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Abstract: Preferential pathways allow rapid and non-uniform water movement in the subsurface
due to strong heterogeneity of texture, composition, and hydraulic properties. Understanding the
importance of preferential pathways is crucial, because they have strong impact on flow and transport
hydrodynamics in the unsaturated zone. Particularly, improving knowledge of the water dynamics is
essential for estimating travel time through soil to quantify hazards for groundwater, assess aquifer
recharge rates, improve agricultural water management, and prevent surface stormflow and flooding
hazards. Small scale field heterogeneities cannot be always captured by the limited number of point
scale measurements collected. In order to overcome these limitations, noninvasive geophysical
techniques have been widely used in the last decade to predict hydrodynamic processes, due to their
capability to spatialize hydrogeophysical properties with high resolution. In the test site located
in Bari, Southern Italy, the geophysical approach, based on electrical resistivity tomography (ERT)
monitoring, has been implemented to detect preferential pathways triggered by an artificial rainfall
event. ERT-derived soil moisture estimations were obtained in order to quantitatively predict the
water storage (m3m−3), water velocity (ms−1), and spread (m2) through preferential pathways by
using spatial moments analysis.

Keywords: preferential flow; time-lapse ERT; moment analysis

1. Introduction

Preferential flow occurs in the vadose zone due to different hydraulic processes,
often associated with obvious flowpaths such as biopores and fractures [1], but also in
supposedly homogeneous media [2]. It usually moves water faster and with greater fluxes
than other flow modes, driven by gravity with little influence of capillarity for a limited
time in response to water input.

Preferential flow has implications for subsurface environmental processes, particularly
on critical zone dynamics. The capability to identify preferential pathways in the subsurface
is fundamental to determining the location and the mass of contaminants, to predict
their migration and promptly prevent the spread in the hydrogeologic system. This
is even more important considering that the critical zone plays a crucial role in several
environmental questions. Specifically, the estimation of travel times of the infiltrated rainfall
in the vadose zone can provide significant improvements in water storage management of
aquifer recharge.

In agricultural water management, the water storage capability as a function of soil
properties is no longer a trivial issue. In fact, in the last few years, precision agriculture
strategy has become widespread based on the gathering, processing, and analysis of tem-
poral and spatial data. The combination of such data with other information can be used to
support management decisions according to estimated variability for improved resource
use efficiency, productivity, quality, profitability, and sustainability of agricultural produc-
tion. Furthermore, the water flow dynamics impact the water runoff with consequences for
surface stormflow and flooding hazards.
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Several mechanisms can trigger preferential flow patterns: (i) funneled flow [3] caused
by heterogeneities of soil or rock hydraulic properties; (ii) fill-and-spill flow [4] along sloped
and irregular subsurface layer; (iii) fingered preferential flow [5], related to heterogeneities
of the moisture state and flux distribution; and (iv) macropore flow through elongated
voids in soil and rock [6]. Understanding these hydrodynamics processes is critical for the
quantification and prediction of PF caused by subsurface heterogeneity and the small scale
at which flow processes take place.

Sensors typically used to measure the soil hydrological properties (time domain reflec-
trometry, time domain transmissometry or capacitive sensors) have only scarcely addressed
preferential flow. An extended application of TDR for preferential flow properties in a
controlled laboratory experiment was described in [7].

However, these sensors have limited applicability to detect preferential pathways at
field-plot and larger scales for several reasons: (a) the small volume of sensitivity, (b) the
invasiveness of the probes into the soil, and (c) the need to cover large areas with a great
number of such sensors placed on the surface and at depth. Furthermore, typical sensors
rely on the correlation to electric and dielectric properties of subsurface materials and,
hence, provide an indirect measurement of the soil moisture.

Based on similar physical principles, noninvasive geophysical techniques have been
widely used in the last decades to provide dynamic as well as static imaging of hydrologi-
cal processes.

Among geophysical techniques, electrical resistivity tomography (ERT) and electro-
magnetic induction (EMI) are particularly suited to image fingered or funneled flow in the
unsaturated zone due to the high sensitivity of the electrical resistivity to the subsurface
soil moisture [8–11]. In several study cases, ERT was used to provide accurate estimations
of soil moisture in hydrological applications [12–18]. Furthermore, ERT data have been
assimilated with other multiple data sources, temperature and moisture content data,
as well as hydraulic parameters to predict subsurface hydrological variables, typically
hydraulic conductivity, and parameters [19–23].

