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Abstract: The drill string used in drilling is in a complex motion state downhole for several kilometers.
The operating attitude and eccentricity of the downhole drill string play important roles in avoiding
downhole risks and correcting the output of the imaging measurement sensor while drilling (IMWD).
This paper proposes a method for measuring eccentricity while drilling using two sets of caliper
sensors coupled with a fiber-optic gyroscope for continuous attitude measurement, which is used
to solve the problem of the quantitative measurement of complex eccentricity that changes in real-
time downhole. According to the measurement and calculation methods involved in this article,
we performed simulations of the attitude of the drill string near where the IMWD tool is located
in the wellbore under a variety of complex downhole conditions, such as centering, eccentricity,
tilt, buckling, rotation, revolution, etc. The simulation and field test results prove that the distance
between the imaging while drilling sensor and the borehole wall is greatly affected by the downhole
attitude and revolution. The multi-sensor layout measurement scheme and the data processing based
on the above-mentioned measurement involved can push the drill collar movement and eccentricity
matrix specifically studied downhole from only qualitative estimation to real-time measurement
and quantitative calculation. The above measurement and data processing methods can accurately
measure and identify the local operating posture of the drill string where the IMWD sensor is located,
and quantitatively give the eccentric distance matrix from the measuring point to the borehole wall
required for environmental correction of the IMWD sensor.

Keywords: drill string eccentricity; drill string dynamics; ultrasonic caliper while drilling; fiber-optic
gyro; logging while drilling; imaging measurement; multi-sensor combination

1. Introduction

With the development of petroleum energy, imaging while drilling has become an
important technology to improve the penetration rate of oil and gas reservoirs, acceler-
ate drilling speed, and reduce drilling cost. During drilling, imaging measurement sensors
while drilling (IMWD) mounted in special drill collars continuously scan the borehole
wall and the formation behind the borehole wall several kilometers downhole to obtain
changes in the wellbore surface and geological information on the formation behind the
borehole wall, such as natural gamma ray, neutrons, density, and resistivity. This infor-
mation is used to reveal the geology of the drilling and to analyze and find recoverable
reservoirs. In the measurement project, the signal of the sensor needs to pass through
the annulus between the drill collar and the borehole wall before reaching the borehole
wall. Because the diameter of the drill string is smaller than the diameter of the wellbore,
the drill string is in a complex operating state downhole and is under the conditions of
gravity; the additional reaction force of the bit in contact with the wellbore wall; the friction
resistance caused by the drill string in contact with the wellbore wall; and other composite
factors, such as eccentric self-rotation, revolution around the shaft wall, sinusoidal bending,
vortex, repeated vibration, and other operating states. At the same time, because the
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borehole wall will expand, shrink, and collapse in the process of drilling [1,2], resulting in
uneven borehole wall, etc., it is more difficult to capture the downhole running track of the
drill collar in real time and obtain the eccentric position of the sensor [3–6].

Therefore, the distance between the IMWD sensor and the borehole wall is also chang-
ing constantly, and it is difficult to obtain the distance change to provide a compensation
basis for the eccentricity correction of the IMWD sensor. Drill string dynamic characteristics
have been studied for decades, and very important research results have been obtained
from qualitative measurements, providing valuable parameters for reducing downhole
drill string failure and optimizing the drill string structure [7–12]. However, the previ-
ous studies on this topic were all macroscopic. The posture of the drill string constantly
changes over time due to the various stress conditions of the bottom hole assembly (BHA).
For the measurement of gamma imaging, neutron density, and electromagnetic resistivity,
the eccentricity distance has a great influence on the measurement results [13–19]. In order
to obtain the real formation information accurately, modified maps of the sensors with dif-
ferent eccentricity distances are given. The traditional wireline logging uses the multi-arm
diameter to obtain the distance from the instrument center to the borehole wall. It is very
difficult to measure the eccentric distance of the drill collar in the eccentric and complex
rotation of the drill collar.

In order to identify the running state of the drill string in real time, the eccentric
distance of the drill string where the imaging sensor is located is given. A measurement
method that can obtain the eccentric distance of the imaging sensor at a high frequency is
needed. The multi-sensor layout proposed in this paper is mainly used to measure the real-
time eccentricity state of the IMWD sensor and provides the real-time eccentricity distance
for sensor eccentricity compensation. The downhole drill string eccentricity measurement
method designed in this paper uses two sets of ultrasonic diameter sensors installed at
both ends of the special drill collars for imaging measurement sensors while drilling and
a middle center attitude sensor to measure and obtain the motion characteristics and
eccentricity state of the drill string in real time.

The main components of this paper can be divided into the following parts: (1) In the
second section, the composition of the drill string during the directional measurement
near the bit end while drilling is introduced, and the factors leading to eccentricity are
expounded. Then, a method for the calculation of the drill string running characteristic
and the possible eccentric motion characteristic is introduced. (2) In the third section,
the measuring principle of the multi-sensor layout method for measuring the drill string
eccentricity state proposed in this paper is introduced, and methods for the calculation of
the key parameters, such as drill string eccentricity angle, revolution velocity, and rotation
velocity, are given. The methods for the calculation of each orientation eccentricity matrix
at different measuring points of the drill collars for imaging while drilling are further
obtained. (3) In the fourth section, according to the multi-sensor layout measurement
principle, the above-mentioned eccentric running state is simulated, and the distance of
the borehole wall from the measuring point has been measured for each combination of
depth and angle. The use of the above method and experiment prove that, despite the
complicated operation of the downhole drilling string, the above method can capture the
real-time running characteristics of the drill string, can provide the real-time measurement
of the eccentric distance while drilling, can image the raw data for real-time correction
while drilling, and can accurately identify the underground geological characteristics to
provide technical support.

