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Abstract: Phenology is an indicator of crop growth conditions, and is correlated with crop yields.
In this study, a phenological approach based on a remote sensing vegetation index was explored to
predict the yield in 314 counties within the US Corn Belt, divided into semi-arid and non-semi-arid
regions. The Moderate Resolution Imaging Spectroradiometer (MODIS) data product MOD09Q1
was used to calculate the normalized difference vegetation index (NDVI) time series. According
to the NDVI time series, we divided the corn growing season into four growth phases, calculated
phenological information metrics (duration and rate) for each growth phase, and obtained the
maximum correlation NDVI (Max-R2). Duration and rate represent crop growth days and rate,
respectively. Max-R2 is the NDVI value with the most significant correlation with corn yield in the
NDVI time series. We built three groups of yield regression models, including univariate models
using phenological metrics and Max-R2, and multivariate models using phenological metrics, and
multivariate models using phenological metrics combined with Max-R2 in the whole, semi-arid, and
non-semi-arid regions, respectively, and compared the performance of these models. The results
show that most phenological metrics had a statistically significant (p < 0.05) relationship with corn
yield (maximum R2 = 0.44). Models established with phenological metrics realized yield prediction
before harvest in the three regions with R2 = 0.64, 0.67, and 0.72. Compared with the univariate
Max-R2 models, the accuracy of models built with Max-R2 and phenology metrics improved. Thus,
the phenology metrics obtained from MODIS-NDVI accurately reflect the corn characteristics and can
be used for large-scale yield prediction. Overall, this study showed that phenology metrics derived
from remote sensing vegetation indexes could be used as crop yield prediction variables and provide
a reference for data organization and yield prediction with physical crop significance.

Keywords: yield prediction; corn; MODIS; NDVI time series; crop phenology; growth phase length;
growth rate

1. Introduction

Timely and accurate predictions of crop yield before harvest at a large scale is critical
for food security and administrative planning, especially in the current continually chang-
ing global environment and international situation [1]. At the same time, early-season crop
yield predictions are also often required as essential information for decision making in the
harvest, processing, storage, transportation, and marketing of agricultural commodities [2].

After decades of research, crop yield prediction methods can be summarized in two
groups, i.e., empirical models and process-based models [3]. Empirical models determine
the relationship between the prediction parameters and yield and process-based models
simulate the growth process of the crop. The latter requires many calibration parameters,
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which are relatively difficult to obtain. Empirical models are more commonly used in
large-scale yield prediction and mainly employed two parameters: environmental and
remote sensing variables [4]. The former includes the four most important variables:
soil productivity, accessibility of water, climate, and pests or diseases [5]. The rapid
development of remote sensing technology has produced more remote sensing variables
to serve crop yield prediction, which can be further divided into two types: a variable to
monitor crop growth, such as vegetation indices (VIs) and photosynthetic activities [6–9],
and the other variable to describe living conditions, such as heat stress [10,11] and water
stress [12,13].

Recently, some studies have employed remote sensing derived phenological variables
to predict crop yields [14,15]. These phenological variables are phenological period date
information and belong to the variables that monitor crop growth. The date information
assesses whether every phenological stage occurs during a period of favorable weather
conditions [16] and how an accelerated or delayed phenological stage will affect crop
growth conditions, especially when the current climate changes drastically [17]. For
example, dates of anthesis, lengths of vegetative and reproductive growth periods, and the
growing season can reflect climate change influences [18]. The plant breeding community
also has a keen interest in developing crops that “stay-green” for longer, increasing the
duration of grain-fill and decreasing senescence rate [19–21].

