Electrical and Electromagnetic Geophysical Prospecting for the Monitoring of Rock Glaciers in the Dolomites, Northeast Italy
Abstract
:1. Introduction
2. Site Description
3. Methods
3.1. Electrical Resistivity Tomography (ERT)
3.2. Frequency Domain Electro-Magnetometry (FDEM)
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janke, J.R.; Regmi, N.R.; Giardino, J.R.; Vitek, J.D. Rock Glaciers. In Treatise on Geomorphology; Elsevier Inc., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 238–273. [Google Scholar] [CrossRef]
- Osterkamp, T.E.; Burn, C.R. Encyclopedia of Atmospheric Sciences; North, G.R., Pyle, J.A., Zhan, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1. [Google Scholar]
- Barsch, D. Nature and importance of mass wasting by rock glaciers in alpine permafrost environments. Earth Surf. Process. 1977, 2, 231–245. [Google Scholar] [CrossRef]
- Barsch, D.; Fierz, H.; Haeberli, W. Shallow core drilling and bore-hole measurements in the permafrost of an active rock glacier near the Grubengletscher, Wallis, Swiss Alps. Arct. Alp. Res. 1979, 11, 215–228. [Google Scholar] [CrossRef]
- Barsch, D. Rock glaciers: Indicators for the Present and Former Geoecology. In High Mountain Environments; Springer: Berlin, Germany, 1996; p. 331. [Google Scholar]
- Haeberli, W. Modern research perspectives relating to permafrost creep and rock glaciers: A discussion. Permafr. Periglac. Process. 2000, 11, 290–293. [Google Scholar] [CrossRef]
- Haeberli, W.; Frauenfelder, R.; Hoelzle, M.; Maisch, M. On rates and acceleration trends of global glacier mass changes. Geogr. Ann. Ser. A-Phys. Geogr. 1999, 81A, 585–591. [Google Scholar] [CrossRef]
- PermaNET. Permafrost Long-Term Monitoring Network. Synthesis Report; Interpraevent Journal Series 1, Report 3; International Research Society INTERPRAEVENT: Klagenfurt, Austria, 2011. [Google Scholar]
- Vonder Mühll, D. Drilling in alpine permafrost. Norsk Geografisk Tidsskrift 1996, 50, 17–24. [Google Scholar] [CrossRef]
- Arenson, L.; Hoelzle, M.; Springman, S. Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafr. Periglac. Process. 2002, 13, 117–135. [Google Scholar] [CrossRef]
- Scapozza, C.; Baron, L.; Lambiel, C. Borehole logging in alpine periglacial talus slopes (Valais, Swiss Alps). Permafr. Periglac. Process. 2015, 26, 67–83. [Google Scholar] [CrossRef] [Green Version]
- PERMOS. Permafrost in Switzerland 2014/2015 to 2017/2018. In Swiss Permafrost Bulletin; Noetzli, J., Pellet, C., Staub, B., Eds.; Cryospheric Commission of the Swiss Academy of Sciences (SCNAT): Zurich, Switzerland, 2019. [Google Scholar]
- Boaga, J.; Phillips, M.; Noetzli, J.; Haberkorn, A.; Kenner, R.; Bast, A. A Comparison of Frequency Domain Electro-Magnetometry, Electrical Resistivity Tomography and Borehole Temperatures to Assess the Presence of Ice in a Rock Glacier. Front. Earth Sci. 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Isaksen, K.; Odegard, R.S.; Eiken, T.; Sollid, J.L. Composition, flow and development of two tongue-shaped rock glaciers in the permafrost of Svalbard. Permafr. Periglac. Process. 2000, 11, 241–257. [Google Scholar] [CrossRef]
- Hauck, C.; Kneisel, C. Application of capacitively-coupled and DC electrical resistivity imaging for mountain permafrost studies. Permafr. Periglac. Process. 2006, 17, 169–177. [Google Scholar] [CrossRef]
- Krautblatter, M.; Hauck, C. Electrical resistivity tomography monitoring of permafrost in solid rock walls. J. Geophys. Res. 2007, 112, F02S20. [Google Scholar] [CrossRef] [Green Version]