In the test site of the Water Research Institute—National Research Council (IRSA-
CNR), an artificial rainfall was induced in an experimental plot in order to monitor the
activation of the preferential pathways in the soil. During the artificial rainfall event,
time-lapse geophysical measurements have been collected to image the movement of the
infiltrated water in the subsoil. The aim of the test was to see experimental evidence of
preferential flow in the soil and to enhance knowledge about the mechanisms that trigger
preferential pathways. The focus of this study was: (1) to recognize the capability of ERT
to detect preferential pathways; (2) to provide quantitative estimation of the preferential
flow in terms of mass balance and velocities; and (3) to highlight how the preferential
patterns can change over time based on changes in water input, hence variation of the soil
moisture distribution.

2. Materials and Methods
2.1. Study Site

The experimental site is located within IRSA-CNR, Department of Bari (41◦07′ N and
16◦49′ E, 16 m a.s.l.), Southern Italy (Figure 1).

From a geological point of view, a thin layer of soil overlaps sedimentary carbonatic
porous sandstone of marine origin belonging to Quaternary deposits. Below, a thick
Mesozoic sedimentary succession, made up of limestone with frequent intercalations of
dolomitic limestones and grey dolostones, constitutes the main aquifer and includes the
lower part of vadose zone. Moreover, little canyons, locally named “lame”, formed by
erosive activity of ephemeral streams, are filled with upper Pleistocene–Holocene deposits,
made up of carbonate gravels with a reddish fine-grained matrix. In the study area,
accurate stratigraphic details have been provided by five drilling wells widely used in the
past years for hydrogeological tests. The central well with largest diameter is surrounded
by four wells, drilled 10 m apart along the cardinal directions. The soil is a mixture of
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bare and waste soil, making core sampling difficult both for technical reasons and for the
poor representativeness of soil properties of the larger studied area. The thickness of the
soil is about 1 m on average. This information was used to plan the geophysical survey
parameters, including resolution and depth of investigation.
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Figure 1. (a) Geological sketch of the investigated area; (b) stratigraphic column.

2.2. Field Experimental Set Up: The Irrigation System

Several irrigation cycles were performed between 5 December and 15 December 2018.
The rainfall event was simulated by placing on the ground a network of 13 sprinklers
located in an area of 36 m2 to provide a uniform distribution of water droplets in the whole
experimental area (Figure 2). A pipe system connected to the sprinklers provided 2 m3 of
water in five hours, corresponding to an artificial rainfall of about 7 mm h−1.
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2.3. Electrical Resistivity Measurements and Inversion Problem

Noninvasive electrical resistivity measurements are particularly suited to monitoring
the hydrodynamic processes of the subsurface due to the strict analogy between electrical
and hydrological features. Particularly, the electrical resistivity of soil and rocks mainly
depends on fluid flow into the medium through porous space and fractures, in the absence
of significant soil temperature changes. Resistivity measurements are usually performed
by using a four-electrode array, a pair of electrodes used to inject electrical current into the
ground and another pair to measure the potential voltage.

According to the Ohm’s law, the electrical resistance is the ratio between the measured
potential voltage and the injected electric current. The electrical resistivity, i.e., the inverse
of the electrical conductivity, is proportional to the resistance based on a geometrical factor
that depends on the arrangement of the four electrodes [24].

When the subsurface is assumed homogeneous, the observed electrical resistivity is
apparent; however, due to common subsurface heterogeneities, deriving a true subsurface
resistivity model requires solving the inversion problem [25].

The inversion of the data is a numerical procedure that, starting from an initial
resistivity distribution, modifies the model iteratively so that the difference between the
model response and the observed data values is minimized. Collecting the resistivity
measurements in the time-lapse mode, i.e., repeating the measurements over time along
the same profiles, the resistivity variations can be associated to changes of the hydrological
condition of the investigated medium.

