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Abstract: Smart toothbrushes equipped with inertial sensors are emerging as high-tech oral health
products in personalized health care. The real-time signal processing of nine-axis inertial sensing
and toothbrush posture recognition requires high computational resources. This paper proposes a
recurrent probabilistic neural network (RPNN) for toothbrush posture recognition that demonstrates
the advantages of low computational resources as a requirement, along with high recognition accuracy
and efficiency. The RPNN model is trained for toothbrush posture recognition and brushing position
and then monitors the correctness and integrity of the Bass Brushing Technique. Compared to
conventional deep learning models, the recognition accuracy of RPNN is 99.08% in our experiments,
which is 16.2% higher than that of the Convolutional Neural Network (CNN) and 21.21% higher than
the Long Short-Term Memory (LSTM) model. The model we used can greatly reduce the computing
power of hardware devices, and thus, our system can be used directly on smartphones.

Keywords: smart toothbrush; Bass Brushing Technique; recurrent probabilistic neural network;
posture recognition

1. Introduction

The occurrence of chronic illnesses is a very common phenomenon in society, such as
high blood pressure, diabetes, heart disease, etc., in adults and dental caries, periodontal
disease and Gingivitis in both children and adults [1]. Most of these dental diseases are the
result of bacterial deposition on the surfaces of teeth [2]. If a tooth is not brushed properly,
then bacteria will accumulate on its surface, forming plaque, destroying the outermost
layer of the tooth (enamel) and triggering gingivitis, which can lead to dental caries and
gum disease. Thoroughly cleaning teeth can effectively reduce tooth plaque and prevent
oral diseases.

Brushing one’s teeth every day is the primary method to prevent various oral dis-
eases. The American Dental Association (ADA) and the Taiwan Dental Association both
recommend using the Bass Brushing Technique to brush your teeth and to do it at least
twice a day for two minutes [3,4]. However, studies have pointed out that most people’s
brushing time is insufficient, and the average brushing time per person is between 30 s
and 60 s [5–8]. For a brushing time of less than two minutes, each tooth’s brushing time
is not enough [9,10]. The Bass Brushing Technique involves the following: (1) One must
brush the outer side of the front row of teeth, the outer side of the left and right rows of
teeth, and the inner side of the left and right rows of teeth. The toothbrush is at a 45-degree
angle with the gums. These areas are brushed vertically with the toothbrush. Each tooth
brushing starts from the gum line, starting with the tip of the tooth. (2) When brushing the
chewing surface of the tooth, move the bristles of the toothbrush back and forth along the
chewing surface of the tooth. (3) When brushing the inside of the front row of teeth, tilt the
toothbrush vertically and move it up and down.
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According to forecasts from UK market research organizations, more than 400 million
smart wearable devices will be sold by 2020, with an estimated value of $34 billion [11].
Inertial sensors have been widely used in different wearable devices, such as smart watches,
sports bracelets, smart sports shoes, smart glasses, Bluetooth headsets, etc., that are all
embedded with Inertial Measurement Unit (IMU). It can detect the motion state of the
device and identify various motion postures in different fields [12]. In the field of health-
care, inertial sensor data can be used to monitor the onset and recovery of diseases, such
as assessing the recovery of patients during rehabilitation [13–15] and detecting and diag-
nosing diseases [16,17]. In the field of home care, a care system can provide monitoring or
assistance to the occupants to ensure their health, safety, and good physical condition, such
as a tracking and monitoring emergency help system [18] to assist patients with physical
and mental disabilities [19–21]. In the field of sports and leisure, wearable sensor devices
can be used to identify people’s sports and leisure activities and improve their quality of
life, such as daily action recognition [22,23] and motion pose recognition [24,25].