2. The Composition and Operation Characteristics of the Downhole Drill String
2.1. Composition of the Bottom Drill String

Figure 1a shows the typical BHA for logging while drilling (LWD) and directional
drilling under normal conditions. The BHA consists of the bit, the downhole motor (DM)
with a bend, the IMWD drill collar, and the drill pipe. As can be seen from Figure 1, due to
the gap between the wellbore and the drill string, the drill string is in a state of tilt and bend
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in the wellbore under complex stress conditions. These tilt and bend states also vary due to
changes in weight on bit, torque, and drillability. Specifically, we focused on the movement
characteristics and the eccentric displacement of the drill collar (IMWDDC) in the wellbore,
as shown in Figure 1b. The drill collars in this part are closer to the drill bit, and different
diameters of the drill collars in which the instrument is located will cause different degrees
of bending under pressure. In order to obtain the eccentric distance between the imaging
measuring sensor on the drill collar and the borehole wall, it is used to correct the influence
of the downhole measuring environment on the sensor. It is necessary to measure, calculate,
and analyze the attitude of IMWDDC in the wellbore and the distance of each sensor to the
wellbore wall in real time.

Figure 1. (a) Position and force of drill collars while drilling in the wellbore; (b) Schematic diagram of drill collar force.

The commonly used BHA and bit sizes for measurement while drilling are shown in
the Table 1, including the drill bit, DM, and drill collar of the instrument while drilling
(DCWD). The table gives the possible magnification of the hole (MH), the range of distance
from the sensor to the wellbore wall (RDSW), and the degree to which the drill collars bend
under stress.

Table 1. Commonly used bottom hole assembly (BHA) table for measurement while drilling and orientation.

No. Bit Size
(mm)

Downhole
Motor

(DM) Type
(mm)

Downhole
Motor
(DM)

Angle (◦)

Drill Collar of
the

Instrument
While Drilling
(DCWD)(mm)

DCWD
Length (m)

Magnification
of the Hole

(MH),

Range of Distance
from the Sensor to
the Wellbore Wall

(RDSW) (mm)

Buckling

1 φ149.2 φ120 1,1.25,1.5,1.75 φ120 10~30 0.05~0.15 0~29.2 ± 15 Easy
2 φ152.4 φ120 1,1.25,1.5,1.75 φ120 10~30 0.05~0.15 0~32.4 ± 15 Easy
3 φ215.9 φ172 1,1.25,1.5,1.75 φ172 10~30 0.05~0.15 0~43.9 ± 20 Medium
4 φ241.3 φ203.2 1,1.25,1.5,1.75 φ203.2 10~30 0.05~0.15 0~38.1 ± 24 Difficult
5 φ311.1 φ203.2 1,1.25,1.5,1.75 φ203.2 10~30 0.05~0.15 107.9 ± 31 Difficult
6 φ346.1 φ203.2 1,1.25,1.5,1.75 φ203.2 10~30 0.05~0.15 142.9 ± 34 Difficult
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It can be seen that there is a large gap between the wellbore and the drill string due to
the difference between the drill bit diameter and the drill collar diameter of the instrument
while drilling. This is also due to the drilling tool mud fluid and carrying the broken
cuttings of the channel. The mud performance and type and thickness of the channel have
a great impact on the original output of the imaging while drilling measuring instrument.
In particular, the distance between the wellbore wall and the drill string increased due to
the expansion of the wellbore.

2.2. Causes of Drill String Eccentricity

As shown in Figure 1a,b, the drill string is subjected to complex forces such as its own
weight, the reaction force of the bit in contact with the formation, and the torque of the
drill string and the bit in contact with the formation. The drill string rotates under the
combined action of various forces, which drives the drill bit to contact the cutting strata
at the bottom of the hole to break rock. Similarly, the drill string is bent and eccentric
under these combined forces. American Woods and Lubinski studied and obtained the
critical equation for the spiral bending caused by the dead weight of the drill string [20].
In the 1980s, Dellinger regressed the Lubinski test curve and reanalyzed the calculation
equation [21]. In 1984, Dowson first proposed the load equation of the sinusoidal bending
of a drill string [22]. On this basis, Yu Yongnan and Huang Tao et al. from the University of
Petroleum (East China) continued their research and experiments and obtained the critical
calculation equation for sinusoidal buckling at the University of Petroleum [23], as shown
in Equation (1).

Fhel = 2.4175

√
EIqm sin Inc

rDD
(1)

where qm is the floating weight of the drill string in mud, N/m; E is the elastic modulus of
steel, Pa; I is the moment of inertia of the drill collar section axis; rDD = 0.5 (DH-DC) is the
apparent radius, where DH is the hole diameter and DC is the drill string diameter; Inc is
well inclination.

Through the above research, we can roughly obtain the downhole bending state of
the drill string and some contact points of the borehole wall. After learning the above
information, the BHA, the weight on the bit, and the rotary speed can be adjusted to
prevent the instability of the drill string and avoid downhole risks. It is impossible to use
the above theoretical analysis to calculate the real-time operating attitude of the DCWD
in the wellbore, as shown in Figure 1b, and to obtain the eccentricity state and the precise
distance from each measurement point above to the wellbore wall.