The phenological period date information provides practical support for the develop-
ment of remote sensing in crop yield prediction. Many models predict crop yield based
on remote sensing variables within a fixed timescale [3,4,22–24], such as the month. The
representation of crop phenological date information is simplified in these models, such
that understanding the yield variations is critical because crop growth characteristics and
sensitivities toward different environmental events vary with changes in the growth phases
(GPs) defined by phenological dates. This condition leads to spatial-temporal heterogene-
ity between the yield prediction variables. Experiments have shown that phenological
dynamic information can solve this heterogeneity issue and improve the yield prediction
or estimation accuracy [25,26]. For example, the accumulative leaf area index (LAI) in a
specific GP had the highest correlation with the regional crop yield [27], and the time series
index, combined with phenological date information, can effectively improve the yield
prediction accuracy [28,29].

In addition to the phenological date, one piece of essential phenological information
is GP duration [30]. Bai et al. [31] noted that the phase duration could be combined with
remote-sensing-based parameters to improve crop yield prediction. The GPs in their study
were divided by the effective accumulated temperature. Other than the effective accumu-
lated temperature, the Normalized Difference Vegetation Index (NDVI) is widely used for
monitoring crop growth conditions and is an effective way to extract phenology [32–35].
Magney et al. [36] used ground-based sensors to collect NDVI readings to divide GPs and
calculate crop phenological information (the NDVI rate at different GPs and the duration
of different GPs) at the field level; the results of their study indicated that NDVI rate and
GP duration were good predictors for crop yield. NDVI rate represents the crop growth
rate. The crop growth conditions can be reflected under the comprehensive effect of the
external environment and crop characteristics by combining the growth duration and rate.
Field observation data is a first-hand source of accurate and reliable information for crop
phenology research. However, field observation experiments usually require substantial
manpower, financial resources, material resources, and time. Therefore, field observations
are not suitable as a method to obtain data for long-term and large-scale crop phenology.

Satellite remote sensing technology can effectively obtain long-term and large-scale
phenological information. Although the technology has certain limitations, such as surface
information accuracy (i.e., mixed pixel) and inherent complexity (i.e., cloud contamination
and atmospheric variability), it lowers the cost of large-scale crop monitoring and possesses
substantial potential for detecting crop regional phenology patterns through the VI time
series [25,37,38]. For example, most remote-sensing-based studies have employed the data
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from the National Aeronautics and Space Administration’s (NASA) Moderate Resolution
Imaging Spectroradiometer (MODIS) [39–41]. The spatial resolutions (250-m, 500-m, and
1000-m) are suitable for monitoring different scales from the county-level to the global scale,
and the temporal resolutions (8- and 16-day) allow for continuous and in near-real-time
monitoring within the whole growing season. Thus, the satellite remote sensing data is
suitable to derive phenological metrics (duration and rate). It is also worth investigating
the further application of phenological metrics in predicting yield at a large-scale.

The overall goal of this study was to predict corn yield using phenological information
metrics extracted from the MODIS-NDVI time series. The specific objectives were to:
(i) analyze the relationship between phenological metrics derived from satellite remote
sensing VI and the yield, (ii) evaluate the capacity of phenological metrics to predict large-
scale corn yield, and (iii) test the ability of the combined phenological metrics and other
parameters derived from remote sensing for the prediction of corn yields.

2. Materials and Methods
2.1. Study Region

The study focused on agricultural counties in six states within the central US Corn
Belt, including Illinois, Indiana, Iowa, Nebraska, Wisconsin, and North Dakota. There
are a total of 314 counties in which the corn area exceeds 10,000 ha [28], and the mean
field size in the US is 19.3 ha [42]. To account for the impact of geographical conditions
on crop phenological metrics, the central US Corn Belt was divided into semi-arid and
non-semi-arid regions according to the geographic variation in climate, topography, and
edaphic conditions (Figure 1).

Figure 1. Spatial distribution of selected counties, which are divided into semi-arid and non-semi-
arid regions.