In many of the above areas, the application of inertial sensors in the field of healthcare
is particularly noteworthy. These studies show that there is broad development in the use
of inertial sensors for human activity recognition (HAR) in healthcare applications. Space,
the busy lives of people, and the increase of the elderly population make healthcare an
urgent problem, and through the integration of digital technology, the healthcare industry
can reduce the cost of care for humans and financial services and improve the quality
of healthcare. Unlike these applications, toothbrushes are used to clean teeth. Brushing
includes a series of movements for manipulating the toothbrush. The toothbrush and
the user’s movements are closely combined. Therefore, the data extracted by the sensor
needs to be used to accurately identify the user. For the operation of the toothbrush,
even after learning the Bass Brushing Technique, there will be some differences in the
brushing movements of different users. Due to the small space in the mouth, the range
of the toothbrush can be small, and the classification of the brushing needs many regions,
making it difficult to accurately classify small-scale actions. Establishing accurate models
and effective monitoring is a very challenging topic.

On the topic of brushing motion recognition, studies have looked at how to use
manual toothbrushes and smart watches to monitor the brushing quality of all tooth
surfaces [26] and to capture brush movements and directions through a magnetometer
attached to the toothbrush handle and a magnetic sensor in the watch. Based on the inertial
sensing data from the watch, the brushing posture can be recognized, and the sound signal
collected from the watch is used to assist the recognition. This method can be used with
a smart watch, and the average recognition rate is only 85.6%. J.W. et al. [27] of Korea’s
Konkuk University employed a three-axis accelerometer on the bottom of the toothbrush to
measure the user’s brushing posture. This method only utilizes a three-axis accelerometer
to measure motion information, and it cannot stably represent all brushing movements.
This way is easy to cause misjudgment. In addition, research [28] took an accelerometer,
magnetic sensor, and Euler angle as identification features and used the K-means algorithm
to identify and classify 15 brushing areas but could not meet the correctness and integrity
of brushing. Each research method has its own room for improvement.

The rise of deep learning in recent years has made deep learning widely applied in
sequence learning-related research, such as image recognition [29–31], speech recogni-
tion [32,33], and sensor data analysis [34,35]. There are many studies that have begun to
employ deep learning methods to sensor motion recognition [36]. Traditional human body
recognition methods, such as the Hidden Markov Model (HMM) [37], specifically deal
with the relationship between many random variables in the sequence data. The hidden
Markov model uses the graph probability model to describe the problem, which has the
Markov property. The current state is conditionally independent of the past state, and
so, it can only learn the shallower features [38], resulting in a reduced effectiveness in
unsupervised learning and limited classification accuracy and model promotion. Generally
speaking, static data can only be used as a learning basis, and the features need to be
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extracted manually. However, in real life, motion data usually present a dynamic sequence,
which requires stable and continuous learning.

Different from traditional human motion recognition methods, deep learning does not
need to extract features manually. It can input unmarked data as features. Since the data
collected by sensor data are time series, some studies have proposed using convolution.
The Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM)
model are used to identify sensor data [39,40]. This method does not require preprocessing
of the data. It uses raw data directly as a deep neural network input.

Although deep learning has many of the above advantages, its immediacy and com-
puting resources are still not suitable for embedded systems. Deep learning in a neural
network architecture refers to a neural network model with multiple hidden layers. There
are many layers and nodes, which contain many parameters and require a large amount
of training data to adjust the parameters. The model complexity is extremely high. To de-
velop an effective deep learning model within a reasonable time, it is necessary to use
the acceleration function of the Graphics Processing Unit (GPU). Therefore, the hardware
cost required for typical deep learning is high, the computing resources are expensive,
and it is not easy to apply to smart toothbrushes. Aiming at the shortcomings of existing
smart toothbrushes, such as high cost, low recognition accuracy, and a lack of personal
adaptation, this research plans an innovative deep neural network classifier that combines
smart toothbrushes with nine-axis motion sensors and visualization software on a mobile
phone, which can be applied to monitor the correctness and completeness of the brushing
process for protecting oral health.

