The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement
Abstract
:1. Introduction
2. Experimental
2.1. Reagents
2.2. Membranes’ Preparation and Evaluation
2.3. Kinetic Studies
3. Results and Discussion
3.1. Kinetic and Spectroscopic Studies on the Aggregation of Co(II)-5-[4-(3-Tris-Methylammonium) Propyloxyphenyl]-10,15,20-Triphenyl-Porphyrin Chloride in Solution
3.2. Spectroscopic Tests and Anionic Sensitivity of Co(II)-5-[4-(3-Trimethylammonium)-Propyloxyphenyl]-10,15,20-Triphenyl-Porphyrin Chloride-Based Membranes
3.3. The Potentiometric Properties of the CoTPP-N Membranes with Lipophilic Sites and Membranes’ Sensitivity Simulation
3.4. Incorporation of Co(II)- 5-[4-(3-Trimethylammonium)Propyloxyphenyl]-10,15,20-Triphenyl-Porphyrin Chloride as a Cation Exchanger in Membranes Based on CoTPP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lvova, L.; Di Natale, C.; Paolesse, R. Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase. Sens. Actuators B Chem. 2013, 179, 21–31. [Google Scholar] [CrossRef]
- Biesaga, M.; Pyrzyńska, K.; Trojanowicz, M. Porphyrins in analytical chemistry. Talanta 2000, 51, 209–240. [Google Scholar] [CrossRef]
- Górski, Ł.; Malinowska, E.; Parzuchowski, P.; Zhang, W.; Meyerhoff, M.E. Recognition of anions using metalloporphyrin-based ion-selective membranes: State-of-the-art. Electroanalysis 2003, 15, 1229. [Google Scholar]
- Yim, H.; Kibbey, C.E.; Ma, S.; Kliza, D.M.; Lu, D.; Park, S.B.; Espadas-Torre, C.; Meyerhoff, M.E. Polymer membrane-based ion-, gas- and bio-selective potentiometric sensors. Biosens. Bioelectron. 1993, 8, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Steinle, E.D.; Amemiya, S.; Bühlmann, P.; Meyerhoff, M.E. Origin of non-nernstian anion response slopes of metalloporphyrin-based liquid/polymer membrane electrodes. Anal. Chem. 2000, 72, 5766–5773. [Google Scholar] [CrossRef]
- Park, S.B.; Matuszewski, W.; Meyerhoff, M.E.; Liu, Y.H.; Kadish, K.M. Potentiometric anion selectivities of polymer membranes doped with indium(III)-porphyrins. Electroanalysis 1991, 3, 909–916. [Google Scholar] [CrossRef]
- Mitchell-Koch, J.T.; Pietrzak, M.; Malinowska, E.; Meyerhoff, M.E. Aluminum(III) porphyrins as ionophores for fluoride selective polymeric membrane electrodes. Electroanalysis 2006, 18, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Shin, J.H.; Paeng, I.R.; Nam, H.; Cha, G.S.; Paeng, K.J. Potentiometric behavior of metalloporphyrin-based ion-selective electrodes: Use of silicone rubber matrix for serum chloride analysis. Anal. Chim. Acta. 1998, 367, 175–181. [Google Scholar] [CrossRef]
- Malinowska, E.; Niedziółka, J.; Meyerhoff, M.E. Potentiometric and spectroscopic characterization of anion selective electrodes based on metal(III) porphyrin ionophores in polyurethane membranes. Anal. Chim. Acta. 2001, 432, 67–78. [Google Scholar] [CrossRef]
- Górski, Ł.; Malinowska, E. Fluoride-selective sensors based on polyurethane membranes doped with Zr (IV)-porphyrins. Anal. Chim. Acta. 2005, 540, 159–165. [Google Scholar]
- Holmes-Smith, A.S.; Hamill, A.; Campbell, M.; Uttamlal, M. Electropolymerised platinum porphyrin polymers for dissolved oxygen sensing. Analyst 1999, 124, 1463–1466. [Google Scholar] [CrossRef]