2.3. Operational Characteristics of the Drill String

According to Figures 1b and 2, the operating states of the instrument while drilling in
the wellbore mainly include sinusoidal buckling, tilt, eccentric uncenter in the wellbore,
self-rotation around the center of the drill collar, rotation around the center of the wellbore,
and combined rotation in several ways. The eccentric vortex of the drill string caused by
friction resistance between the drill string and drill bit is also one of the main operating
conditions of the downhole drill string. These complex operating attitudes change with
time due to rocks breaking the drill bit and the friction of the borehole wall. Based on years
of research by oil industry scientists [1–6], we have summarized the common operating
types of drill string near the downhole DCWD in the Table 2.
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Figure 2. Profile of the drill collar and wellbore relative to each other.

Table 2. Common movement characteristics and the eccentric displacement of the drill collar
(IMWDDC) operation type.

No. Drill String Eccentric
Type

Whether to Rotate
Around Itself

(30 r/m~75 r/m)

Additional Rotation
Around the WellBore

1 Centering Yes Yes/No
2 Eccentricity Yes Yes/No
3 Tilt Yes Yes/No
4 Buckling Yes Yes/No

Eight common drill string operating state combinations can be combined in the figure
above. In the following sections, after the DCWD attitude is obtained using the multi-sensor
layout, we will analyze each of the above scenarios for drill string misalignment.

2.4. Influence of Eccentric Factors on Measurement

The eccentricity of the measurement sensor has a great influence on the measurement
of the instrument. For imaging while drilling gamma ray measurements, natural gamma
rays from the rock formation travel through the annulus in the drill string and wellbore
to photomultiplier tubes in the instrument, triggering pulses that are used to count the
rays. Due to the tungsten alloy shield on the outside of the gamma photomultiplier tube,
only a narrow window is allowed to enter the ray, and the media in the wall of the hole will
attenuate the incoming ray. As shown in Figure 3a, the effect of mud thickness on natural
gamma attenuation is exponentially influenced by the density and thickness of the mud on
the gamma count attenuation. The presence of potassium ions in the potassium-based mud,
as shown in Figure 3b, also affects the measurement results, increasing in direct proportion
to the mud thickness and the proportion of potassium ions in the mud. Therefore, it seems
that only by accurately obtaining the specific distance between the imaging measurement
sensor and the borehole wall can the original data be corrected, and the real formation
response results be obtained. According to the above discussion, the original theory can
only qualitatively analyze the drill string from a macro perspective and cannot obtain the
real-time distance from the sensor on the drill collar under study to the borehole wall.
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Figure 3. (a) Gamma mud gravity correction; (b) Gamma correction pattern of potassium-based mud.

3. Borehole Eccentricity Multi-Sensor Measurement Principle and
Measurement Method
3.1. Composition of Sensors for Measuring Drill String Eccentricity

The IMWD sensor is located on the drill collar between the drill string and the power
drill string. The drill collars in this part move in the wellbore with complex motions such
as tilt, bend, rotation, and revolution. The traditional diameter sensor can measure the
diameter near the sensor [17]. Past applications have focused on surface dimensional
changes in the wellbore, with no focus on measuring the operational characteristics of
the drill string. Due to the inability to obtain the eccentric and tilting characteristics of
drill collars in the wellbore, the imaging sensor while drilling near the deviation diameter
measuring point cannot provide real-time diameter information. In this paper, a multi-
sensor layout measurement method is proposed to measure the movement characteristics
of drill collars in the wellbore, and the distance between drill collars and the wellbore wall
corresponding to different positions and tool face angles of drill collars in imaging while
drilling logging is obtained. The imaging measurement sensor in the drill collar can then
be used to obtain the eccentricity distance for environmental correction using a correction
plate, similar to that shown in Figure 3a,b (gamma) for a more realistic formation response.

As shown in Figure 4a, the method consists of two sets of ultrasonic diameter sensors
installed at each end of the IWD drill collar to obtain the actual shape of the wellbore. It can
also be used to measure the eccentric attitude and distance of drill collars in the wellbore.
A fiber-optic gyro attitude sensor set was installed in the middle of the drill collar, as shown
in Figure 4a, to obtain information on the inclination, azimuth, and measurement tool face
at the drill collar location. Communication cables are connected between the circuits of
these sensors, and the measured and calculated information is transmitted in real time on
the communication bus. The measured and calculated attitude and eccentricity distance of
the drill string can be acquired in real time by the imaging sensor while drilling on the side
wall of the drill collar, which can be integrated to complete the eccentricity correction of the
imaging sensor while drilling. As can be seen from Figure 4b,c, the center of the drill string
corresponding to the drill collar cross-section of the two groups of ultrasonic sensors does
not coincide with the center of the wellbore. In the following sections, we will elaborate
the calculation methods of the drill collar center, the wellbore center, the angle between
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the drill collar axis and the wellbore axis on the two interfaces, the self-rotation of the drill
collar, and the revolution of the drill collar around the wellbore center.

Figure 4. (a) Schematic diagram of the multi-sensor layout of the drill string eccentricity measurement system; (b) Diagram
of upper sensor set eccentricity; (c) Diagram of down sensor set eccentricity.