2. Formalization of Brushing Posture

This study is based on the Bass Brushing Technique’s brushing action guidelines,
which divide the teeth into 15 brushing areas to describe the brushing area and posture.
The fifteen brush cleaning areas are first defined, as shown in Figure 1.
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In order to identify the brushing posture, we define the carrier coordinate frame of
the toothbrush. The origin is located at the center of gravity of the carrier (toothbrush).
The directions of the X, Y, and Z axes are usually located directly in the forward and
lateral directions of the carrier and directly below the carrier. As shown in Figure 2a, the
gravitational acceleration (G = 1 g) is used as the reference vector to calculate the attitude
angle, and the gravitational acceleration direction is defined as the direction of the Z-axis
coordinate. In rigid kinematics, the acceleration of a particle moving in space can be
compared with a fixed coordinate system and a motion coordinate. Therefore, we used
the North-East-Down Coordinate System (NED) as the fixed coordinate and the carrier
coordinate (the body frame) as the moving coordinate (Figure 2b). The features used in the
brushing area recognition are then defined as the angle of the toothbrush’s steering and
brushing. We first use turning the toothbrush (Figure 2c) to classify the brushing posture
and then use the attitude angle as the recognition area of the brushing area.
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When we attach the nine-axis sensor to the toothbrush, we can measure the gravita-
tional acceleration of the toothbrush. We use the gravitational acceleration measured by
the toothbrush and the rotation angle of the Euler angle as the recognition features of the
toothbrush steering. The elevation angle and the roll angle formula are as follows:

Pitch = ρ = sin−1(Ay
)

(1)

Roll = γ = − sin−1
(

Ax

cos ρ

)
(2)

The brushing system takes the coordinates on the brush holder as the origin, and the
sensor will automatically correct the sensor value of the toothbrush on the toothbrush
holder to be close to zero each time the toothbrush is used. When the user grabs the
toothbrush, the brushing is started in front of the toothbrush. From brushing gesture
recognition, Table 1 defines the range of toothbrush steering characteristic values for this
project.

Table 1. Range of toothbrush steering characteristic values.

Brush face-up az > 0.8 or 45 > roll > −45

Brush face-down az < −0.8 or 180 > roll > 150

Brush faced to the left ax > 0.8 or− 150 < pitch < −45

Brush faced to the right ax < −0.8 or 45 < pitch < 150
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The attitude angle can indicate the direction of motion of the object in the three-
dimensional space. When the teeth of different regions are brushed, the attitude angle will
also change, and so, the attitude angle can be used as the distinguishing feature of the
brushing area. Figure 3 illustrates the posture of the toothbrush when brushing different
areas with the Bass Brushing Technique. This study classifies the brushing area by the
attitude angle characteristics of different areas when brushing teeth.
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3. Deep Learning for Brushing Posture Recognition

In the feedforward neural network, data are transmitted in one feedforward direction.
Each input can be regarded as independent to the preceding input, and so, the network
output only depends on the current input data. However, in the real world, the time series
sensor data are generally streaming and time-dependent. The characteristics of such data
depend on time, and thus, the input of the neural network is not only related to the input
of the current moment but, also, related to the past time period. The input is related to
the output.

3.1. Deep Neural Network Architecture and Learning Algorithms

In order to design a neural network for brushing gesture recognition, we first explored
three mainstream deep neural networks: Convolutional Neural Networks (CNN), recurrent
neural networks (RNN), and Long- and Short-Term Memory Models (LSTM). We will use
these deep learning network architectures to design innovative neural networks for smart
toothbrushes.

3.1.1. Convolutional Neural Network

The Convolutional Neural Network (CNN) is the most well-known neural network
model in deep learning. It has excellent performance in image recognition and is widely
used for identification.

The CNN neural network architecture is mainly composed of a Convolutional Layer,
a Pooling Layer, and a Fully Connected Layer. The convolutional layer is used to filter the
original image or is called a kernel (convolution) to extract the features of the image. The
pooling layer usually uses the Max Pooling method, which is mainly used to reduce the size
of the feature matrix, cut down the number of calculation parameters, avoid over-fitting of
the neural network (overfitting), and retain important feature information. Part of the fully
connected layer is used to classify and output the features extracted by the previous layers
of the network.