- Hilbich, C.; Marescot, L.; Hauck, C.; Loke, M.H.; Mäusbacher, R. Applicability of electrical resistivity tomography monitoring to coarse blocky and ice-rich permafrost landforms. Permafr. Periglac. Process. 2009, 20, 269–284. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.; Daengeli, S.; Hauck, C.; Hoelzle, M. A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at murtel-corvatsch, upper engadin, swiss alps. Geogr. Helv. 2013, 68, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Berthling, I.; Etzelmüller, B.; Isaksen, K.; Sollid, J.L. The rock glaciers on Prins Karls Forland (II): GPR soundings and the development of internal structures. Permafr. Periglac. Process. 2000, 11, 357–369. [Google Scholar] [CrossRef]
- Hauck, C.; Vonder Muhll, D.; Maurer, H. Using DC resistivity tomography to detect and characterize mountain permafrost. Geophys. Prospect. 2003, 51, 273–284. [Google Scholar] [CrossRef]
- Hauck, C.; Vonder Muhll, D. Inversion and interpretation of 2-dimensional geoelectrical measurements for detecting permafrost in mountainous regions. Permafr. Periglac. Process. 2003, 14, 305–318. [Google Scholar] [CrossRef]
- Draebing, D. Application of refraction seismic in alpine permafrost studies: A review. Earth-Sci. Rev. 2016, 155, 136–152. [Google Scholar] [CrossRef]
- Berthling, I.; Etzelmüller, B.; Wale, M.; Sollid, J.L. Use of Ground Penetrating Radar (GPR) soundings for investigating internal structures in rock glaciers. Examples from Prins Karls Forland, Svalbard. Z. Fur Geomorphol. Suppl. 2003, 132, 103–121. [Google Scholar]
- Farbrot, H.; Isaksen, K.; Eiken, T.; Kääb, A.; Sollid, J.L. Composition and internal structures of a rock glacier on the strand flat of western Spitsbergen, Svalbard. Norsk Geografisk Tidsskrift 2005, 59, 139–148. [Google Scholar] [CrossRef]
- Ishikawa, M.; Sharkhuu, N.; Zhang, Y.; Kadota, T.; Ohata, T. Ground thermal and moisture conditions at the southern boundary of discontinuous permafrost, Mongolia. Permafr. Periglac. Process. 2005, 16, 209–216. [Google Scholar] [CrossRef]
- Hilbich, C.; Hauck, C.; Hoelzle, M.; Scherler, M.; Schudel, L.; Völksch, I. Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps. J. Geophys. Res. 2008, 113, F01S90. [Google Scholar] [CrossRef]
- Kneisel, C.; Hauck, C.; Fortier, R.; Moorman, B. Advances in geophysical methods for permafrost investigations. Permafr. Periglac. Process. 2008, 19, 157–178. [Google Scholar] [CrossRef]
- Krautblatter, M.; Verleysdonk, S.; Flores-Orozco, A.; Kemna, A. Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps). J. Geophys. Res. 2010, 115, F02003. [Google Scholar] [CrossRef]
- Hauck, C.; Böttcher, M.; Mauer, H. A new model for estimating subsurface ice content based on combined electrical and seismic data sets. Cryosphere 2011, 5, 453–468. [Google Scholar] [CrossRef] [Green Version]
- Hausmann, H.; Krainer, K.; Brückl, E.; Ullrich, C. Internal structure, ice content and dynamics of Ölgrube and kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian J. Earth Sci. 2012, 105, 12–31. [Google Scholar]
- Mollaret, C.; Hilbich, C.; Pellet, C.; Flores-Orozco, A.; Delaloye, R.; Hauck, C. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere 2019, 13, 2557–2578. [Google Scholar] [CrossRef] [Green Version]
- Kneisel, C.; Beylich, A.A.; Sæmundsson, T. Reconnaissance surveys of contemporary permafrost environments in central Iceland using geoelectrical methods: Implications for permafrost degradation and sediment fluxes. Geogr. Ann. 2007, 89, 41–50. [Google Scholar] [CrossRef]
- Haeberli, W.; Kaab, A.; Muhll, D.V.; Teysseire, P. Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps. J. Glaciol. 2001, 47, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Delaloye, R.; Lambiel, C.; Gärtner-Roer, I. Overview of rock glacier kinematics research in the Swiss Alps: Seasonal rhythm, interannual variations and trends over several decades. Geograph. Helv. 2010, 65, 135–145. [Google Scholar] [CrossRef]