Figures 4 and 5 show the schematic diagrams and data processing chart of the multi-
sensor layout drill string eccentricity measurement system, respectively. The attitude
sensor installed in the middle of the drill collar consists of three orthogonal acceleration
sensors and three orthogonal fiber-optic gyro sensors. The measured accelerometer values
Gx, Gy, Gz and angular velocity values ωx, ωy, ωz were obtained. Using these six data
points, the drill string’s inclination, azimuth, and measurement tool face angle from each
sensor to the wellbore can be calculated. Each set of ultrasonic sensors consists of four
ultrasonic ranging sensors, each of which is uniformly installed around the wellbore at
90◦ intervals to obtain four measurement distances simultaneously. Combined with the
well inclination, azimuth, and measurement tool surface measured by the attitude sensor
in the middle, we can calculate the diameter of the wellbore, the middle coordinates of
the drill collar center, and the four points in the wellbore center on the section of the two
groups of ultrasonic sensors. Thus, the included angle between the wellbore pivot line
segment and the drill collar center line segment can be obtained. The angular velocity of
the drill collar around the center of the wellbore can be calculated by using the changes
in the coordinates of the center of the wellbore measured at different times. The angular
velocity of the drill string rotation can be calculated using the change in the tool face
angle measured by the fiber-optic gyroscope. Through the measurement and calculation
of the above parameters, the eccentric attitude matrix of the drill string in the wellbore at
a specific time can be further obtained in real time. It can be seen that the multi-sensor
layout measurement and measurement data processing methods discussed in this article
can obtain the changing eccentricity matrix from a microscopic perspective in real time and
promote the dynamic eccentricity of the drill collar from qualitative analysis to real-time
monitoring and measurement calculation. Thus, we can clearly obtain the drill string in
the wellbore running characteristics and eccentricity characteristics.
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Figure 5. Schematic diagram of the multi-sensor layout of the drill string eccentricity measurement data processing.

3.2. Acquisition of Multi-Directional Diameter and Drill Collar Attitude
3.2.1. Obtain Borehole Inclination, Azimuth, and Tool Face

Fiber-optic gyro is a kind of optical gyroscope based on the Sagnac effect [24–26].
The Sagnac effect refers to the two-way transmission of two beams of light in a closed
optical circuit along the clockwise and counterclockwise direction due to an optical loop
around the perpendicular to the plane of the axis of rotation; the change in the phase
difference, the phase difference and closed optical circuit is proportional to the rotation rate.
In this paper, the quaternion method used to analyze the corresponding well inclination,
azimuth, and tool face angle. We assume that the rotation quaternion of the drill collar
carrier coordinates relative to the platform coordinate system is:

Q = q0 + q1
→
i b + q2

→
j b + q3

→
k b (2)

where q0, q1, q2, q3 are the real part of the quaternion and
→
i b,
→
j b,
→
k b are the imaginary part

of the quaternion.
A correction of Q can be achieved by solving the following quaternion differen-

tial equation: 
.
q0.
q1.
q2.
q3

 =
1
2


0 −ωb

x −ωb
y −ωb

z
ωb

x 0 ωb
z −ωb

y
ωb

y −ωb
z 0 ωb

x
ωb

z ωb
y −ωb

x 0




q0
q1
q2
q3

 (3)

where ωb
x, ωb

y, ωb
z represent the angular velocity components of the carrier coordinate

system relative to the geographic coordinate system along each axis.
The initial value of the quaternion is determined by the elements of the attitude matrix

determined in the initial alignment, and the corresponding elements of the quaternion and
attitude matrix are equal to each other.
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Equation (4) can be used to calculate q0, q1, q2, q3, and the strapdown matrix T can be
calculated according to the following equation:

T =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (4)

The strapdown matrix T is the attitude matrix Cn
b.

Cn
b =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (5)

The definition domains of the well inclination angle (Inc), azimuth angle (Azi), and tool
face angle (FogTf ) are: 0◦~180◦, 0◦~+360◦, and 0◦~360◦, respectively. Inc = θ, Azi = Ψ,
FogTf = γ, so the attitude matrix can be θ, Ψ, γ.

Cn
b =

 cos θ cos ψ + sin γ sin ψ sin θ sin ψ cos θ sin γ cos ψ− cos γ sin ψ sin θ
− cos θ sin ψ + sin γ cos ψ sin θ cos ψ cos θ − sin γ sin ψ− cos γ cos ψ sin θ

− sin γ cos θ sin θ cos γ cos θ

 (6)

The setup is:

Cn
b =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 (7)

Then: 
Inc = arcsin(T32)

FogT f = arctan
(
− T31

T33

)
Azi = arctan

(
T12
T22

) (8)

3.2.2. Calipers Sensor

As shown in Figure 6, the sensor used for measuring along the drilling calipers is an
ultrasonic sensor [27–29]. The ultrasonic sensor we selected operates at 250 kHz, and when
the instrument is operating the sensor sends a series of acoustic pulses to the borehole
wall. This signal is reflected off the wall of the wellbore and is picked up by ultrasonic
sensors. Using the time difference between the transmission speed of sound waves in the
mud and the transmission and acceptance, we can calculate the distance from the sensor to
the borehole wall, as shown in Equation (9).

ls =
1
2

VsRT (9)

where Vs is the transmission speed of sound wave in mud, mm/s; RT is the time from the
sensor sending the pulse to receiving the reflected signal from the borehole wall, ms.