3.1.2. Recurrent Neural Network

A recurrent neural network (RNN) is a kind of deep neural network that recurrently
transmits information in its own neural network and accepts the input of time series data
structure. Hence, it can be used to describe the behavior of dynamic time. Its architecture
is shown in Figure 4.
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In Figure 4, X is the input data at a certain moment; O is the output data at a certain
moment; H is the hidden state; U is the weight from the input layer to the hidden layer,
and the original input is abstracted and sent to the hidden layer; V is the weight from the
hidden layer to the output layer, further abstracting the representation learned from the
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hidden layer; W is the weight from hidden layer to hidden layer, responsible for controlling
and scheduling the memory of the network and Xt represents the input at time t. The data
are returned to the neural network operation. The general flow is Xt, and the parameters
U, W and Ht−1 are calculated to produce Ht, which will be stored in the memory of the
neuron, and Ht and the parameter V will be calculated to produce Ot.

The recurrent neural network has a feedback mechanism. The hidden layer H is
connected with the hidden layer H at the previous moment. At time t, the value of Ht
is the hidden layer value Ht−1 of the previous moment and the input value Xt of the
current moment. The function of the composition, F(x), is the excitation function of the
hidden layer.

The right side of Figure 4 is the unfolding part of the hidden layer H, O0L, Ot is the
label sequence, X0L, Xt is the input sequence, Ot is estimated by compressing all historical
information in the past in H, and the parameters of the recurrent neural network are in
the sequence data time. Sharing parameters can make the model less complex and present
better promotion.

3.1.3. Long Short-Term Memory Model

In 1997 the recurrent neural network containing Long Short-Term Memory (LSTM) [41–45]
was proposed by German researchers Sepp Hochreiter and Juergen Schmidhuber. The road
evolved and was improved and promoted by Alex Graves in recent years. Although it
is theoretically possible to retransmit the neural network to the long-term correlation of
data sequences, the recurrent neural network (RNN) is prone to the problem of gradient
disappearance. When the gradient disappears, the neural network only learns the short-term
dependence of the data sequence—that is, when the number of layers of the neural network
becomes greater, the deeper the hidden layer nodes are and the shallower the hidden layer
nodes. With the perceived ability declining, LSTM adds a core element memory cell (Cell)
to solve the problem of the disappearance of the recurrent neural network (RNN) gradient.
Each memory in LSTM contains an input gate, output gate, forget gate, and LSTM block unit,
as shown in Figure 5.
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LSTM uses memory to strengthen the current decision and uses three control gates to
determine the storage and use of memory. In addition to the predicted output, a memory
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branch is added, which is updated over time, and the current memory is represented by
the Gt symbol. “Forget Gate” and “Input Gate” decide whether to update the memory.

Input Gate:
Input Gate (indicated by it): determines whether the current input and the newly

generated memory cell are added to the long-term memory. Data can be written to memory
cells when the input gate is turned on via a sigmoid transfer function:

it = Sigmoid(PX) (3)

Multiply it and Cupdate to get it Cupdate.
If it = 0, then Cupdate means that the memory cells cannot be written; it = 1 means

Cupdate cannot write to the memory cells.
Output Gate:
Output Gate: determines whether the current word sentence is added to the output.

This valve is also a Sigmoid function, indicating whether to add it or not and decide
whether to read out the values in the memory cells, as in Formula (4):

Ot = Sigmoid(RX) (4)

Multiply A and B to get:
A = htOt (5)

If Ot = 0, then B cannot be read through the Output Gate; Ot = 1 means that ht can
be read through the Output Gate.