2.2. Data

MODIS 250-m and 8-day composite reflectance product data (MOD09Q1, version 6)
for 2008–2018 were acquired from the National Aeronautics and Space Administration
(NASA) Reverb (http://reverb.echo.nasa.gov/ (accessed on December 29, 2019)). There

http://reverb.echo.nasa.gov/
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were 46 reflectance composites each year. Three MODIS tiles (h10v04, h11v04, and h11v05)
were used to cover all counties fully and were re-projected using the MODIS re-projection
tool (MRT) to the UTM (Universal Transverse Mercator) system. The 250-m and 8-day
reflectance product allows for the calculation of VIs with a higher temporal resolution than
that of the standard VI product (MOD13Q1) at 250-m and 16-day.

The county-level corn yields from 2008 to 2018 were obtained from the United States
Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) (https:
//quickstats.nass.usda.gov/ (accessed on 21 April 2019)). The yield estimation unit was
converted from bushels acre−1 to kg ha−1. As some counties lack individual annual yield
data, the total number of yield samples was n = 3,320 for the whole region, 460 for the
semi-arid region, and 2,860 for the non-semi-arid region. The corn-planting map data were
extracted from the 30-m resolution Cropland Data Layer (CDL, http://nassgeodata.gmu.
edu/CropScape/ (accessed on 21 April 2019)) from 2008 to 2018, re-projected to match the
geographic projection of the MODIS data, and finally used to distinguish pixels dominated
by corn from those dominated by other land cover types.

2.3. Yield Modeling Approach

Our general approach includes four main steps (Figure 2):

(1) Acquire pixel-based NDVI time series

We used band1 (red, 620–670 nm) and band2 (near-infrared, 841–876 nm) from
MOD09Q1 to calculate the NDVI. The MODIS data were processed by an 8-day maximum
value composite (MVC), which is less sensitive to clouds and other outliers. However, there
are still many random factors that render the NDVI time series data irregular [43]. Thus,
the NDVI time series data must be further smoothed to reduce the effects of noise and
missing values before extracting the phenological crop characteristics. Popular smoothing
methods include the Savitzky–Golay (SG), Double-logistic, and Whittaker Smoother. Previ-
ous studies suggested that the SG algorithm can better characterize the temporal signals of
corn [44,45]; therefore, we used the SG filter to generate a smooth time series of NDVI on a
pixel-by-pixel basis.

Many methods have been proposed to process MODIS data to improve the yield
prediction or estimation accuracy [32,41,46–48]. The crop spatial distribution map is a vital
element of the total crop production, and the ideal approach would be to use it as crop
specific masks [32,47]. Mkhabela et al. [41] applied a crop land cover mask to satellite data
to remove the effect of non-agricultural land on the NDVI signals, which improved the
accuracy of crop yield prediction. We selected the pixels that were dominated by corn (i.e.,
corn planting area accounts for more than 70% of the MODIS-NDVI pixel area) as the corn
pixels. The percentage of corn planted area in the pixels in each year was calculated using
the corn planting map of the corresponding year.

In addition, crop planting dates and phenology vary with the location and external
environment in every year. Thus, using a fixed calendar date in time series data to build
remote-sensing-based yield prediction models is not optimal. A previous study showed
that using the green-up date to adjust the start of the VI time series based on pixels can
improve the remotely sensed yield prediction of both intra- and inter-annual variability in
corn and soybeans [28]. Therefore, in this study, we defined the “phenologically adjusted”
NDVI time series pixel by pixel and year by year (Figure 3). We first derived the daily
NDVI for each corn pixel based on the 8-day NDVI data using cubic spline interpolation.
Then, we defined the date when the NDVI curve began to increase at the bottom of the
valley before the single NDVI corn peak as the start date (SD) of the corn growing season.
The date when the NDVI reached the bottom of the valley after the single NDVI corn peak
was defined as the end date (ED) of the corn growing season. The second derivatives
of NDVI at SD and ED were approximately zero. Pixels before SD and after ED were
excluded from the analysis, and the time series was adjusted based on SD. Thus, we created
“phenologically adjusted” time series values for NDVI per corn pixel.