- Isaksen, K.; Ødegård, R.S.; Etzelmüller, B.; Hilbich, C.; Hauck, C.; Farbrot, H. Degrading mountain permafrost in southern Norway: Spatial and temporal variability of mean ground temperatures, 1999–2009. Permafr. Periglac. Process. 2011, 22, 361–377. [Google Scholar] [CrossRef]
- Boeckli, L.; Brenning, A.; Gruber, S.; Noetzli, J. Permafrost distribution in the European Alps: Calculation and evaluation of an index map and summary statistics. Cryosphere 2012, 6, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Krainer, K.; Bressan, D.; Dietre, B.; Haas, J.N.; Hajdas, I.; Lang, K.; Tonidandel, D. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quat. Res. 2015, 83, 324–335. [Google Scholar] [CrossRef]
- Kenner, R.; Phillips, M.; Beutel, J.; Hiller, M.; Limpach, P.; Pointner, E. Factors controlling velocity variations at Short-term, seasonal and multiyear time Scales, ritigraben Rock Glacier, western Swiss Alps. Permafr. Periglac. Process. 2017, 28, 675–684. [Google Scholar] [CrossRef]
- Kenner, R.; Phillips, M.; Hauck, C.; Hilbich, C.; Mulsow, C.; Bühler, Y. New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland. Geomorphology 2017, 290, 101–113. [Google Scholar] [CrossRef]
- Roer, I.; Kääb, A.; Dikau, R. Rock glacier acceleration in the Turtmann valley (Swiss Alps): Probable controls. Norsk Geografisk Tidsskrift 2005, 59, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Jansen, F.; Hergarten, S. Rock glacier dynamics: Stick-slip motion coupled to hydrology. Geophys. Res. Lett. 2006, 33, L10502. [Google Scholar] [CrossRef]
- Krainer, K.; Mussner, L.; Behm, M.; Haussman, H. Multi-disciplinary investigation of an active rock glacier in the Sella Group (Dolomites; Northern Italy). Austrian J. Earth Sci. 2012, 105, 48–62. [Google Scholar]
- Arenson, L.; Jakob, M. Periglacial geohazard risks and ground temperature increases. Eng. Geal. Soc. Territory. 2014, 1, 233–237. [Google Scholar]
- Bodin, X.; Krysiecki, J.M.; Schoeneich, P.; Le Roux, O.; Lorier, L.; Echelard, T. The 2006 collapse of the Bérard Rock Glacier (Southern French Alps). Permafr. Periglac. Process. 2017, 28, 209–223. [Google Scholar] [CrossRef]
- Kääb, A.; Haeberli, W.; Teysseire, P. Entwicklung und Sanierung eines Thermokarstsees am Gruben-Blockgletscher (Wallis). Forschungsberichte Geographisches Institut Universität Freiburg 1996, 8, 145–153. [Google Scholar]
- Haeberli, W. Glaciers and Permafrost-Investigating glacier–permafrost relationships in high-mountain areas: Historical background, selected examples and research needs. In Cryospheric Systems; Harris, C., Murton, J.B., Eds.; Geological Society: London, UK, 2005; pp. 29–37. [Google Scholar]
- Bommer, C.; Phillips, M.; Arenson, L.U. Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafr. Periglac. Process. 2010, 21, 97–104. [Google Scholar] [CrossRef]
- Duvillard, P.A.; Ravanel, L.; Marcer, M.; Schoeneich, P. Recent evolution of damage to infrastructure on permafrost in the French Alps. Reg. Environ. Chang. 2019, 19, 1281–1293. [Google Scholar] [CrossRef]
- PERMOS. Permafrost in Switzerland: 2002/2003 and 2003/2004. In Swiss Permafrost Bulletin; Cryospheric Commission of the Swiss Academy of Sciences (SCNAT): Zurich, Switzerland, 2007. [Google Scholar]
- Hauck, C.; Kneisel, C. Applied Geophysics in Periglacial Environments; Cambridge University Press, Ed.; Cambridge University Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Dafflon, B.; Hubbard, S.S.; Ulrich, C.; Peterson, J.E. Electrical conductivity imaging of active layer and permafrost in an Arctic ecosystem, through advanced inversion of electromagnetic induction data. Vadose Zone J. 2013, 12, vzj2012.0161. [Google Scholar] [CrossRef]
- PermaNET. Permafrost in the Veneto Region: Distribution, analysis of potential environmental effects permanent project. In Alpine Space Programme Report, Regione del Veneto; PermaNET: Venezia, Italy, 2012. [Google Scholar]