Forget Gate:
The Forget Gate is denoted by f . If the current sentence is a new topic or the opposite

of the previous sentence, then the previous sentence will be filtered out by this valve;
otherwise, it may continue to be retained in memory. Determine when you want to forget
the cell memory:

ft = Sigmoid(QX)Ct (6)

ft and Ct−1 are multiplied to get ft Ct−1.
For whether the long-term memory is added to the output (Output), the tanh function

is usually used. The value falls between [–1, 1], and the −1 table removes the long-term
memory. If ft = 0, then the Forget Gate is closed, and Ct−1 with the previous memory
unit will be deleted; if ft = 1, then the Forget Gate is enabled, and Ct−1 with the previous
memory unit will be deleted.

Memory cell update:
Ct = ftCt−1 + itCupdate (7)

Ct is the value of the most recent memory cell, and H(x) usually uses the Activa-
tion Function.

This study combines the nine-axis inertial sensing signal with the Euler angle eigen-
value as the input of the CNN and LSTM neural network. The weight of the CNN and
LSTM neural network is then trained, and the long time series data of the LSTM network
is established through the LSTM cyclic memory unit. This trained model can be used to
predict the posture and position of brushing.

4. Recurrent Probabilistic Neural Network

With references to the concept and formalism of recurrent neural networks (RNN)
and the Long-Term and Short-Term Memory (LSTM) model, when combined with the
inference mechanism of a probabilistic neural network, we designed a recurrent proba-
bilistic neural network suitable for toothbrush attitude recognition to support the Bass
brushing technique.

We borrowed the long-term and short-term memory cell concept of RNN and LSTM,
so that the signal input to the probabilistic neural network (PNN) can be feedback and



Sensors 2021, 21, 1238 9 of 18

remembered in the network. This allows the recurrent probabilistic neural network (RPNN)
to correctly identify the time-dependent continuous brushing posture.

In 1988, DF Specht proposed the probabilistic neural network (PNN) [46]. PNN is
a four-layer neural network architecture. Probabilistic neural networks are widely used,
such as for object tracking and imaging. There are also related applications in the field
of processing [47–49]. PNN belongs to the feedforward neural network architecture. The
main theoretical basis is based on Bayesian classifiers.

The probabilistic neural network architecture is shown in Figure 6, which is the
input layer, the hidden layer, the sum layer, and the output layer. The feature vector
X = {X1, X2, . . . . . . , XN} of the probability-based neural network input layer can be any
custom feature for classification, and the hidden layer is marked. The characteristic data,
which are the characteristics of the input classification, are used to count the probability
values of each classification through the summation unit. The summation unit corresponds
to the output classification of the output layer. The number of output neurons of the
output layer is the same as the number of classifications, and the output of the output layer
is calculated by the summation unit. Therefore, the possibility of being classified is the
highest.
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Figure 6. Probabilistic neural network architecture.

The advantage of the probabilistic neural network is that its input vector size and
type are not limited. It can be widely used in different types of problems. When the
system is facing environmental changes and needs to add new training materials, only
the newly marked training is needed. Data are added to the network or added to the
corresponding new classification weights. There is no need to change the overall network
architecture like other types of neural network architectures, and the weights are retrained
through an iterative process. Therefore, network learning is very fast and suitable for use
in real-time systems.

We use the probabilistic neural network as the core model of the neural network to
identify the gesture of brushing. Combined with the RNN and LSTM models, we form
a recurring probabilistic neural network, which allows the probabilistic neural network
to have long-term and short-term memory functions. A continuous brushing motion
sensing signal is taken from the toothbrush, and the recurrent probabilistic neural network
continuously recognizes the brushing area by the motion attitude angle.

