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Abstract: In pervasive healthcare monitoring, activity recognition is critical information for adequate
management of the patient. Despite the great number of studies on this topic, a contextually
relevant parameter that has received less attention is intensity recognition. In the present study, we
investigated the potential advantage of coupling activity and intensity, namely, Activity-Intensity, in
accelerometer data to improve the description of daily activities of individuals. We further tested
two alternatives for supervised classification. In the first alternative, the activity and intensity are
inferred together by applying a single classifier algorithm. In the other alternative, the activity and
intensity are classified separately. In both cases, the algorithms used for classification are k-Nearest
Neighbors (KNN), Support Vector Machine (SVM), and Random Forest (RF). The results showed
the viability of the classification with good accuracy for Activity-Intensity recognition. The best
approach was KNN implemented in the single classifier alternative, which resulted in 79% of accuracy.
Using two classifiers, the result was 97% accuracy for activity recognition (Random Forest), and
80% for intensity recognition (KNN), which resulted in 78% for activity-intensity coupled. These
findings have potential applications to improve the contextualized evaluation of movement by health
professionals in the form of a decision system with expert rules.

Keywords: pervasive healthcare monitoring; activity and intensity recognition; mobile computing;
machine learning; accelerometers

1. Introduction

The advancement of wireless technologies allowed the use of sensor devices in envi-
ronments such as homes and clinics, as well as in people’s own bodies, enhancing pervasive
computing and wearable computing. This is making it possible to design new mecha-
nisms for remote patient monitoring, and to improve the systems analysis and accuracy.
In health monitoring, an essential requirement in the person daily monitoring is the recog-
nition of activities such as sleeping, sitting, walking, or performing an activity of daily
living (ADL). One way to achieve this recognition is with the support of data provided by
2 accelerometer-type sensors [1–3].

Although day-to-day activities are apparently situations of simple recognition, devel-
oping an algorithm using as few sensors as possible, so that the system does not bother the
user, is not so simple. Reference [4], for example, uses five sensors distributed throughout
the body, which can compromise the user’s freedom of movement. In addition, there
is a greater challenge in this work, which is our final objective, in the joint detection
of the activity with the intensity of the movement.
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Activity recognition monitoring systems are essential tools for health professionals.
Such systems can ensure early intervention and are useful in rehabilitation and prevention.
We can imagine activity recognition systems that analyze information on the number
of times and the instants at which a patient experiences changes in his or her physical
routine. A practical application can be the identification and analysis of the moments
when the patient exhibits slowness of movement (bradykinesia). Vigorous movements,
for example, excessive tremors or shaking [5] can also be identified.

Some papers [6–9] have already demonstrated techniques for recognizing human ac-
tivities, especially with the use of machine learning algorithms. Recently, some researchers
have targeted specific health contexts, such as diabetes [10], and hypertension [11]. This di-
versity in the areas of application in health requires greater interaction between the knowl-
edge of the specialist and the designer of the system. Therefore, there is a need for models
that can express concepts and rules, and facilitate the interpretation by the expert.

One aspect that has not been addressed in works that involve the recognition of ac-
tivities is the recognition of the intensity level of the activity. Generally, the interpretation
given for the intensity is concerning the effort that the activity demands. In this work, we
emphasize the need to consider the movements intensities that are performed during an
activity. In scientific research in the area of health, the intensity is stratified in terms of light,
moderate, or vigorous activity [12]. In this sense, it is important to consider this parameter
in the recognition of activities. In the biomedical area, the intensity of movements has been
determined using specific physiological methods that involve the calculation of energy
expenditure [13]. However, in certain approaches, it is important to have information
regarding the intensity of the movement through simpler methods and without the main
interest being the energy expenditure.

The coupling of activity with intensity, which we named activity-intensity, brings the
possibility of better representing the knowledge of health professionals in the form of deci-
sion systems with specialist rules. Examples of rules in a decision system, as presented in
Reference [14], can be established as follows: (a) if the type of activity is domestic, the inten-
sity is vigorous, and the heart rate is high, the patient can be considered as alert (and not
in a medical emergency). Thus, changes in vital signs influenced by changes in behavior
could be tolerated based on rules that take these factors into account; (b) if the activity
is sleeping and the intensity is vigorous, the possibility of insomnia increases. The two
examples show different intensities for each activity.