- Binley, A. Tools and Techniques: Electrical Methods. In Treatise on Geophysics, 2nd ed.; Schubert, G., Ed.; Elsevier: Oxford, UK, 2015; Volume 11, pp. 233–259. [Google Scholar]
- Binley, A.; Kemna, A. DC resistivity and induced polarization methods. In Hydrogeophysics; Rubin, Y., Hubbard, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 129–156. [Google Scholar] [CrossRef]
- Cassiani, G.; Bruno, V.; Villa, A.; Fusi, N.; Binley, A. A saline trace test monitored via time-lapse surface electrical resistivity tomography. J. Appl. Geophys. 2006, 59, 244–259. [Google Scholar] [CrossRef]
- Blanchy, G.; Saneiyan, S.; Boyd, J.; McLachlan, P.; Binley, A. ResIPy, an intuitive open-source software for complex geoelectrical inversion/modeling. Comput. Geosci. 2020, 137, 104423. [Google Scholar] [CrossRef]
- Koestel, J.; Kemna, A.; Javaux, M.; Binley, A.; Vereecken, H. Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Mwakanyamale, K.; Slater, L.; Binley, A.; Ntarlagiannis, D. Lithologic imaging using complex conductivity: Lessons learned from the Hanford 300 Area. Geophysics 2012, 77, E397–E409. [Google Scholar] [CrossRef]
- Boaga, J. The use of FDEM in Hydrogeophysics. J. Appl. Geophys. 2017, 139, 36–46. [Google Scholar] [CrossRef]
- McLachlan, P.; Blanchy, G.; Binley, A. EMagPy: Open-source standalone software for processing, forward modeling and inversion of electromagnetic induction data. Comput. Geosci. 2021, 146, 104561. [Google Scholar] [CrossRef]
- Mollaret, C.; Wagner, F.M.; Hilbich, C.; Scapozza, C.; Hauck, C. Petrophysical joint inversion applied to alpine permafrost field sites to image subsurface ice, water, air and rock contents. Front. Earth Sci. 2021, 8, 85. [Google Scholar] [CrossRef]
- Corwin, D.L. Past, Present, and Future Trends in Soil Electrical Conductivity Measurements Using Geophysical Methods. Handb. Agric. Geophys. 2008, 17–44. [Google Scholar]
- Sherlock, M.D.; McDonnell, J.J. A New Tool for Hillslope Hydrologists: Spatially Distributed Groundwater Level and Soilwater Content Measured Using Electromagnetic Induction. Hydrol. Process. 2003, 17, 1965–1977. [Google Scholar] [CrossRef]
- Triantafilis, J.; Lesch, S.M. Mapping Clay Content Variation Using Electromagnetic Induction Techniques. Comput. Electron. Agric. 2005, 46, 203–237. [Google Scholar] [CrossRef]
- Boaga, J.; Ghinassi, M.; D’Alpaos, A.; Deidda, G.P.; Rodriguez, G.; Cassiani, G. Geophysical investigations unravel the vestiges of ancient meandering channels and their dynamics in tidal landscapes. Sci. Rep. 2018, 8, 1708. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Pedrera-Parrilla, A.; Vanderlinden, K.; Taguas, E.V.; Gómez, J.A.; Triantafilis, J. Potential to Map Depth-Specific Soil Organic Matter Content across an Olive Grove Using Quasi-2d and Quasi-3d Inversion of DUALEM-21 Data. CATENA 2017, 152, 207–217. [Google Scholar] [CrossRef]
- Boaga, J.; Viezzoli, A.; Cassiani, G.; Deidda, G.P.; Tosi, L.; Silvestri, S. Resolving the thickness of peat deposits with contact-less electromagnetic methods: A case study in the Venice coastland. Sci. Total Environ. 2020, 737, 139361. [Google Scholar] [CrossRef]
- Hoekstra, P.; McNeill, D. Electromagnetic probing of permafrost. In Proceedings of the 2nd International Conference on Permafrost, Yakutsk, Siberia, 12–20 July 1973; pp. 517–526. [Google Scholar]
- Sartorelli, A.N.; French, R.B. Electro-magnetic induction methods for mapping permafrost along northern pipeline corridors. Geophys. Subsea Permafr. 1982, 283–295. [Google Scholar]
- Harada, K.; Wada, K.; Fukuda, M. Permafrost Mapping by Transient Electromagnetic Method. Permafrost Periglac. Process. 2000, 11, 71–84. [Google Scholar] [CrossRef]
- Hauck, C.; Guglielmin, M.; Isaksen, K.; Vonder Mühll, D. Applicability of frequency-domain and time-domain electromagnetic methods for mountain permafrost studies. Permafr. Periglac. Process. 2001, 12, 39–52. [Google Scholar] [CrossRef]