The distance from the eight sensors in a set of four to the wellbore wall can be calcu-
lated by firing and receiving four sensors from the two sets of calipers sensors at the same
time: L11, L12, L13, L14, L21, L22, L23, and L24. In the following sections, we will use these
basic measurements to calculate the drill string operating characteristics and eccentricity.
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Figure 6. Ultrasonic caliper measurement echo.

3.3. Methods and Equations for Determining the Eccentricity of Two Groups of Sensors

As shown in Figure 7a, points A, B, C, and D correspond to points on the borehole
wall in the direction corresponding to the ultrasonic calipers’ sensor. According to the
principle of three points to determine a circumscribed circle and the four vertices, four
triangles can be determined: ∆ABC, ∆BCD, ∆CDA, and ∆DAB. We first select ∆ABC to
calculate the shaft’s center and radius. Firstly, the center of the instrument is set as point O,
and the coordinate is (0, 0, 0).

Figure 7. (a) Drill string eccentricity diagram section; (b) The drill string is eccentric in the wellbore.

In Figure 7a, point H is the high edge of the instrument in line with 0◦ of the tool
surface corresponding to the gyro measuring instrument. Points A, B, and C are the corre-
sponding measurement points of ultrasonic sensors CS1, CS2, and CS3 on the borehole wall.
Angle ∠HOA is the measurement tool face angle difference of the instrument, which can
be measured on the ground and is a known fixed value. ∠POH is the tool face angle of the
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drilling tool, which can be measured using a gyro. The numerical value is FogTf, and the
calculation method is shown in Equation (8). Thus, it can be concluded that:

∠POA = ∠POH +∠HOA (10)

Since the angle of each sensor is perpendicular to the center, the following A, B, and C
coordinate points can be obtained:

−L11 sin∠AOP , L11 cos∠AOP Apoint
L12sin(90−∠AOP) , L12cos(90−∠AOP) Bpoint
L13sin(180−∠AOP) , L13cos(180−∠AOP) Cpoint

(11)

where L11 = l11 + rdc; L12 = l12 + rdc; L13 = l13 + rdc. l11, l12, and l13 are the distances measured
by sensors CS1, CS2, and CS3, mm. rdc is the drilling tool radius in mm.

We set:  xa ya
xb yb
xc yc

 =

 −L11 sin∠AOP L11 cos∠AOP
L12sin(90−∠AOP) L12cos(90−∠AOP)
L13sin(180−∠AOP) L13cos(180−∠AOP)

 (12)

According to the equation for finding the center of the circumferential circle of a
triangle, we can obtain: 

ye = La+Lb+Lc
2

xe =
√

ye(ye − La)(ye − Lb)(ye − Lc)

R = La Lc Lc
4xe

ωz = arctg xo
yo

(13)


La =

√
(xa − xb)

2 + (ya − yb)
2

Lb =
√
(xa − xc)

2 +
(
ya − yc

)2

Lc =
√
(xb − xc)

2 +
(
yb − yc

)2

(14)

where Xe and Ye are the coordinates of the wellbore center relative to the center of the drill
string in mm, R is the radius of the wellbore in mm, and ωz is the angle from the center of
the drill collar to the center of the wellbore.

Further in space, we can get the spatial coordinates of E (XE, YE, ZE). Similarly, we can
further use four triangles to find the coordinates of four central points: E1, E2, E3, and E4.
The final central coordinates can be weighted and averaged to obtain the final XE, YE,
and ZE. The four sensors give the four radii, which are averaged to get the final R.

As shown in Figure 7b, OO′ is the center line of the drill collar and O′ is the center
point of the drill collar at the second calipers sensor. Using the drill string deviation and
orientation obtained by Equation (9), we can obtain the coordinates of O′ (XO′ , YO′ , ZO′ ) on
the spatial coordinates.

The equation is as follows:
Xo′ = Ldc sin(Inc) cos(Azi)
Yo′ = Ldc sin(Inc) sin(Azi)
Zo′ = Ldc cos(Azi)

(15)

Similarly, by using Equations (10)–(14) we can calculate the coordinates of E′ point
(XE′ , YE′ , ZE′ ) and the well calipers R′ of this section. Using the above steps, we can obtain
the coordinates of the drill collar center O and the wellbore center E on the section of the
first group of sensors and the coordinates of the drill collar center O′ and the wellbore
center E′ on the section of the second group of sensors. The included angle between the
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drill collar centerline and the wellbore centerline is the included angle between the space

segment OO′ and EE′. Let us call the vector of OO prime
→
O, (O1, O2, O3); the EE′ vector is

→
E, (E1, E2, E3).

The included angle α between two line segments is:

α= arccos

(
O1E1 + O2E2 + O3E3√

O1
2 + O22 + O32 ×

√
E1

2 + E22 + E32

)
(16)

3.4. Representation of Eccentricity Matrix at a Measuring Point Along the Drill Collar

As shown in Figure 7b, when the central coordinate O, O′ of the drill string where the
upper and lower sensor section is located and the coordinate E, E′ of the wellbore and the
calipers of the wellbore are calculated by Equations (10)–(16), we can calculate the tool face
angle and the distance Len (along the axial direction of the drill collar) from the wellbore
wall. Its eccentricity matrix is expressed as follows:

Dep1 T f11 Len11
Dep2 T f12 Len12
Dep3 T f13 Len13
· · ·
· · ·
· · ·

Depn T f1n Len1n





Dep1 T f21 Len21
Dep2 T f22 Len22
Dep3 T f23 Len23
· · ·
· · ·
· · ·

Depn T f2n Len2n





Dep1 Tm1 Lenm1
Dep2 Tm2 Lenm2
Dep3 T fm3 Lenm3
· · ·
· · ·
· · ·

Depn T fmn Lenmn


(17)

where Dep1~Depn are the length of each measuring point of the drill collar where the
imaging measurement sensor is located in mm and Tf11~Tfmn are the measurement tool
face angles, ranging from 0◦ to 360◦. Len11~Lenmn are the distance from the drill collar to
the wellbore wall corresponding to different depths and tool face angles, unit mm.