- Lvova, L.; Paolesse, R.; Di Natale, C.; D’Amico, A.; Bergamini, A. Potentiometric polymeric film sensors based on 5,10,15-tris(4-aminophenyl) porphyrinates of Co(II) and Cu(II) for analysis of biological liquids. Int. J. Electrochem. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lvova, L.; Mastroianni, M.; Di Natale, C.; Lundström, I.; Paolesse, R. Towards hyphenated sensors development: design and application of porphyrin electropolymer materials. Electroanalysis 2012, 24, 776–789. [Google Scholar] [CrossRef]
- Lvova, L.; Yaroshenko, I.; Kirsanov, D.; Di Natale, C.; Paolesse, R.; Legin, A. Electronic tongue for brand uniformity control: a case study of apulian red wines recognition and defects evaluation. Sensors 2018, 18, 2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, K.C.; Kim, K.A.; Paeng, I.R.; Baek, D.; Paeng, K.J. Anion-selective membrane electrodes based on polymer-supported metalloporphyrins. J. Electroanal. Chem. 1999, 468, 98–103. [Google Scholar] [CrossRef]
- Volf, R.; Shishkanova, T.V.; Matejka, P.; Hamplova, M.; Kral, V. Potentiometric anion response of poly(5,15-bis(2-aminophenyl)porphyrin) electropolymerized electrodes. Anal. Chim. Acta 1999, 381, 197–205. [Google Scholar] [CrossRef]
- Blair, T.L.; Allen, J.R.; Daunert, S.; Bachas, L.G. Potentiometric and fiber optic sensors for pH based on an electropolymerized cobalt porphyrin. Anal. Chem. 1993, 65, 2155–2158. [Google Scholar] [CrossRef]
- Qin, Y.; Bakker, E. Elimination of dimer formation in In(III)Porphyrin-based anion-selective membranes by covalent attachment of the ionophore. Anal. Chem. 2004, 76, 4379–4386. [Google Scholar] [CrossRef]
- Wang, L.; Meyerhoff, M.E. Polymethacrylate polymers with appended aluminum(III)-tetraphenylporphyrins: Synthesis, characterizationand evaluation as macromolecular ionophores for electrochemical and optical fluoride sensors. Anal. Chim. Acta. 2008, 611, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.S.M.; Eldin, A.G.; Amr, A.E.-G.E.; Al-Omar, M.A.; Kamel, A.H. Single-walled carbon nanotubes (SWCNTs) as solid-contact in all-solid-state perchlorate ISEs: applications to fireworks and propellants analysis. Sensors 2019, 19, 2697. [Google Scholar] [CrossRef] [Green Version]
- Siwiec, K.; Górski, Ł. The application of germanium(IV)-porphyrins as fluoride-selective ionophores for polymeric membrane electrodes. J. Electroanal. Chem. 2019, 833, 498–504. [Google Scholar] [CrossRef]
- Lvova, L.; Verrelli, G.; Stefanelli, M.; Nardis, S.; Di Natale, C.; Amico, A.D.; Makarychev-Mikhailov, S.; Paolesse, R. Platinum porphyrins as ionophores in polymeric membrane electrodes. Analyst 2011, 136, 4966–4976. [Google Scholar] [CrossRef]
- Vlascici, D.; Plesu, N.; Fagadar-Cosma, G.; Lascu, A.; Petric, M.; Crisan, M.; Belean, A.; Fagadar-Cosma, E. Potentiometric sensors for lodide and bromide based on Pt(II)-porphyrin. Sensors 2018, 18, 2297. [Google Scholar] [CrossRef] [Green Version]
- Lvova, L.; Monti, D.; Pomarico, G.; Di Natale, C.; D’Amico, A.; Paolesse, R. Dual-mode chemical sensors based on metallo- porphyrin aggregation. In Proceedings of the Matrafured 2008 Conference on Chemical Sensors, Dobogókö, Hungary, 5–10 October 2008. [Google Scholar]