https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/
http://nassgeodata.gmu.edu/CropScape/
http://nassgeodata.gmu.edu/CropScape/
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Figure 2. Flow diagram of the datasets and processing used in the model, indicating four steps of model development: 1—
obtaining the normalized difference vegetation index (NDVI) time series from the start date to end date of corn at a pixel level,
2—computing the county-level NDVI time series, 3—deriving the prediction variables (duration and rate in four growth phases,
maximum correlation NDVI), and 4—constructing the regression relationships between the corn yield and predictors.
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Figure 3. Schematic on how to determine the growing season at the pixel level. NDVI values were
extracted from the start date of the growing season to the end date of the growing season for each
corn pixel. The “phenologically adjusted” time series values of each corn pixel started with the start
date. DOY denotes Day of Year.

(2) Compute county-level NDVI time series

As the corn yield was recorded at the county level, we aggregated the daily NDVI of
corn pixels in each county to obtain the daily county-level NDVI. To do this, the selected
corn pixels were weighted by their contribution, which was the proportion of corn planting
area in each pixel. Then, the NDVI values for each county were calculated by a weighted
average of these pixels and weights.

(3) Calculation of the prediction variables

Three types of predictors (two phenological metrics [1,2] and one NDVI parameter [3])
were calculated using the county-level NDVI time series (step 2) and used as input variables
to predict the corn yield:

Ref. [1] Duration (Equation (1)): Growth duration refers to the number of days in a
given crop GP and is calculated by the day of year (DOY) of the end of the GP minus the
DOY of its start.

Duration = GPend − GPstart, (1)

where Duration is the phenological metric of duration; GPend is the DOY of the end of the
GP; and GPstart is the DOY of the start of the GP.

Ref. [2] Rate (Equation (2)): The rate (slope) of NDVI in a given GP refers to the change
rate in the NDVI values throughout the GP.

Rate =
NDVIGP(end) − NDVIGP(start)

Duration
, (2)

where Rate is the phenological metric of rate; NDVIGP(end) is the NDVI value at GPend;
NDVIGP(start) is the NDVI value at GPstart; and Duration is the phenological metric of
duration.

Ref. [3] Maximum correlation NDVI (Max-R2): The Max-R2 [29] is the original NDVI
value that has the most significant correlation with corn yield in the NDVI time series. The
NDVI time series used to extract Max-R2 started with the SD.

To extract the above two phenological metrics, four corn GPs were examined (Figure 4):
the first phase (GP1) was from V1 to V6, the second phase (GP2) was from V6 to VT; the
third phase (GP3) was from VT to R4, and the fourth phase (GP4) was from R4 to R6. The
following V1, V6, VT, R4, and R6 refer to the start dates of the emergence, jointing, tasseling,
dough, and maturity stages, respectively. The dates of V1, VT, and R4 were extracted using
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the dynamic threshold method [49]. During the rising phase of the daily corn NDVI time
series curve, the points in time where the values increased by a certain value were defined
as the date for V1 and VT. Setting to 10% of the distance between the minimum (value at
SD) and the maximum is V1 and 90% of the distance between the minimum and maximum
is VT, above the minimum. The date of R4 was defined from the descending phase of the
corn NDVI time series curve as the point in time at which the value increased by a certain
value, currently set to 10% of the distance between the maximum and minimum (value at
ED), below the maximum. The date of V6 was defined as when the curvature reaches its
local maximum value in the rising curve, where the stalk grows rapidly. The date of R6
occurred in the middle of the senescence phase [39] and was defined as when the curvature
reaches its local maximum value in the descending curve. To obtain V6 and R6, the NDVI
time series at the county level was fit by a piecewise logistic function [38], resulting in two
functions for the rising and descending curves. Then, taking the derivation of the logistic
functions, the maximum values of the two derivative functions were denoted as V6 and
R6, respectively.
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Figure 4. Schematic of the four growth phases for the county-level corn NDVI time series values of
the growing season. SD denotes the start date of the corn-growing season.