The present work focuses on the role of the intensity discrimination in the recognition
of distinct activities. Thus, we propose the Activity-Intensity coupling to improve the
mechanisms of activity recognition. Additionally, we evaluate the best technique to perform
the recognition using supervised machine learning.

2. Materials and Methods
2.1. Recognition of Activities Coupled with Intensity

The intensity of an activity, from the perspective of the physiological effort expended,
is usually determined by the Metabolic Energy Expenditure or MET. The MET [12] reflects
the energy consumption associated with performing an activity. The MET is, by definition,
the ratio of the metabolic rate during physical work to the standard basal metabolic rate
of 1.0. One unit of MET is considered the resting metabolic rate while sitting still. Then,
the following intensity levels can be established systematically: light (less than 3.0 METs),
moderate (3 to 6 METs), and vigorous (more than 6 METs) [12]. Intensity levels are assigned
to each activity as a function of the energy expenditure expressed in METs. This effort
classification depends on the type of activity and the exercise intensity degree, generating a
representative value (e.g., cycling: 8.0 METs and meditating: 1.0 MET). Thus, the movement
intensity is usually assigned a relative interpretation of the energy expenditure [12].

Physical activity is defined as any bodily movement performed by the musculoskeletal
structure that leads to an additional expenditure of energy than consumed during rest [15].
Thus, the amount of energy expended in the execution of the movement is the criterion
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used to differentiate between physical activities. The measurement of energy expenditure
is widely discussed in terms of consumption of oxygen and heart rate, and accelerometer
has been discussed [16,17]. Despite the complexity of the measurement of physical activity,
accessible and inexpensive instruments are of interest to researchers and clinicians. In this
sense, the use of motion sensors appears to be interesting and suitable are based on the
idea that body movements and acceleration parameters are a reflection of the energy
expenditure [16].

In Reference [13] the author investigated better approaches for activity recognition
to define an energetic expenditure value of the activity. Some recommendations were given
such as the position of the accelerometer, which should be standardized, with the most
common places being the lower back or the waist (probable center of mass of the body).
Another point considered by the authors is that when accelerometer output is expressed
as counts (or vector magnitude), the problem arises that the relationship between counts
and energy expenditure will differ depending on the type of activity performed. Activity
recognition may provide a solution to this problem because a different value of energy
expenditure can be assigned for each activity/intensity combination.

Some studies in the area of Pervasive Computing and the Internet of Medical Things
follow the interpretation of effort for intensity. References [18,19] proposed a system to
recognize activities and measure their intensities. An experiment was developed with three
accelerometers positioned in the thigh, chest, and waist. The activities analyzed included
running, climbing and descending stairs, walking, standing, sitting, and laying down.
The hit rate was approximately 82%. The heart rate was used to measure the intensity;
however, the treatment and analysis of these data for intensity rating are not discussed.

In the study by Reiss [20], variations in Adaptive Boosting, which consists of building a
stronger classifier from a series of weaker classifiers, techniques to estimate the intensity of
activity as one of the three categories (light, moderate, and vigorous) were used. Using the
database PAMAP2 [21], which has activity data monitored with three accelerometers and a
heart rate monitor, results close to 90% were obtained to estimate the intensity. For example,
activities such as sitting, working on the computer, and watching TV were classified as
light intensity.

In Reference [6], a framework is proposed for the recognition of 19 activities with
different levels of intensity, such as domestic tasks, locomotion, video games, exercises,
and playing sports. The intensities are divided into sedentary behavior, light activity,
moderate activity, and vigorous activity. The data was obtained from an ActiGraph GT3X
tri-axial accelerometer positioned on the right side of each participant’s waist. In the
pre-processing phase, a proprietary filter is applied and the data was transformed to the
frequency domain. Considering only continuous movements, an average F-Score of 98% is
reached, whereas the best results for intermittent movements is 84%. The best F-Score for
the recognition of all activities together is 64%.

A problem associated with activity recognition systems that use multiple sensors in the
body is that they are not practical to be used in daily life. For example, in References [19,20],
three accelerometers were attached to the body which makes the system unsuitable for
regular use. To overcome this problem, in the present study, we propose the utilization of a
single smartphone accelerometer positioned in the waist, which is the typical location to
carry a smartphone. Although it is possible to collect physiological data in real-time with
smartphones, the objective of this work is to provide a system that avoids contact between
the device and the patient’s body. Thus we opted for only the accelerometer, as it is directly
related to physical movement and has already been proven effective [22].