4. Simulation Analysis and Field Test of Drill String Eccentricity State

On the basis of the above theoretical analysis, we simulate the position of the drilling
string in the wellbore where the imaging instrument is located. The experiment was carried
out in three groups. In the first group, it is assumed that the drill string is not buckling,
the drill collar axis is parallel to the wellbore axis, and the included angle is zero. When the
drill collar rotates in the wellbore, the distance distributed along the surface of the drill
collar to the wellbore is centered rotation and eccentric rotation, respectively. In the second
group, it is assumed that the drill string does not buckle, the drill collar axis and the
wellbore axis are not parallel, and they are, respectively, tilting rotation, tilting rotation,
and revolution. The third group is the operation state of the drill collar under compression,
which is the rotation of the drill string under buckling and the rotation and revolution of
the drill string under buckling.

In order to verify the measurement and calculation methods mentioned in this paper,
we used the imaging while drilling simulation measurement device of China University of
Petroleum. The device consists of a logging-while-drilling attitude scanning device and
a simulated wellbore, which can be fitted with some ultrasonic diameter sensors to scan
the borehole wall to simulate the drill string’s eccentricity, tilt, rotation, and revolution
in the wellbore. At the same time, in order to further simulate the running state of the
drill collar in the well bore where the logging sensor is located, MATLAB and Visual Basic
2015 were used to write and simulate the eccentricity while drilling program software.
The software can input the measurements of wellbore dimensions, drill string dimensions,
drill string attitude, and ultrasonic well diameter mentioned in Section 3 to obtain the
drillstring eccentricity distance matrix mentioned in Equation (17). The matrix establishes
an eccentric set of the corresponding IMWD and LWD sensors corresponding to the
wellbore wall deployed longitudinally along the drill string, with each measured depth
around 360 degrees.
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In the following figures, there wre two forms to show the eccentricity distance.
One form was to expand in the order of records, the abscissa was the record number,
the ordinate was the periodic change of the angle, and the chromatogram shows the change
of the eccentric distance. The other was that the abscissa indicates the length of the drill
collar, the ordinate indicates the angle change around the drill collar, and the color spec-
trum indicates the distance from the corresponding point on the surface of the drill collar
to the borehole wall.

The commonly used BHA is selected for the simulation setting conditions, such as
BHA No.3 in Table 1. The drill bit diameter was 215.9 mm, the drill collar diameter
was 172 mm, and the drill collar length was 20 m. The size of the drill bit, drill collar
diameter, drill collar length, rotation speed, and revolution speed were input into the
software. The simulation outputs the eccentric distance matrix of the sensor to the wellbore,
distributed along the surface of the drill collar under eccentric, tilt, and buckling conditions.
A total of 72,000 observation points were set down along the drill collar with an interval of
50 mm in length and an angle interval of 2◦ around the drill collar.

4.1. Analysis of Eccentricity Characteristics in Case of No Bending of Drill String and Zero
Included Angle

In this experiment, the assumption is that when the drill string does not buckle at the
observation point, the angle between the two axis lines is 0.

4.1.1. Center Rotation

The posture condition of the simulation drill string is the center rotation of the drill
string and the rotation speed is 60 RPM. The eccentricity is uniform at 21.95 mm.

At this point, the drill collars rotate in the center of the drill string without revolution,
and the distance between the sensors distributed on the drill collars and the wellbore is
uniform at 21.95 mm, as can be seen in Figure 8. This state is the ideal drill collar running
state in the well and rarely exists under actual working conditions.
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4.1.2. Eccentric Rotation

In this simulation, the posture condition of the drill string is that the center line of the
drill collar is deviated but parallel to the axis of the wellbore, the angle between the two
axis lines is zero, and the rotation speed is 60 r/min. The eccentricity is 21.925 mm.
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The drill collar rotates eccentrically on the right side of the wellbore without revolution.
The maximum tool face angle on the drill collar was measured at 270◦, and the maximum
distance between the drill collar and the wellbore wall was 43.9 mm. The minimal distance
occurs at 90◦, 0 mm. The distance between the drill collar and the borehole wall is related
to the tool face and independent of the drill collar length, as can be seen in Figure 9.

Figure 9. Eccentricity distance distribution along the surface of the drill collar during eccentric rotation.

The simulation data are arranged and expanded in order. The angle interval is 2◦ and the
depth interval is 50 mm. The first 2000 data obtained are shown in the following Figure 10.

Figure 10. Eccentricity distance in order of recorded data.

Figure 11a shows the phase displacement of the tool face with the drill collar eccen-
tricity at 1.5 r/min revolution. Figure 11b shows the phase displacement change of the tool
face with the required eccentricity at 3 r/min revolution in the drill collar eccentricity state.
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It can be seen that under the eccentric condition, the phase displacement increases with the
revolution speed in the case of additional revolution.