The first growth phase, second growth phase, third growth phase, and fourth growth
phase were abbreviated as GP1, GP2, GP3, and GP4, respectively. To facilitate the descrip-
tion of these phenological metrics predictor variables, we defined GP1 duration, GP1 rate,
GP2 duration, GP2 rate, GP3 duration, GP3 rate, GP4 duration, and GP4 rate as GP1D,
GP1R, GP2D, GP2R, GP3D, GP3R, GP4D, and GP4R, respectively.

(4) Yield regression model

We built three groups of yield regression models for three regions: whole (semi-arid
and non-semi-arid), semi-arid, and non-semi-arid. In the first group, we constructed
univariate yield regression models for each predictor variable calculated in step 3 us-
ing different functions (linear, quadratic, logarithmic, etc.), by which we evaluated the
relationship between each predictor variable and corn yield. In the second group, we
constructed multivariate yield regression models using phenological metrics and assessed
the performance of phenological metrics with respect to the yield prediction. In the third
group, we constructed multivariate yield regression models using phenological metrics
combined with Max-R2 to evaluate the capability of combining phenological metrics with
other types of NDVI remote sensing parameters for yield prediction. Both the second
and third group models were built using a stepwise regression method, which can select
significant variables into the regression equation and reduce collinearity. The standardized
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regression coefficients in the regression equation were used to compare the importance of
different predictor variables on the dependent variable (corn yield).

2.4. Model Evaluation

To evaluate the performances of the prediction models in the second group, we used
leave-one-year-out cross-validation [3], in which the model was iteratively trained on 10
years of data and then used to predict yield in the held-out year [28] from 2008 to 2018.
The metrics used were the coefficient of determination (R2) and the root-mean-square
error (RMSE). The R2 was the predictive model R2, and the RMSE was calculated between
the actual and predicted yields. For the models in the first and third groups, we only
used R2 to evaluate the performances. We also used the variance inflation factor (VIF)
(Equation (3)) to measure collinearity for the variables in the regression prediction model.
In general, a VIF value of less than four indicates non-collinearity [50].

VIFi =
1

1− R2
i

(3)

where Ri is multiple correlation coefficient between the i-th variable, Xi, and all other
variables, Xj (j = 1, 2, . . . , k; j 6= i), and the multiple correlation coefficient is the arithmetic
square root of the coefficient of determination R2.

3. Results
3.1. MODIS-Derived Phenological Dates

MODIS-derived corn emergence and mature values were compared with the 50% corn
emerged and mature dates from Crop Progress Reports (CPR) (2008–2018) (Figure 5) at
the state level. The county sample numbers in Indiana and North Dakota were small, and
these counties only covered a small part of the state’s spatial range. Therefore, we only
compared the results of Illinois, Iowa, Nebraska, and Wisconsin. The R2 was 0.50 and 0.65
for the corn emerged and mature, respectively. The corresponding RMSE values were 4.90
and 0.65 days, respectively. The results fell neatly around the 1:1 line.

Figure 5. Comparison of the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived emergence date (V1)
values, mature date (R6) values, and the United States Department of Agriculture (USDA) Crop Progress Reports (CPR)
survey data of 50% corn emerged, mature dates at the state level: (A) V1 estimation; (B) R6 estimation.

3.2. Relationship between Predictor Variables and Yield

For each predictor variable, we established a set of univariate regression models with
different functions, such as linear, quadratic, and logarithmic, and obtained the R2 of each
model. The largest R2 values in the multiple univariate models are listed in Table 1. Most
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phenological metrics had a statistically significant relationship with the yield (at the p <
0.05 level) in the whole, semi-arid, and non-semi-arid regions, except for the GP2 duration
and the GP3 rate. The GP1 rate, GP2 rate, GP3 duration, and GP4 rate could be used as
yield prediction parameters with relatively large R2 values (>0.20).