According to Reference [4], the activity considered contains only repetitive weight
exercises (six upper body strength training exercises), using five sensors positioned on
the arms and chest. The intensity is associated with the muscular strength used in each
exercise sequence, using different weight loads. After each series of repetitions, partici-
pants were asked to self-assess the intensity of the exercise according to a standard scale.
The article considers activity and intensity, but the intensity is interpreted differently from
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the interpretation that we give in this work, being associated with the strength necessary
to execute the movement, and not in the amount of movement.

In contrast to other studies, in our current approach, we consider the intensity as a
critical information for the recognition of each activity. For example, walking has an
intrinsic intensity, which is different from the intensity associated with the activity of laying
down. Thus, the subdivisions of intensity must consider its inherent activity, instead of
using it as a general rule of evaluation, such as other approaches [6]. We also adopt the
same classification of intensity, but without associating it with energy expenditure.

In this work, we investigated three activities considered basic for a person at home:
laying down, sitting, and walking. While the first two activities are postures, walking is
an ambulation activity, which requires continuous movement. We propose the activity-
intensity approach in the recognition of the referred basic activities. An example of the
coupling of activity and intensity, even when the person is laying down, is the execution of
occasional movements at different intensities.

Each activity is evaluated at three levels of intensity: light, moderate, and vigorous
(9 situations). Each situation corresponds to the following examples of everyday life: light
laying down—the whole body static on the bed; moderate laying down—at certain times,
the body is turned to change position; vigorous laying down—a simulation of chronic
insomnia where all the limbs, including the head, move; light sitting—fully relaxed lower
limbs in the seat; moderate sitting —restless legs and arms practically relaxed; vigorous
sitting—upper and lower limbs active; light walking—slow walking; moderate walking—
normal walking; vigorous walking—walking with quick steps.

2.2. Data Collection

An experiment was conducted with 8 healthy participants (6 men), in the 15–50 years
old range. The project was approved by the local ethics committee of Federal Fluminense
University, Rio de Janeiro, Brazil, and each participant gave written informed consent
before participation. For the calculation of this sample size, the methodology described
in [23] was used, resulting in 8 participants as a function of the small standard deviation in
the accelerometer data produced by the device. Other studies have also presented similar
experiments with few participants. Reference [4] assessed how the number of participants
impacts the classification of physical exercises, showing that the error of the intensity
prediction was stable after adding the sixth participant.

Each participant received a smartphone placed inside a waistband, as shown in
Figure 1. The participants were instructed to naturally execute each movement condition
without receiving any stimulus or corrections during it, all situations were performed inside
our laboratory, without a pre-defined route. The smartphone accelerometer generated the
gravity acceleration data at a rate of 20 Hz, with a range of ±2 g, and the 3 axes information
were stored on the smartphone together with the timestamp. The smartphone chosen was
a 1 GHz processor, 1 GB RAM, Android OS 4.1.2, i.e., with severe resource limitations.

Data collection for each combination of activity and intensity was initiated when
the participant pressed a start button. This interaction did not require the smartphone
to be removed from the waistband. After 1 min of data collection, a signaling beep was
emitted. In the lying posture, the participant used a mat, and in the sitting posture, a chair.
In the walking activity, mainly in moderate and vigorous intensities, the participant left
the room and walked a 20 m corridor. The total experiment time for each participant was
an average of 15 min, which included a training phase of each behavior scenario and the
execution of the 9 specific behaviors of 1 min each, with intervals of 30 s. A total of 10,000
accelerometer raw data was collected for each situation. After the data collection and
storage, the preprocessing phase was conducted.
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Figure 1. Position of the smartphone on the participant’s body.

2.3. Preprocessing and Extracting Features

In the preprocessing phase, the data are prepared to optimize the classification per-
formed by machine learning algorithms. In the present work, we divided this step into
three parts:

(a) Removal of corrupted data and outliers. Firstly, all corrupted data (including missing
data) returned by the smartphone were removed. Because the data are multivariate,
we apply the technique of hierarchical clustering to remove outliers. Hierarchical
clustering is an unsupervised technique that calculates the distance between each
point present in the database, clustering them according to proximity. To define
outliers using this technique, we need to analyze which clusters are divergent from
the others based on a threshold of the Euclidean distance. This threshold is drawn
in Figure 2 as a horizontal line. We can observe in this figure that clusters 8 and 21 are
connected to other ones at much higher distances. Thus we can define both clusters
as outliers.