2.3.1. Sensitivity Analysis

The sensitivity analysis is a useful tool to obtain an estimate of the reliability of the
planned ERT survey in terms of design array configuration and data acquisition strategies.

The spatial sensitivity distribution is a property of the array configuration and does
not change with the subsurface properties. The sensitivity map shows, given the selected
electrode array, how much a change in resistivity in a block of the model affects the
potential readings. The higher the sensitivity, the more reliable the final resistivity value
of the block. Mathematically, the sensitivity function (known also as Jacobian matrix)
represents the relationship that links the variation of the apparent resistivity data to a
change in the subsurface resistivity [26]. For each quadrupole, the analytical solution of
the Jacobian matrix was calculated for a homogeneous medium. As rule of thumb, blocks
with sensitivities above a 0.01 threshold (1% of the maximum) have to be considered as
significantly influenced by the measurements [27].

In the sensitivity domain, a grid of 48 electrodes, eight along x axis 0.7 m apart and six
along y axis 0.9 m apart, the same grid used at field plot-scale, was set to detect geophysical
features of the investigated soil volume. A combination of 1035 dipole–dipole resistance
measurements with skip 0 (dipoles with minimal distance equal to one electrode spacing)
was used to generate the sensitivity map.

2.3.2. ERT Monitoring

The time-lapse resistivity measurements were collected for three days, from 5 December
to 8 December 2018. Background resistivity was recorded before the starting of the test;
then, more than 80 independent ERT datasets were collected every hour, each of them
made of 1035 dipole–dipole resistivity measurements, the same data sequence generated
in the sensitivity analysis.

The resistivity meter Syscal Pro Switch 48 (Iris Instruments, Orleans, France) was used
to collect field data and, in order to respect the data frequency collection during the whole
monitoring period, ComSys code was used to manage the ERT acquisitions in remote mode.
Each acquisition took about 13 min. Before initiation of each data collection, the resistance
contact between electrodes and soil was recorded to ensure a good flow of the electrical
current into the ground. Transmission parameters (injection pulse duration 250 ms, number
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of stacks for each measurement between 3 and 6, and the maximum standard deviation of
the measurements in a cycle of 5%) were adequately set to collect good quality data.

The first step of the inversion procedure consisted in removing from the whole ERT
dataset the outliers that exceed threshold values of injected current (I < 1 mA) and standard
deviation between measurement cycle stacks of Q > 5%.

From the overall ERT data set, we removed about 4% of the raw data; hence, for each
dataset, the total number of measurements considered for the inversion was 994.

An approach based on the inversion of the resistance ratios measured at different time
points with respect to the background was used to enhance the changes in electrical resis-
tivity over time. This approach tracks small resistivity changes over time and minimizes
the modeling errors and data errors due to imaging artifacts that typically would occur in
a standard inversion.

Moreover, compared to the ratio of the inverted independent ERT images, the inver-
sion of the resistivity ratio is a more refined and robust procedure to highlight the water
movement in the vadose zone [28].

For each quadrupole, the recalculated resistance was:

R =
Rt

R0
Rohm, (1)

where Rt is the resistance measured at t, time, R0 is the background resistance measured
before starting the infiltrometer test, and Rohm is the resistance for a homogeneous medium
chosen to have a uniform resistivity equal to 100 Ωm, calculated by averaging the whole
set of apparent resistivity ratios.

The full three-dimensional inversion of apparent resistivity was performed using
ERTLab3D inversion software, developed by Multi-Phase Technologies (Sparks, NV, USA)
and Geostudi Astier (Livorno, Italy), based on a smoothness-constrained inversion scheme,
which uses a Finite Elements (FEM) approach to model the subsoil.

For each ERT dataset, the initial model was chosen as the median value of the apparent
resistivity measured in the field and was iteratively modified to minimize an objective
function, based on the difference between the model response and the observed data
values. A robust inversion, based on data variance iterative reweighting, was used to
appropriately manage the effect of non-Gaussian noise [29]. The ERTLab code uses a
tetrahedral structured finite element mesh, settled by the user equal to the half of the
inter-electrode spacing in all directions (0.35 m along x-direction, 0.48 m along y-direction,
0.35 m along z-direction) for a total numbers of nodes of the mesh equal to 41,667 nodes
and 37,800 blocks. The convergence was reached after 5–6 iterations.