Figure 11. (a) Display the eccentricity in the order of recording according to 1.5 RPM revolution; (b) Display the eccentricity
in the order of recording according to 3 RPM revolution.

4.2. Analysis of Eccentricity Characteristics in the Case of No Bending of Drill String and Included
Angle Greater Than Zero

There is no bend in the drill string, but there is an angle between the collar axis and
the wellbore axis.

4.2.1. Tilting Rotation

The drill string tilts and rotates in the wellbore, and there is no revolution around the
wellbore, with a rotation rate of 60 RPM. The upper part of the drill collar deviates to the
left and the lower part deviates to the right. The maximum starting distance is 90 degrees
from the tool face and the minimum distance is 270 degrees from the tool face. The change
begins along the drill collar axis, centered in the middle. In the lower part of the drill collar
to the right, the maximum eccentricity occurs at the 270-degree tool face and the minimum
eccentricity occurs at the 90 degree tool face. The tool faces of the drill collars are sinusoidal
at the upper and lower ends and rotate in the middle. The collar-to-wellbore eccentricity
distribution is shown in Figure 12.
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Figure 12. Eccentricity distribution of drill collars as they tilt in the wellbore.

4.2.2. Tilting Rotation 60 RPM and Revolution

The drill collars were tilted in the wellbore with a rotation rate of 60 RPM and the
initial conditions were the same as in Section 4.2.1. On this basis, the drill collar axis around
the wellbore axis occurred at 1.5 RPM revolution. As shown in Figure 13, along the axial
direction of the drill string the oblique rotation and revolution appear to be coupled and
undergo periodic changes. Along the axial direction of the drill string, the eccentricity
changes sharply at both ends of the drill string but less in the middle.

When increasing the revolution speed to 3 RPM, as shown in Figure 14. It can be
seen that the frequency of periodic changes at both ends of the drill collar along the axial
direction of the drill collar increases.

4.3. Analysis of Eccentric Characteristics of the Drill String with Bending

The test drill string buckled under stress. The bus of the upper and lower drill collars
is on the axis line of the wellbore, and the middle buckling of the drill collars touches the
wellbore wall on the right side of the wellbore. The drill collar rotation rate is 60 RPM.

4.3.1. Buckling Rotation without Revolution

As shown in Figure 15, the distance between the two ends rotates along the centerline
of the wellbore with little change in eccentricity. Along the axis direction to the middle
of the drill collar, the eccentric deviation gradually presents sinusoidal variation, and the
amplitude is the largest in the middle of the drill collar.
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Figure 13. Eccentricity distribution of drill collars in the wellbore. with oblique rotation and additional revolution at a
speed of 1.5 RPM.

Figure 14. Eccentricity distribution of drill collars in the wellbore, with oblique rotation and additional revolution at a speed
of 3 RPM.
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Figure 15. Eccentricity distribution of drill collars during buckling rotation (no revolution) in wellbore.

4.3.2. There Is Revolution in Buckling

In Section 4.3.1, a revolution around the wellbore axis was added to the buckling
rotation of the drill collar. Under such conditions, the eccentricity distribution of drill collars
in the wellbore during buckling rotation (non-revolution) and additional revolution was
recorded in the order shown in Figure 16. The two have the same general trend, with both
ends rotating in the center of the wellbore and with the same eccentricity. The more the drill
collar goes to the middle of the drill collar, the greater the eccentric vibration amplitude is,
and the middle part of the drill collar keeps rotating on the borehole wall. The eccentricity
drawn according to the sequence of simulation calculation and recording is similar to the
variation in shuttle type, as shown in Figure 16.

As shown in Figure 17, the eccentricity distances after buckling without revolution
and additional revolution are compared in the order recorded, and phase changes occur
between the two.

As shown in Figure 18, under the condition of buckling a revolution around the center
line of the wellbore is added to the drill string. From the two ends of the drill collar to the
middle of the drill collar, the eccentricity distribution presents stripe rotation interference,
with periodic changes in the maximum and minimum eccentricity.
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Figure 16. Comparison of the eccentricity distribution of drill collars recorded in the order of buckling rotation and
additional revolution in the wellbore.

Figure 17. The phase change after additional revolution compared with that without additional revolution.
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Figure 18. Eccentricity distribution along the drill collar surface after drill collar buckling with a revolution of 1.5 RPM.

4.4. Analysis and Discussion of Drill String Eccentricity Characteristics

From the simulation and test above, it can be seen that the eccentric, tilting, buckling,
and other spatial postures of the drill collar in the wellbore have a great influence on
the distance between the sensor on the surface of the drill collar and the wellbore wall.
These spatial attitudes determine the trend and structure of the distance from the drill
collar axial surface to the wellbore wall. The rotation of the drill string has no effect on the
structural change in eccentricity, but it will affect the measurement of the specific sensor.
Therefore, it is necessary to improve the acquisition speed to improve the resolution of
the tool face under the condition of high rotation speed. The revolution of the drill string
around the central axis of the wellbore is coupled with the rotation of the drill string, and
the increase in revolution speed will lead to an increase in the frequency of periodic changes
along the drill string axis. The above analysis was statistically compared, and the maximum
eccentric distance, minimum eccentric distance, axial line crossing (uniform change around
the tool face), axial change correlation along the drill collar, and periodic change of coupling
were statistically analyzed according to the eight cases shown in the Table 3.