Figure 2. Dendrogram for light walking.

(b) Segmentation and application of statistical metrics. The data were segmented by
a window of 2.5 s, without overlap. The following statistical metrics were calculated
for each axis (x, y, and z) present in each window: mean and standard deviation.
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In total, the feature vector had 6 features. After the segmentation process, the dataset
contained 2000 samples. Metrics were calculated to optimize the data window and to
minimize the impact of univariate outliers.

(c) Analysis of distribution and standardization of data. In this step, we verify the
normality of the data. The analysis showed that our data is not normally distributed.
The algorithms used in this experiment do not require normal data to perform well.

xnew =
x − µ

σ
(1)

The data standardization was performed by applying the Equation (1), where x is
the sample, µ is the mean, and σ is the standard deviation. The standardization was
performed to match the variables so that all axes had the same weight in the analysis,
regardless of their initial amplitude. Without standardization, the algorithms for
recognition may assign greater importance to variables with larger amplitudes.

2.4. Classification

We defined two possible "classification alternatives" for Activity-Intensity recognition.
The first alternative is to classify the data directly using only one classifier. In this case,
we will have a classifier that infers from the 9 possible classes, for example, light walking.
In the second alternative, a first classifier infers the activity, for example, walking, and a
second classifier infers the intensity, for example, light. The second alternative would be
important to mitigate the inter-class variability, since we will first recognize the activity,
probably with high accuracy, and then the intensity, which classification is more difficult.

Based on the data analysis performed in Section 2.3 and the literature, we chose three
algorithms to use in the recognition: K-Nearest Neighbors (KNN), Random Forest (RF),
and Support Vector Machine (SVM). To find the best hyperparameters for our experiment
we applied the Grid Search algorithm. Grid Search builds a model for every specified com-
bination of hyperparameters and returns the accuracy of each model. All implementations
were made using the Python library scikit-learn.

In the test phase, for each of the three mentioned algorithms, the samples were divided
into training and test subsets using the k-fold cross-validation method with k = 10. In the k-
fold cross-validation, the learning set is partitioned into k disjoint subsets of approximately
equal size. This partitioning is performed by randomly sampling cases from the learning set
without replacement. The model is trained using k − 1 subsets, which, together, represent
the training set. Then, the model is applied to the remaining subset, which is denoted
as the validation set, and the performance is measured. This procedure is repeated until
each of the k subsets has served as the validation set. The average of the k performance
measurements on the k validation sets is the cross-validated performance [24].

3. Results

In this section, we present the results of supervised learning methods for classification
to investigate the most appropriate technique for activity recognition. The main objec-
tive of the experiments was to investigate if it is possible to obtain good accuracy and
generalization in the recognition of Activity-Intensity for certain activities.

Table 1 shows the results for the first alternative, which uses only one classifier. We can
see that KNN and Random Forest obtained better results with 79% and 77% accuracy,
respectively. For this reason, these two algorithms were chosen to be compared in more
depth later. This same observation can also be made from the value of the F-Score, which
takes into account both accuracy and recall.
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Table 1. Alternative 1—Classification with one classifier.

Activity-Intensity

Algorithm Accuracy Precision Recall F-Score
KNN 79% 79% 79% 79%
SVM 72% 73% 72% 72%
RF 77% 78% 77% 77%

A more detailed observation of the results shown in Table 1, which highlights the two
better algorithms, can be made from Figures 3 and 4, analyzing which activities are more
complex, to understand the intra-class and inter-class variability. These two figures show
the confusion matrices of the two algorithms for the first alternative. We can see that KNN
and RF had difficulty in intra-class variability since most of the incorrect classifications were
inside the same class. Regarding inter-class variability, both classifiers had a satisfactory
result with 45 misclassifications for KNN and 40 for RF. The difficulty of obtaining high
accuracy in the recognition of activities walking and sitting with the smartphone on the
waist is corroborated in the literature, for example in Reference [25].

Figure 3. Confusion matrix for classification with K-Nearest Neighbors (KNN).

Figure 4. Confusion matrix for classification with Random Forest (RF).

Regarding the low accuracy of walking activity observed in Table 1, also shown
in Table 2, we suspect that it is caused by the participant’s physical parameters variabilities,
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such as height, weight, and even the interpretation given by the participant to the fuzzy
terms inherent to the intensity. The impact of these personal parameters was not the focus
of this research and should be investigated better.