2.3.3. ERT-Derived Soil Saturation Degree

According to the procedure adopted in [30], a formulation of Archie’s law [31] was
used to convert the inverted resistivity ratios directly into saturation degree

ρ(ti) = ρ(t0)

(
Sw(t0)

Sw(ti)

) n
, (2)

where ρ(t0) and ρ(t1) are the resistivity values of the soil (Ωm) at times t0 and t1, respectively,
and Sw (t0) and Sw (t1) are the saturation degrees (volume of water to the volume of voids)
at times t0 and t1, respectively. This approach allows the simplification of Archie’s equation,
because the “n” saturation index is the only unknown parameter to be calibrated in the
laboratory. The n saturation index was calibrated in the laboratory and set equal to 2. Thus,
the saturation degree or soil moisture ratio can be directly estimated from the inverted
resistivity ratio. The background soil moisture was set to 0.20 m3m−3, the value measured
before the starting of irrigation by sensors installed in the gauge station, located 5 m from
the experimental area. Temperature sensors installed into the soil recorded no significant
temperature changes during the whole monitoring period.



Sensors 2021, 21, 1358 6 of 15

2.4. Moment Analysis

The spatial moments were inferred from ERT data to provide a quantitative estimation
of the preferential flow dynamics in terms of change in water storage, water velocity,
and vertical spread of the mass triggered by a vertical infiltration. Several study cases
concerning the moment analysis for hydrological and geophysical applications have been
already published [32–34].

The basics of the moment analysis is the following equation:

Mijk(t) =
y

Γ

∆θ(x, y, z, t)xiyjzkdxdydz. (3)

The zeroth, first, and second spatial moments correspond to i + j + k = 0, 1, and 2,
respectively.

∆θ is the water content changes based on the resistivity changes estimation inferred
from the time-lapse ERT model, after removing the background water content. Γ is the
volume of interest.

In 2D dimensions, the zeroth moment, M00, is the changes in water mass within the
domain respect to the background and represents the water storage, expressed in m3 m−3.

M00(t) =
x

∆θ(x, z)dxdz. (4)

The first moment, M01 normalized by the mass M00, defines the vertical center of mass
of the plume at a given time, z (Equation (5)).

z =
M01

M00
. (5)

The vertical spread of the mass about its center, σ (m), is related to the second spatial
moment, M02.

σ2
zz =

M02

M00
−

(
M01

M00

)2
. (6)

3. Results
3.1. Sensitivity Model

Figure 3 shows the 3D sensitivity analysis of the global set of measurements for a
homogeneous resistivity model. The value for each block is the sum of the individual
quadrupole sensitivities. The lower limit of the sensitivity map has been set equal to the 1%
with respect to the higher one, in order to evaluate the portion of the investigated domain
mainly influenced by the resistivity measurements.

Excepting some parts of the lower boundaries of the domain, the map shows high
values of the sensitivity and confirms the effectiveness of the adopted experimental scheme
in providing an accurate ERT soil model.

3.2. ERT Monitoring Results

Figure 4b–h shows the most significant inverted ERT ratio images collected during
the whole monitoring period.

The background resistivity, i.e., the resistivity distribution at reference time t0, visu-
alizes a snapshot of the soil condition before the water injection (Figure 4a). The static
resistivity varies from 50 to 400 Ωm, although the main electrical signal is within 250 Ωm.
In terms of textural properties of the soil, the narrow resistivity range can be interpreted
as heterogeneities due to the presence of debris material or different compaction degrees.
The resistivity changes shown in the time-lapse analysis are attributed to the hydrological
variations caused by the water infiltration during the irrigation test. The color scale was
between resistivity ratio of 30 and 100; 100 means that no resistivity changes are observed
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with respect to the background conditions; 30 means that highest changes are observed
due to the water infiltration.
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At time t1, corresponding to 54 min from t0 (Figure 4b), a clear surface discontinuity
is observed over the whole investigated volume at about 0.50 m below ground surface
(bgs). Above this surface, the observed resistivity is decreased to about half the background
condition, while below this surface, no changes are recorded. In terms of hydrological
features, the water infiltrates homogeneously in the upper part of the soil, i.e., above the
discontinuity surface, with a significant decrease (about 50%) of the resistivity distribution.

