSIC = N3 (9)

where N represents the data length.

6. Conclusions

This paper presents a novel methodology to identify NFs in 2-DOF planar robots,
a FEM is applied in two cases of study, and the results are validated with a vibration
signal analysis through the MUSIC algorithm. Two cases of study are modeled in ANSYS™
software, and a FEM is applied to estimate the NFs of the robots. Also, a simulated
signal is analyzed to show the effectiveness of the MUSIC algorithm. The experimentation
consists of an impulse-based trajectory applied to the end effector of the robot to excite the
mechanism; the vibration signals are measured by a triaxial accelerometer and processed
by the proposed methodology and the FFT method to show the advantages of the MUSIC
algorithm compared with the traditional method. The experimental results show that
the MUSIC algorithm is closer to the FEM results, and it is a useful methodology for
NF identification in 2-DOF planar robots because it is not affected when the signal is
contaminated with a high-level noise. In this context, the MUSIC algorithm is advantageous
and has a higher resolution than traditional Fourier-based methods. The experimental
cases are carried out in an 8 s time window. Hence, the simulated and experimental results
show that the MUSIC algorithm does not need a long sample time window to obtain a
high-frequency resolution. The proposed methodology has been developed in a 2-DOF
planar robot without loss of generality; that is, the instrumentation and signal acquisition
process is the same for an n-DOF robot arm. The MUSIC algorithm can also contribute to
path planning of the robot, the selection of gains of a controller to avoid exciting the robot
in the NFs, and the correct selection of notch filters at the output of a controller.
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