Table 2. KNN vs. Random Forest accuracy—Alternative 1.

Activity-Intensity KNN RF

Walking Light 67% 59%
Walking Moderate 54% 54%
Walking Vigorous 78% 77%

Sitting Light 88% 84%
Sitting Moderate 82% 82%
Sitting Vigorous 73% 83%

Lying Light 88% 77%
Lying Moderate 82% 78%
Lying Vigorous 95% 93%

Table 2 shows the accuracy obtained with each algorithm for each of the situations
(activity-intensity). The activity with less accuracy for both classifiers was walking mod-
erate with 54% accuracy. For the second alternative, which consists of two steps, Table 3
displays the activity recognition results and Table 4 displays the results for the recognition
of the intensity of each activity. The best algorithm for this alternative was RF, which
obtained 97% for all used metrics in activity classification and intensity recognition.

Table 3. Alternative 2—Activity recognition.

Activity

Algorithm Accuracy Precision Recall F-Score
KNN 96% 96% 96% 96%

RF 97% 97% 97% 97%

Table 4. Alternative 2—Intensity recognition.

Intensity

Algorithm Accuracy Precision Recall F-Score
KNN 80% 80% 80% 80%

RF 79% 79% 79% 79%

In Tables 3 and 4 we conclude that both alternatives obtained similar results for all
performance measures evaluated, since it obtained 97% accuracy for activity and 80%
for intensity (best scenarios), totaling an accuracy of 78% for the recognition of activity-
intensity. In this alternative, when obtaining the activity with the first classifier (e.g.,
walking), the second classifier will only define the intensity of the activity (light, moderate,
and vigorous) already defined. This probably improves the efficiency of the second stage
of classification.

Using the second alternative, with two classifiers placed in sequence, the combination
of algorithms with the best results were RF (activity) + KNN (intensity), with 78% of total
accuracy. However, the recognition of activities is performed through an application on a
smartphone, which has a shortage of resources, especially the battery. Therefore, the chosen
classifier must have the lowest cost in terms of consumption of device resources, and with
the greatest accuracy.

In order to choose the best classifier among those selected in the experiments (KNN—
alternative 1, and KNN + RF—alternative 2), we consider other variables besides simply
the accuracy. We used the AHP (Analytic Hierarchy Process) multicriteria decision-making
method proposed by Saaty [26], which is widely used in the literature to aid decision
making [27,28], including choosing the best algorithm for a given problem [29,30].
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The proposed criteria are mean accuracy, time, and memory usage for recognition.
Table 5 displays the performance of the classifiers for each criterion.

Table 5. Performance of classifiers by criterion.

Alternative Algorithm Time (s) Memory (Mb) Accuracy

1 KNN 0.045 0.145 0.79
2 RF + KNN 0.235 0.637 0.78

The next step is to create the comparison matrix. Thus the matrix is defined based
on the expert’s knowledge, comparing each attribute according to the importance. For ex-
ample, in matrix A (column 1: Time, column 2: Memory, and column 3: Accuracy),
the experts defined that the accuracy has 7 times the importance of time. Then, to verify the
consistency, it is necessary to multiply the comparison matrix A by the priority matrix B.
The priority matrix B contains the importance of each criterion. For example, the values in
Equation (2) show that the most important criterion is accuracy (0.64), followed by memory
(0.279), and then by time (0.072).

In the sequence, the matrix D is obtained by dividing the matrix C by B. Then, we
can obtain the value of the largest eigenvalue of the matrix A (λmax). Finally, the value of
the consistency ratio (CR) can be obtained by dividing consistency index (CI) by the value
of the random index (RI) defined by Saaty [26] for different values of n (number of criteria).
In the present work, the value of RI is 0.58.