At time t2, 257 min from t0 (Figure 4c), the discontinuity surface is interrupted in
several parts of the investigated volume (red arrow in the section y = 2.4 m, blue arrow
in the section y = 3.6 m, and green arrow the section y = 4.8 m), showing clear evidence
of preferential flow, probably funneled and fingered flow mode together. The strong
heterogeneity in preferential pathways over very small spatial domain is confirmed at time
t3, 643 min from t0 (Figure 4d), where other patterns are triggered in some portions of
the domain. Particularly, we focus our attention on the reference section y = 2.4 m, which
shows how the preferential water movement is triggered over time at very small spatial
scale, depending on soil heterogeneity and on soil moisture state. In fact, in addition to the
preferential flow observed at time t1 (red arrow in point P3), another preferential pattern
activates in point P1.

Moreover, after the start of the second irrigation cycle (time t4, 1243 min from t0 and
time t5, 1453 min from t0, shown in Figure 4e,f), the time-lapse geophysical monitoring
highlights two main effects: (1) above the surface discontinuity, the significant decreasing
of the electrical resistivity, as depicted by the deep blue color, represents an increase in soil
moisture; (2) below the discontinuity, a decrease in resistivity is recorded in correspondence
to the resistive body at the point P2 (red arrow in the picture), due to the infiltration of
water in that portion of the domain. This trend is observed up to time t6, 1543 min from t0
(Figure 4e–g), causing an attenuation of the preferential flow effect. At time t7, 2113 min
from t0, in correspondence to the point P2, an increase in resistivity due to the drying effect
is observed in the deep layer of the domain.



Sensors 2021, 21, 1358 8 of 15Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 4. Time-lapse ERT results. Times from t0 to t7 are related to: (a) ERT before irrigation (refer-
ence time t0); (b) 54 min from t0; (c) 257 min from t0; (d) 643 min from t0; (e) 1243 min from t0; (f) 
1453 min from t0; (g) 1543 min from t0; (h) 2113 min from t0. 

The background resistivity, i.e., the resistivity distribution at reference time t0, visu-
alizes a snapshot of the soil condition before the water injection (Figure 4a). The static 
resistivity varies from 50 to 400 Ωm, although the main electrical signal is within 250 Ωm. 
In terms of textural properties of the soil, the narrow resistivity range can be interpreted 
as heterogeneities due to the presence of debris material or different compaction degrees. 
The resistivity changes shown in the time-lapse analysis are attributed to the hydrological 
variations caused by the water infiltration during the irrigation test. The color scale was 
between resistivity ratio of 30 and 100; 100 means that no resistivity changes are observed 
with respect to the background conditions; 30 means that highest changes are observed 
due to the water infiltration. 
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This evidence supports the hypothesis of the strong spatial and temporal variability
of the flow dynamics in the vadose zone, strictly related to the hydrological properties of
the soil and to the water input. The trend of funneled and/or fingered flows described
above is shown in Figure 5 where 2D pictures were extracted from 3D resistivity volume
along section y = 2.4 m. The distance between points P1 to P3 is less than 2 m, pointing out
that preferential flow could show unexpected behavior at a very small spatial domain.
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3.3. ERT Derived Soil Moisture Profiles

In order to provide a hydrological meaning to the geophysical images, ERT derived
soil moisture vertical profiles have been obtained by using the simplified Archie’s law
described in (3). Particularly, setting the average porosity of the soil ϕ = 0.4 from laboratory
measurements, the soil moisture profiles were inferred in correspondence to the three
specific points P1, P2, and P3, respectively, shown in Figure 5h. These points are related
to the locations where significant resistivity changes were observed over time, based on
the ERT images. Blue lines are related to the first irrigation cycle, red ones to the second
irrigation cycle.