The recurrent probabilistic neural network we proposed is shown in Figure 7. The
white square is the memory neuron. The output probability value is output as the neural
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network weight through the excitation function in the memory neuron. The memory unit
updates the equation, such as:

Pi_update(t) = (1− δ) · (Pi_update(t− 1) + P∗i (t)), i f Pi(t) =
max

i
P(t)

Pi_update(t) = δ · (Pi_update(t− 1) + P∗i (t)), otherwise
(8)

and

P∗i (t) =
{

K · Pi(t), i f t 6= 0
0 , otherwise

(9)

where δ is the forgetting factor of the memory unit, K is a parameter of the length of the
memory, P(t) is the probability of dividing into the time, and Piupdate(t) s the output value
after the memory cell is updated.
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The parameter δ in the probabilistic neural network is the Gaussian function smooth-
ing coefficient. Each training sample can be regarded as a Gaussian function in the mul-
tidimensional feature space. The smoothness coefficient δ determines the breadth of its
distribution. The larger the δ2 value is, the wider the distribution is, and the higher the noise
is that can be tolerated. The smaller the δ2 value is, the narrower the distribution, the lower
is the noise that can be tolerated, and δ is classified according to different classifications.

In order to make the neural network adaptive, we used the particle swarm optimiza-
tion (PSO) algorithm to adjust the δ parameters and the δ and K parameters in the recurrent
neural unit to model the accuracy as a particle. The fitness function of the group optimiza-
tion algorithm iterates the particles in the search space to the optimal solution in order to
obtain a robust recognition performance.

Model migration.
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The probabilistic neural network does not require a complicated training process to
adjust the overall neural network architecture. However, when using the probabilistic
neural network for identification, in order to improve the accuracy of model identification,
the model is often complicated and large, so that the identification consumes a large
amount of memory, resources, and computing time. Therefore, we used model migration
to define the data directly related to the target task, called the Target Data. The data that
were not directly related to the target task were called the Source Data, and the source data
in the pretraining model belonged to the mark. The data Xs, Ys, and the user’s brushing
posture feature belonged to the unmarked target data Xt. Since each user’s brushing
posture is closely related to the user’s own brushing habits, each user’s brushing method
may be slightly different. We sourced the identification model of the data domain that
was transformed into the identification model of the target domain, as shown in Figure 8.
It effectively reduced the complexity and calculation time of the model and improved the
identification accuracy.
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5. Evaluation of Hardware/Software Integrated Smart Toothbrush

We developed a smart toothbrush prototype system (Figure 9) to verify the identifi-
cation performance of the proposed RPNN model. A nine-axis inertial sensor MPU-9255
and Bluetooth 4.2 module were integrated into the toothbrush. The inertial sensor was
used to capture the brushing motion signal, and the Bluetooth signal was transmitted to
the mobile phone instantly. On the mobile phone end, we designed software to implement
RPNN-based Brushing Posture Recognition and included a graphical user interface for
monitoring the integrity of Bayesian brushing.

We set up brushing data for at least 15 brushing people. The toothbrush holder was
30 to 80 cm away from the subject. Each subject was sitting in front of the toothbrush holder.
After watching the shell brushing method, the inertial sensing was performed. After the
calibration was completed, the subject picked up the toothbrush from the toothbrush holder
and brushed the teeth at the start of the prescribed brushing sequence. When brushing
the teeth, the nine-axis data continuously input were filtered by the Kalman filter, and
then, the data were processed by the quaternion algorithm. The fusion produced the Euler
angle and, finally, extracted 5000 strokes of continuous brushing Euler angles in 15 regions.
It collected five data archives in each region.
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This database was used to train and test the recurrent probabilistic neural network pro-
posed in this project to evaluate the performance and efficiency of brush gesture recognition.
Next, we defined the performance evaluation indicators for brushing posture recognition
in machine learning (ML), information retrieval (IR), accuracy, precision, recall, and F1
(F1-Measure). It is widely used to evaluate the pros and cons of different algorithms and
models. Before understanding the above evaluation methods, it was necessary to define
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) as the
four classifications of the dichotomy, as shown in Table 2.

Table 2. Binary problem definition. TP: true positive, FP: false positive, FN: false negative, and TN:
true negative.