- Monti, D.; Venanzi, M.; Russo, M.; Bussetti, G.; Goletti, C.; Montalti, M.; Zaccheroni, N.; Prodi, L.; Rella, R.; Manera, M.G.; et al. Spontaneous deposition of amphiphilic porphyrin films on glassElectronic supplementary information (ESI) available: detailed kinetic studies and procedures, and aggregation studies on 1H2 and 2H2. New J. Chem. 2004, 28, 1123–1128. [Google Scholar] [CrossRef]
- Lvova, L.; Monti, D.; Di Natale, C.; Paolesse, R. Anion-exchanger side-substituted metalloporphyrin ionophores: systematic anionic selectivity tailoring. In Proceedings of the ICPP9, Nanjing, China, 2–8 July 2016. [Google Scholar]
- Smith, K.M. Porphyrins and Metallo-Porphyrins; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Malinowska, E.; Meyerhoff, M.E. Role of axial ligation on potentiometric response of Co (III) tetraphenylporphyrin-doped polymeric membranes to nitrite ions. Anal. Chim. Acta. 1995, 300, 33–43. [Google Scholar] [CrossRef]
- Stepanek, P.; Dukh, M.; Saman, D.; Moravcova, J.; Kniezo, L.; Monti, D.; Venanzi, M.; Mancini, G.; Drasar, P. Synthesis and solvent driven self-aggregation studies of meso-“C-glycoside”-porphyrin derivatives. Org. Biomol. Chem. 2007, 5, 960–970. [Google Scholar] [CrossRef]
- Stefanelli, M.; Monti, D.; Venanzi, M.; Paolesse, R. Kinetic and spectroscopic studies on the self-aggregation of a meso-substituted amphiphilic corrole derivative. New J. Chem. 2007, 31, 1722–1725. [Google Scholar] [CrossRef]
- Bakker, E.; Malinowska, E.; Schiller, R.D.; Meyerhoff, M.E. Anion-selective membrane electrodes based on metalloporphyrins: The influence of lipophilic anionic and cationic sites on potentiometric selectivity. Talanta 1994, 41, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Lvova, L.; Di Natale, C.; D’Amico, A.; Paolesse, R. Corrole-based ion-selective electrodes. J. Porphyrins Phthalocyanines 2009, 13, 1168–1178. [Google Scholar] [CrossRef]
Membrane N | Ionophore, 1 wt.% | Additive, mol % | |
---|---|---|---|
TDMA+ | TpClPB- | ||
1 | CoTPP-N | - | - |
2 | CoTPP-N | 20% | - |
3 | CoTPP-N | - | 20% |
4 | CoTPP-N | - | 80% |
5 | CoTPP | 20% | |
6 | CoTPP | CoTPPN, 20% | - |
7 | CoTPP | CoTPPN, 70% | - |
8 | - | TDMACl, 10 wt.% | - |
Entry | [TBANO2], M | kapp, min−1 | n |
---|---|---|---|
1 | 1.0 × 10−5 | 2.6 × 10−4 | 0.83 |
2 | 5.0 × 10−5 | 2.2 × 10−3 | 0.99 |
3 | 1.0 × 10−4 | 3.4 × 10−3 | 0.91 |
4 | 5.0 × 10−4 | 3.9 × 10−3 | 0.96 |
Membrance Composition | Schematic Presentation | Possible Interactions | |
---|---|---|---|
Case 1: MeTTP ionophore+ 20 mol% ion exchanger | |||
Case 2: MeTTP-N ionophore | |||
Case 3: MeTTP ionophore + 20 mol% MeTTP-N ion exchanger | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lvova, L.; Monti, D.; Natale, C.D.; Paolesse, R. The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement. Sensors 2021, 21, 1401. https://doi.org/10.3390/s21041401
Lvova L, Monti D, Natale CD, Paolesse R. The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement. Sensors. 2021; 21(4):1401. https://doi.org/10.3390/s21041401
Chicago/Turabian StyleLvova, Larisa, Donato Monti, Corrado Di Natale, and Roberto Paolesse. 2021. "The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement" Sensors 21, no. 4: 1401. https://doi.org/10.3390/s21041401
APA StyleLvova, L., Monti, D., Natale, C. D., & Paolesse, R. (2021). The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement. Sensors, 21(4), 1401. https://doi.org/10.3390/s21041401