The soil moisture increases after the start of each irrigation cycle. The increase is steady
but not uniform for the three observation points. Continuous blue and red arrows show
the magnitude of the soil moisture increase at 0.20, 0.5, and 1 m bgs, after the first and the
second irrigation cycles, respectively, while magenta dotted arrow highlights the decrease
after the stop of the second irrigation cycle, corresponding to the end of the geophysical
monitoring (Figure 6).

The graphs clearly demonstrate spatial and temporal variations in water infiltration
caused by soil saturation conditions and the water input. Comparing the two irrigation
effects, the increase in soil moisture is much higher after the first irrigation, due to initial
low soil moisture conditions. The main differences between the three observation points
are recorded below 0.5 m from ground surface. At time t2, 54 min from t0, a marked
increase in soil moisture is observed in P3 (θ = 0.27 m3m−3) at 0.5 m bgs, while in P1 and
P2 the soil is drier (θ = 0.25 m3m−3). This trend is even more enhanced at 1 m in depth.
In fact, at time t3, cyan line corresponding to 643 min after time t0, the water is infiltrating
in P1 (θ = 0.23 m3m−3) and in P3 (θ = 0.24 m3m−3), while no infiltration is recorded in P2
(θ = 0.2 m3m−3). After the start of the second irrigation cycle, the water also infiltrates in
the deep layers in correspondence to the point P2 (θ = 0.21–0.22 m3m−3 at 1 m bgs), with
more distributed water in the overall domain, which causes the preferential flow to stop.
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At the end of the monitoring (time t7, 2113 min from t0), a decrease in soil moisture,
due to the drying effect, is observed in correspondence with the stop of the second irrigation
cycle. Similarly, the soil desaturates in different ways, with more marked changes in soil
moisture in P2 and P3. Particularly, in point P2, the soil moisture reaches minimum values
(θ = 0.21 m3m−3 at 1 m bgs) comparable with those observed before the irrigation test,
highlighting a rapid desaturation process.
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This peculiarity confirms the trend observed in the ERT images (Figures 4h and 5h),
highlighting the capability of the presented approach to capture details in preferential flow
activation/break and in the rate of the flow dynamics.

3.4. Moment Analysis Results

2D spatial moment analysis was calculated along three sub-plots of the section
y = 2.4 m centered in points P1, P2, and P3, where different preferential pathways were
observed at very small distances. The water storage, the location of the mass center, and
vertical spread of infiltrated water inferred from time-lapse ERT models were estimated
using Equations (4)–(6), respectively, as plotted in Figures 7–9.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

at time t3, cyan line corresponding to 643 min after time t0, the water is infiltrating in P1 
(θ = 0.23 m3m−3) and in P3 (θ = 0.24 m3m−3), while no infiltration is recorded in P2 (θ = 0.2 
m3m−3). After the start of the second irrigation cycle, the water also infiltrates in the deep 
layers in correspondence to the point P2 (θ = 0.21–0.22 m3m−3 at 1 m bgs), with more dis-
tributed water in the overall domain, which causes the preferential flow to stop. 

At the end of the monitoring (time t7, 2113 min from t0), a decrease in soil moisture, 
due to the drying effect, is observed in correspondence with the stop of the second irriga-
tion cycle. Similarly, the soil desaturates in different ways, with more marked changes in 
soil moisture in P2 and P3. Particularly, in point P2, the soil moisture reaches minimum 
values (θ = 0.21 m3m−3 at 1 m bgs) comparable with those observed before the irrigation 
test, highlighting a rapid desaturation process. 

This peculiarity confirms the trend observed in the ERT images (Figures 4h and 5h), 
highlighting the capability of the presented approach to capture details in preferential 
flow activation/break and in the rate of the flow dynamics. 

3.4. Moment Analysis Results 
2D spatial moment analysis was calculated along three sub-plots of the section y = 2.4 

m centered in points P1, P2, and P3, where different preferential pathways were observed 
at very small distances. The water storage, the location of the mass center, and vertical 
spread of infiltrated water inferred from time-lapse ERT models were estimated using 
Equations (4)–(6), respectively, as plotted in Figures 7–9. 

 
Figure 7. Water storage estimated in the three sub-plots through zeroth moment M00. Figure 7. Water storage estimated in the three sub-plots through zeroth moment M00.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 8. Depth of the mass center reached in the three sub-plots after two irrigation cycles. 