- Minsley, B.J.; Smith, B.D.; Hammack, R.; Sams, J.I.; Veloski, G. Calibration and filtering strategies for frequency domain electromagnetic data. J. Appl. Geophys. 2012, 80, 56–66. [Google Scholar] [CrossRef]
- Andrade, F.C.M.; Fischer, T.; Valenta, J. Study of Errors in Conductivity Meters Using the Low Induction Number Approximation and How to Overcome Them. In Proceedings of the Near Surface Geoscience-22nd European Meeting of Environmental and Engineering Geophysics, Barcelona, Spain, 4–8 September 2016. [Google Scholar]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Simon, F.X.; Sarris, A.; Thiesson, J.; Tabbagh, A. Mapping of quadrature magnetic susceptibility/magnetic viscosity of soils by using multi-frequency EMI. J. Appl. Geophys. 2015, 120, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press, Ed.; Oxford University: Oxford, UK, 1997. [Google Scholar]
- Chambers, J.E. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology 2012, 177–178, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Mussner, L. Die Geologie der Sella-Nordseite (Dolomiten Südtirol) unter besonderer Berücksichtigung der Blockgletscher. Master’s Thesis, University of Innsbruck, Innsbruck, Austria, 2010. [Google Scholar]
- Panissod, C.; Dabas, A.; Jolivet, A.; Tabbagh, A. A novel mobile multipole system (MUCEP) for shallow (0–3m) geoelectrical investigation: The “Vol-de-canards” array. Geophys. Prospect. 1997, 45, 983–1002. [Google Scholar] [CrossRef]
- Olhoeft, G.R. Electrical properties of permafrost. In Proceedings of the 3rd International Conference on Permafrost, Edmonton, Canada, National Research Council of Canada, Ottawa, ON, Canada, 10–13 July 1978; pp. 127–131. [Google Scholar]
- Kneisel, C.; Hauck, C. Multi-method geophysical investigation of an isolated permafrost occurrence. Z. Für Geomorphol. Suppl. 2003, 132, 145–159. [Google Scholar]
- Wagner, F.M.; Mollaret, C.; Günther, T.; Kemna, A.; Hauck, C. Quantitative imaging of water, ice, and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophys. J. Int. 2019, 219, 1866–1875. [Google Scholar] [CrossRef]
- Rücker, C.; Günther, T.; Wagner, F.M. pyGIMLi: An open-source library for modelling and inversion in geophysics. Comput. Geosci. 2017, 109, 06–123. [Google Scholar] [CrossRef]
Instrument | MAE Digital Georesistivimeter |
Power Supply | 60 A–12 V External battery |
Configuration | Dipole–Dipole skip 0 |
Current Injection Time | 250 ms |
Stack Max | 6 |
V Min | 0.001 V |
V Max | 800 V |
Electrodes Number | 48 |
Spacing | 1.5 m |
Array Length | 70.5 m |
Instrument Probe | Coil Spacing | Frequency | Nominal Exploration Depth (HCP–VCP) |
---|---|---|---|
1 | 1.48 m | 10 kHz | 2.2 m–1.1 m |
2 | 2.82 m | 10 kHz | 4.2 m–2.1 m |
3 | 4.49 m | 10 kHz | 6.7 m–3.3 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavoni, M.; Sirch, F.; Boaga, J. Electrical and Electromagnetic Geophysical Prospecting for the Monitoring of Rock Glaciers in the Dolomites, Northeast Italy. Sensors 2021, 21, 1294. https://doi.org/10.3390/s21041294
Pavoni M, Sirch F, Boaga J. Electrical and Electromagnetic Geophysical Prospecting for the Monitoring of Rock Glaciers in the Dolomites, Northeast Italy. Sensors. 2021; 21(4):1294. https://doi.org/10.3390/s21041294
Chicago/Turabian StylePavoni, Mirko, Fabio Sirch, and Jacopo Boaga. 2021. "Electrical and Electromagnetic Geophysical Prospecting for the Monitoring of Rock Glaciers in the Dolomites, Northeast Italy" Sensors 21, no. 4: 1294. https://doi.org/10.3390/s21041294
APA StylePavoni, M., Sirch, F., & Boaga, J. (2021). Electrical and Electromagnetic Geophysical Prospecting for the Monitoring of Rock Glaciers in the Dolomites, Northeast Italy. Sensors, 21(4), 1294. https://doi.org/10.3390/s21041294