Table 3. Characteristic statistics of drill collars with different postures and additional revolutions in the wellbore.

No. Center
Center

and
Revolution

Eccentric
Tool Face

(Tf)

Eccentric =
and

Revolution
Tilt

Tilt
and Revo-

lution
Buckling

Buckling
and

Revolution

1 Max
distance Same Same Specific Tf Change Both ends

of DC
Both ends

of DC Central DC Central DC

2 Min
distance Same Same Specific Tf Change Both ends

of DC
Both ends

of DC Central DC Central DC

3 Med
distance Same Same Specific Tf Change Central DC Central DC Both ends

of DC
Both ends of

DC

4

Drill
collar
length
correla-

tion

No No No NO Yes Yes Yes Yes

5 Change
over time No No No Yes No Yes No Yes
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4.5. Field Test

In order to verify the results of the method mentioned in this paper in actual drilling
conditions, we selected a conventional directional well in Shengli Oilfield, China, for actual
testing. In the Cheng well, the fiber-optic gyro (FOG) was first assembled on the ground
and the surface north-searching was performed. The tool face angle difference between
the FOG and the drill collar calipers measuring machine was measured and recorded,
as shown in Figure 19. After assembly, the prototype was run to the bottom of the well
for measurement.

Figure 19. (a) Ground north-finding for fiber-optic gyro (FOG) while drilling; (b) Go down well with LWD tools.

The downhole instruments were wired to each other and a real-time clock was used to
couple the data combinations between the different sensors. The drill bit size was 216 mm,
the drill collar caliper size was 172 mm, and the drill collar plus instrument sub length was
17 m. The acquisition frequency of FOG in the well was 1 kHz. The test end of the well had
a depth of 1167–1225 m, a well inclination of 26.18◦, and an azimuth of 32.15◦. The rotation
speed of the ground drill plate was 55 RPM. The attitude information and well caliper
information of the test are stored in the memory. After the instrument was taken out of the
ground, the data were downloaded to a computer for processing. Figure 20b shows the
extracted three-dimensional caliper shape, and Figure 20b shows the eccentricity data set
obtained from the memory records.

As shown in Figure 21, the eccentricity data along the borehole axis were expanded
on the 0–360◦ measurement tool face. It can be seen from the figure that the drill string
tilted eccentrically in the wellbore at this time, and no obvious revolution phenomenon
is shown. The top of the drill collars deviated from the shaft to the upper wellbore wall
and intersected the pivot line of the drill collars, with the center line of the wellbore at
about 5 m. As the drill string moves down, the drill collars drift toward the lower wellbore.
At the bottom end of the drill collar, the drill collar’s 180◦ tool face is closest to the wellbore
wall. At 0◦ and 360◦, the drill collar is furthest from the wellbore wall. It can be seen that
the multi-sensor combination measurement scheme proposed in this paper can be used to
measure the running state of the drill string and obtain the eccentricity matrix of the drill
collar distribution between the sensor groups.
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Figure 20. (a) The original caliper data of the fused gyro attitude extracted from memory; (b) Eccentric data set.

Figure 21. Eccentricity distribution of each tool surface along the drill collar axis.

5. Discussion and Conclusions
5.1. Discussion

Through the above theoretical analysis and simulation experiments, it was proven
that the downhole uncentrality of drill collars in LWD leads to variation in the distance
between each measuring tool face and wellbore along the axial direction of the drill
collars and around the drill string. The revolution of the drill collar around the wellbore
axis is coupled with the rotation of the instrument, and the period of change along the
wellbore axis becomes shorter as the revolution speed increases. The multi-sensor layout
eccentricity measurement method proposed in this paper can be used to analyze the
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running characteristics of the drill collars where the logging tool is located in real time.
The rotation velocity and revolution velocity can be separated and the distance matrix
between each measuring tool face and borehole wall distributed along the axis of the drill
collars at each measuring point can be obtained. According to the slow elastic deformation
of drill collars, the eccentricity measured in the eccentric wellbore above the drill collars
and the operating state of the drill string above the IMWD can be deduced for the extension
part not far from the upper and lower ends. In this paper, through continuous carrier
attitude measurement of two sets of ultrasonic caliper sensors and fiber optic gyroscopes,
the drill string eccentricity matrix under complex force conditions can be measured and
calculated in real time. This method can greatly improve the effect of imaging sensor
eccentricity correction.

5.2. Conclusions

Through the analysis of the eccentric characteristics of drill collars in different motion
types in the well, we can draw the following conclusions:

(1) The multi-sensor layout scheme proposed in this paper can separate the rotation
and revolution velocities of drill collars in the wellbore and analyze the eccentric
characteristics of drill collars in the wellbore.

(2) The inclination, parallel eccentricity, buckling, and revolution of the drill string are all
related to the distance between the measuring point and the borehole wall.

(3) Under the conditions of a relatively regular wellbore and a relatively regular down-
hole movement of drill collars, the matrix of distance between each measuring tool
face and wellbore wall distributed along the axis of drill collars at each measurement
point was obtained.

The multi-sensor combined drill string eccentricity measurement method described in
this paper can collect and analyze the downhole operation characteristics of a drill string
in real time and obtain the specific distance under the conditions of the simple movement
combination of drill collars in a borehole. However, the applicability of the measurement
for high-frequency lateral vibration and complex borehole wall contact relationship needs
further study.
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