 
Figure 9. Vertical spread for the three sub-plots obtained in the whole ERT monitoring period. 

Figure 7 highlights the different estimated water storage that moves in the three sub-
plots. In correspondence of the start of the two irrigation cycles, the increase in soil mois-
ture, which leads to an increase of water storage, can be seen. The slight delay time of the 
peak observed in sub-plot P1 can be related to the temporal resolution of the ERT acqui-
sitions. In sub-plot P3, the water storage, corresponding to the area below the curve, is 
significantly higher compared with that observed in sub-plots 2 and 3, indicating that the 
water infiltrated differently, despite the small distance between the sub-plots analyzed. 

Figure 8 shows the center of mass vertical motion, computed from ERT images. 
After the first injection, the slope of the three lines highlights how the mass center of 

the infiltrated water moved downward with different velocities. 
In fact, along sub-plot P3 (green line corresponding to the location x = 3.1), after the 

stop of the first irrigation, i.e., 433 min from t0, the mass center deepens up to 0.40 m from 
bgs much more than for sub-plot P1 (0.31 m from bgs) and sub-plot P2 (0.28 m from bgs). 

Figure 8. Depth of the mass center reached in the three sub-plots after two irrigation cycles.



Sensors 2021, 21, 1358 12 of 15

Sensors 2021, 21, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 8. Depth of the mass center reached in the three sub-plots after two irrigation cycles. 

 
Figure 9. Vertical spread for the three sub-plots obtained in the whole ERT monitoring period. 

Figure 7 highlights the different estimated water storage that moves in the three sub-
plots. In correspondence of the start of the two irrigation cycles, the increase in soil mois-
ture, which leads to an increase of water storage, can be seen. The slight delay time of the 
peak observed in sub-plot P1 can be related to the temporal resolution of the ERT acqui-
sitions. In sub-plot P3, the water storage, corresponding to the area below the curve, is 
significantly higher compared with that observed in sub-plots 2 and 3, indicating that the 
water infiltrated differently, despite the small distance between the sub-plots analyzed. 

Figure 8 shows the center of mass vertical motion, computed from ERT images. 
After the first injection, the slope of the three lines highlights how the mass center of 

the infiltrated water moved downward with different velocities. 
In fact, along sub-plot P3 (green line corresponding to the location x = 3.1), after the 

stop of the first irrigation, i.e., 433 min from t0, the mass center deepens up to 0.40 m from 
bgs much more than for sub-plot P1 (0.31 m from bgs) and sub-plot P2 (0.28 m from bgs). 

Figure 9. Vertical spread for the three sub-plots obtained in the whole ERT monitoring period.

Figure 7 highlights the different estimated water storage that moves in the three
sub-plots. In correspondence of the start of the two irrigation cycles, the increase in soil
moisture, which leads to an increase of water storage, can be seen. The slight delay time
of the peak observed in sub-plot P1 can be related to the temporal resolution of the ERT
acquisitions. In sub-plot P3, the water storage, corresponding to the area below the curve,
is significantly higher compared with that observed in sub-plots 2 and 3, indicating that
the water infiltrated differently, despite the small distance between the sub-plots analyzed.

Figure 8 shows the center of mass vertical motion, computed from ERT images.
After the first injection, the slope of the three lines highlights how the mass center of

the infiltrated water moved downward with different velocities.
In fact, along sub-plot P3 (green line corresponding to the location x = 3.1), after the

stop of the first irrigation, i.e., 433 min from t0, the mass center deepens up to 0.40 m from
bgs much more than for sub-plot P1 (0.31 m from bgs) and sub-plot P2 (0.28 m from bgs).
In sub-plot P3, the estimated velocity is about 0.029 ms−1, twice with respect to the sub-plot
P1 and more than twice with respect to the sub-plot P2.

The second irrigation cycle highlights the water movement dependence from the
starting soil water content conditions. In fact, the depth of the mass center deepens much
more in sub-plot P2, where the soil moisture was lower than in sub-plots P1 and P3.
Consequently, the infiltration rate in correspondence to the sub-plot P2 is three times higher
compared with those estimated in sub-plots P1 and P3.