A =

 1 0.2 0.143
5 1 0.333
7 3 1

, B =

 0.072
0.279
0.649

 (2)

C = A ∗ B =

 0.221
0.855
1.99

 (3)

D =
[ 0.221

0.072
0.855
0.279

1.99
0.649

]
=
[

3.069 3.065 3.066
]

(4)

λmax =
3.069 + 3.065 + 3.066

3
= 3.067 (5)

CI =
λmax − n

n − 1
= 0.034 (6)

CR =
CI
RI

= 0.059 (7)

The value of the CR is less than the empirical limit value of 0.1 proposed by Saaty [26];
therefore, we can conclude that the judgment made in the comparison of the coefficients
is consistent. Once the consistency has been verified, we apply the AHP method to find
which algorithm and which alternative yields the best evaluation. To calculate the AHP
scores, we need to standardize all performance values. We calculate the inverse (1/x) for
time and memory because these are inversely proportional to the accuracy. Accuracy is
maintained at its original values, as it is already a performance measure of the type "the
bigger the better". Then, each value is normalized by the sum of each column. The best
algorithm is defined by the weighted average of the normalized performance parameters,
using the values of Matrix B as weights. Table 6 shows the result.

Table 6. Evaluating the classifier with the alternatives.

Results of the AHP

KNN—alternative 1 0.80
RF + KNN—alternative 2 0.57
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Since the KNN algorithm using alternative 1 obtained the highest result, we can
conclude that the best alternative for the recognition of activities is alternative 1 using the
KNN algorithm.

4. Discussion and Conclusions

Our study presents a new approach, which involves integrating the intensity of move-
ments with the activity being executed, that is, the Activity-Intensity approach. We went
a step further in comparison to the methodology generally used for the recognition of
activities in other studies. To our knowledge, this approach has not been explored so far,
as can be contrasted with other studies in this area, such as [1,7], as well as specific works
differently interpreting the intensity parameter [4,6,19,20].

We proposed the intensity concept addition in the activities recognition, which is called
the Activity-Intensity approach. To verify the feasibility of the proposal, two alternatives
for supervised classification were presented to obtain the maximum accuracy: one single
classifier and two classifiers separately. The choice of a classifier should not be based
solely on accuracy. On mobile devices, for example, we must consider factors such as
memory usage and battery consumption. We used the AHP multicriteria decision-making
method to consider these hidden factors during the analysis of the results of the algorithms.
In conclusion, in this case, we found that the best solution is KNN implemented with a
single classifier (alternative 1).

In this work, we investigate the use of machine learning techniques to recognize
human activities and postures at different intensities. The coupling of the activity and
intensity parameters allowed the recognition of the human activities considered here
(walking, sitting, and lying down) in a more precise and complete way. The results
obtained 97% accuracy for activity recognition and 78% for activity-intensity coupled (first
alternative). The automatic identification of movements/postures is feasible and useful in
the context of health care, where the intensity of movements linked to each specific posture
or activity has a distinct clinical repercussion. For example, vigorous movements while
lying down can be correlated with sleep disorders. At the same time, intense movements
during walking are not necessarily indicative of illness. Thus, the automated provision of
this information can assist in the decision making of health professionals.

Given the good accuracy of the results, the Activity-Intensity approach represents a
valuable option to better describe a patient’s daily activities. In this case, a greater level of
detail can be described by the rules. In addition, the results presented here are expected to
be of great interest because the activity-intensity recognition is based on accelerometers,
which have a very low cost and are easily accessible.

New applications to understand human behavior can be proposed, based on the good
results obtained in the activity-intensity recognition shown in this work. Decision-making
systems with if-then rules can trigger alerts and highlight certain health situations that
deserve to be further investigated. Personalization will be achieved through a person’s
behavior used in the system. When there is a routine change, an action can be taken.
For example, for an elderly person, any activity that has vigorous intensity at night could
be further investigated. When this information is associated with the location where it
occurred, we can determine which rooms/areas are not compatible with certain activities-
intensity. Diseases such as Alzheimer in the first stages can be better monitored since
activity-intensity monitoring adds more information to the person’s daily life.

In future studies, we intend to explore the application of more sensors embedded in a
smartphone, such as a gyroscope and a GPS, which will probably improve the informa-
tion brought by the recognition of types of activities. We also intend to investigate new
recognition approaches to improve the accuracy of walking activity and apply techniques
such as clustering to group the different levels of intensity without the need for supervised
training. As a complementary method, a Fuzzy Expert System will be developed to analyze
the daily activities of patients employing the classifier developed in the present work. We
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will also collect data from a larger sample to evaluate the generalization capacity of the
developed technique.

We consider this work highly relevant regarding the innovative analysis (activity-
intensity approach), the high performance obtained by the classifier, the practical viability
of the sensor (a single accelerometer in smartphone), and the potential implications for
healthcare settings.
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