Relevant Nonrelevant

Retrieved TP FP

Not Retrieved FN TN

• Accuracy:

It represents the ratio of the number of samples that the classifier model can correctly
classify to the total number of samples for a given test dataset.

accuracy =
TP + TN

TP + FP + FN + TN
(10)

• Precision:
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It represents the proportion of information that is correctly retrieved as a percentage
of the material that is actually retrieved.

precision =
TP

TP + FP
(11)

• Recall:

It represents the proportion of information that is correctly retrieved as a percentage
of the material that should actually be retrieved.

recall =
TP

TP + FN
(12)

• F1-Measure:

In some cases, the Precision and Recall values are contradictory. Therefore, in order to
comprehensively evaluate the Precision and Recall, the most widely used method in the
field of machine learning is the F-Measure. This method is a weighted average of Precision
and Recall and is also known as the F-Score.

F =
(a2 + 1)precision · recall

a2(precision + recall)
(13)

The most common F1-Measure is when a value is 1, calculated as follows:

F1 =
2 · precision · recall
precision + recall

(14)

Many studies have pointed out that, due to insufficient brushing time, the chance of
dental caries and oral diseases is higher than that between brushing teeth. Most people use
insufficient brushing time compared to Beller’s brushing method, which requires at least
two minutes.

The plan will also assess the integrity of the brushing of each subject. The formula for
assessing the integrity of the brushing is as follows:

Brushing completion =
User brushing time in the oral area

Dentist stipulates brushing time in the oral area
× 100% (15)

The experimental results will be compared to a typical CNN, recurrent neural net-
works, and LSTM identification results. We anticipate that the identification accuracy will
go beyond the existing deep learning methods described above, while the computing time
and hardware resource usage will be much lower than these existing methods.

6. Experiments

Experimental data were collected from five testers (user #1 to user #5). The brushing
data were collected several times. Each brushing area collected 2000 training materials. The
total training data totaled 150,000 pens, and there were 1000 more tests in each brushing
area data.

We conducted comparative experiments of brushing posture recognition with a Con-
volutional Neural Network (CNN), Recurrent Neural Network (RNN), and posed re-
current probabilistic neural network (RPNN). In order to process the time series data,
we used Multi-Scale Convolutional Neural Networks (MCNN) [50] as the CNN model,
and LSTM [51], proposed by Yuwen Chen et al., as the recurrent neural network model.
To compare the three deep learning models, all identification experiments were performed
on the same PC (Intel Core i7-6770 CPU @ 3.40 GHz with 16.00 GB DDR3 2133 MHz).

The MCNN architecture consisted of four layers, encompassing two layers of convolu-
tional layers and two layers of fully connected layers. The hyperparameters were set as
shown in Table 3. The LSTM hyperparameter settings are shown in Table 4.
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Table 3. Multi-Scale Convolutional Neural Networks (MCNN) hyperparameter settings.

Dropout Learning Rate Iterations Batch Size

1.5 0.00100 20,000 64

Table 4. Long Short-Term Memory (LSTM) hyperparameter settings.

Hidden Layer Learning Rate Lambda Loss Iterations Batch Size

45 0.0015 0.0015 12,000,000 8500

The DPNN model was optimized using PSO. We used PSO parameters with the
inertia weight (W) initial value, social parameter (C1), cognitive coefficient (C2), number of
particles, and iteration, such as in Table 5.

Table 5. Particle swarm optimization (PSO) parameter settings.

Parameter Item W C1 C2 Particle
Dimension

Number of
Particles

Number of
Iterations

Initial value 0.30 2.0 2.0 3 50 100

The experimental results are shown in Tables 6 and 7.

Table 6. Performance evaluation of brushing posture recognition. RPNN: recurrent probabilistic
neural network.