The vertical spread of injected water is plotted in Figure 9. The graph shows an
increase in vertical spread over the experiment as water migrates downward. After the
first injection, the spread is significantly higher in sub-plot P3 compared with the sub-plots
P1 and P2, while the second injection causes an increase of the spread in sub-plot P2,
confirming the trend of the first and second moment.

4. Discussion and Conclusions

The comprehension of water flow dynamics requires a basic support of innovative,
feasible, and low-cost approaches. This is even more important when the flow processes
lead to preferential patterns due to the great heterogeneity of the vadose flow and nonlin-
earities of their properties and processes. In addition, the variable hydrological properties
at the soil–rock interface, the moisture conditions changing over time, and the character of
the weather events contribute to the complexity of such phenomena.
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The preferential flow can be funneled, caused by heterogeneities of soil or rock hy-
draulic properties, and fingered, related to heterogeneities of the moisture state and flux
distribution, macropore flow, or a combination of such modes. Preferential flow phenom-
ena are fast, unpredictable and strongly variable over time and, for this reason, they are
difficult to study. In this context, the geophysical measurements have proved to be a
promising tool for the monitoring of the hydrological processes, where point scale sensors
(TDR, TDT, capacitance sensors, etc.) typically used for several applications are inadequate
to capture the strong field scale heterogeneities. Unlike any other method, geophysics are
able to image the subsurface directly, and they can help to identify the best locations for
direct monitoring equipment if resources are limited. Their capability to spatialize physical
properties, strictly related to the hydrological variables, can fill in the knowledge gap and
overcome the lack of detailed information on the processes that occur in the vadose zone.

In fact, the geophysical tool can provide answers to the main problems involving
preferential flow patterns. It can be helpful to identify where preferential pathways are
triggered, how they relate with soil moisture conditions, how the flow spreads, and how
fast these dynamics evolve. This information could have relevant practical implications on
the prevention and prediction of the impact of natural or human-induced events, where a
clear understanding of preferential flow processes and accurate input data are necessary
to build robust and reliable models. In light of these considerations, this approach can be
used as a powerful resource in the service of the main environmental issues, such as risk
prevention and water resource management.

In fact, damage and disaster risks caused by oil spills, contaminant spread, and
infiltration of toxics from the surface, which dangerously propagate in the vadose zone
towards the aquifer, require detailed knowledge of these dynamics. At the same time,
in the context of climate change mitigation and adaptation, several actions adopted in
stressed or water scarce conditions, such as the use of unconventional wastewater in
agriculture or water storage in the managed aquifer recharge systems, need real-time
monitoring of the flow dynamic in order to evaluate the impact of these actions on the
critical zone ecosystems.

In this study, during an experiment of artificial rainfall, the infiltration dynamics
within the vadose zone were observed through time-lapse geophysical survey. The geo-
physical analysis produced evidence of preferential flow within very small scale in the
spatial domain. Evidence of these patterns descend from different data processing, both
qualitatively by visualizing changes in geophysical images over space and time, and quan-
titatively, from vertical soil moisture profiles and moment analysis, although deriving from
a non-direct approach.

Particularly, the capability for predicting water storage and water velocity with high
resolution in the 4D space–time dimensions was effective to enhance knowledge about the
mechanisms that trigger preferential pathways. In this regard, the soil moisture distribution
plays a crucial role for activation of the flow patterns rather than water flow rate that
infiltrates into the soil. In fact, by considering that the two irrigation cycles had the same
flow rate (2 m3) and assuming a homogeneous background soil moisture condition, the
hydrological response shows a clear dependence on the soil moisture variations over time.
Preferential flow is triggered in some points of the domain faster and more intensely,
while in other points, it is activated when a threshold of soil moisture is overcome and
preferential flow stops rapidly when the soil moisture decreases.

The results of the proposed study point out that time-lapse geophysical ERT surveys
can be routinely adopted as a powerful investigative tool for a better comprehension of the
flow and transport processes in the vadose zone. It is a low cost and effective solution to
track preferential flow over large areas better than the conventional measurement systems
currently used, by providing qualitative imaging of the flow dynamic and quantitative
estimations of the variable water storage, velocity, and spread.
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