User Model Testing Accuracy (%) Precision (%) Recall (%) f1_Score (%)

#1
CNN 91.3933 94.5191 97.9214 96.19017

LSTM 84.3933 78.7769 84.3933 81.5851

RPNN 98.0067 98.1120 98.0100 98.0593

#2
CNN 80.9000 81.4349 80.9 81.1666

LSTM 74.7200 76.2770 74.72 75.4985

RPNN 99.9400 99.9400 99.9400 99.9400

#3
CNN 79.5400 78.5218 79.5400 79.0276

LSTM 75.2400 76.3375 75.2400 75.7888

RPNN 99.3067 99.3376 99.3067 99.3221

#4
CNN 81.6533 84.6613 87.4857 86.0504

LSTM 70.9600 73.4142 70.9600 72.1871

RPNN 99.5200 99.5347 99.5200 99.5273

#5
CNN 80.2133 83.4549 85.9429 81.7891

LSTM 84.0533 83.0656 84.0533 83.5565

RPNN 98.6200 98.7770 98.6200 98.6984

Table 7. Comparison of the computing resources of the three deep learning models.

Model Size Number of Parameters Average Accuracy

CNN 285 KB 3371 82.88

LSTM 560 KB 33,630 77.87

RPNN 5 KB 453 99.08
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The recognition accuracy of the RPNN model can reach 99.08%, and the average
recognition rate is 16.2% higher than that of the CNN model. It is also 21.21% higher than
the LSTM model, which greatly improves the recognition of the brushing area.

Typical deep neural network models such as the CNN and LSTM network architec-
tures are complex, have many parameters, and are computationally intensive, requiring
the use of better performing processors. The RPNN model is only one-thousandth and
one-fiftieth the size of CNN and LSTM. The model parameters are also much lower than
the CNN and LSTM, which can greatly save memory usage. Moreover, the real-time
parameter is satisfied due to the lower computational load. Under the demand of brush-
ing posture recognition, RPNN is more suitable for implementing edge devices with less
hardware resources.

7. Conclusions

The existing smart toothbrush has insufficient accuracy and stability of posture recog-
nition, and it is difficult to provide the user with correct information on the correctness and
completeness of brushing. Therefore, this paper proposes a brushing attitude recognition
model based on deep learning, which is applied to a smart toothbrush and can support
the monitoring of the Bass Brushing Technique. Based on the brushing motion criterion of
the Bass Brushing Technique, this study divided the teeth into 15 brushing areas and then
defined the attitude angle of the toothbrush turning and brushing as the characteristics of
the brushing area identification.

We used three deep neural networks for brushing gesture recognition in this study:
Convolutional Neural Network (CNN) model MCNN for the time series data, the recurrent
neural network with Long-Term and Short-Term Memory (RNN) Model LSTM, and the
recurrent probabilistic neural network RPNN. The RPNN model used the probabilistic
neural network as the core model of the neural network to identify the brush gesture.
Referring to the long-term and short-term memory functions of the LSTM model, the
probabilistic neural network has the ability to recognize continuous brushing motions and
to recognize the conspicuous brushing areas.

Since each user’s brushing posture is closely related to the user’s own brushing
inertia, employing a fixed identification model will make it difficult for users to deal with
different brushing habits. In order to improve the user’s personalized brushing posture
recognition, we propose a RPNN model migration method. The identification model of
the source data domain (generalized model) is transformed into the identification model
of the personalized domain, and the user model is trained by the PSO algorithm to make
the model more suitable for personalized brushing habits, which can effectively improve
identification accuracy. It also reduces the complexity of the model and computation time,
enabling low-cost edge devices.

Compared with the deep learning neural network models CNN and LSTM, the results
show that the recognition accuracy of the RPNN model can reach 99.08%, in which the
average recognition rate is 16.2% higher than that of the CNN model and 21.21% higher
than the LSTM model. The method proposed by this study can be adapted to implement
edge devices with low hardware resources, such as smartphones lacking AI accelerators
for instant brushing gesture recognition, while providing higher discrimination accuracy
to ensure proper brushing during monitoring.
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