Table 1. R2 between the duration (days), rate (∆NDVI/days), and Max-R2 and yield (kg/ha). The whole
region contains all counties located in the semi-arid and non-semi-arid regions; semi-arid refers to the
counties in the semi-arid region and non-semi-arid refers to the counties in the non-semi-arid region.

Phenological
Predictor Variable Whole Region Semi-Arid Region Non-Semi-Arid

Region

GP1 duration 0.04 * 0.14 * 0.02 *
GP1 rate 0.25 * 0.35 * 0.23 *

GP2 duration 0.18 * 0.40 * 0.19 *
GP2 rate 0.32 * 0.44 * 0.30 *

GP3 duration 0.27 * 0.43 * 0.25 *
GP3 rate 0.01 0.01 0.01

GP4 duration 0.05 * 0.33 * 0.02
GP4 rate 0.37 * 0.35 * 0.38 *
Max-R2 0.61 * 0.66 * 0.62 *

* Significant at p < 0.05.

Increasing the growth rate in GP1 and GP2, extending the growth duration in GP3,
and increasing the senescence rate in GP4 are beneficial for increasing the yield (Figure 6).
GP1 is in the early stage within the whole growing season, where faster growth is better
for the corn. GP2 includes the jointing stage, which is important for crop growth, and
the interpretation power of it is stronger than GP1. GP3 is at growth peak; extending the
time that the crop remains green helps the crop accumulate more nutrients. Increasing
the senescence rate in GP4 ensures that more nutrients are transferred to the grain within
a certain time. In addition, the R2 values of all phenology metrics were similar in the
whole region, non-semi-arid region, and non-semi-arid region, which indicated that the
relationship strength between these metrics and corn yield was similar in different regions.

Figure 6. Relationship between yield and GP1 rate, GP2 rate, GP3 duration, and GP4 rate in the whole region. The four
phenological predictor variables have the best explanatory power (R2 > 0.20) for corn yield among the eight variables.
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3.3. Yield Prediction with Phenological Metrics

The prediction models built with phenological metrics obtained the results with
R2 = 0.64, 0.72, and 0.64 in the whole region, semi-arid region, and non-semi-arid region
(Table 2). More than 60% of the yield was explained by the combination of growth duration
and rate. The best yield prediction with a maximum R2 value (0.72) was in the semi-arid
region. Prediction models did not have the problem of multi-collinearity with VIF values
for all metrics < 4.

Table 2. Results from stepwise multiple linear regression between phenological metrics during all phenological phases and
yield with data from 2008 to 2018.

Region Equation R2 VIFs

Whole region
Y = −10,084.25 + 360.58GP2D + 953,476.78GP2R

+ 97.00GP3D − 102,453.38GP4R a 0.64 X < 3.10
Y = 0.52GP2D + 0.70GP2R + 0.32GP3D − 0.08GP4R b

Semi-arid region
Y = −4716.91 + 155.34GP2D + 483,419.05GP2R

+ 110.04GP3D + 94.97GP4D a 0.72 X < 1.63
Y = 0.24GP2D + 0.35GP2R + 0.36GP3D + 0.23GP4D b

Non-Semi-arid region
Y = −13918.97 + 448.02GP2D + 1,084,391.95GP2R

+ 107.47GP3D − 127,325.54GP4R a 0.67 X < 3.01
Y = 0.60GP2D + 0.74GP2R + 0.35GP3D − 0.09GP4R b

a: unstandardized; b: standardized.

The four most essential metrics were selected by stepwise regression from eight
metrics to build the models. For the whole region and non-semi-arid region, the GP2R
presented the highest values for the standardized coefficient (0.70–0.74), followed by GP2D
(0.52–0.60), GP3D, and GP4R. The GP2 belongs to the vegetative stage when the stems and
leaves grow vigorously and continuously accumulate nitrogen. Crops will provide more
nutrients to the ear during the reproductive stage with a longer time or a faster rate to store
nitrogen in the vegetative stage [51]. GP3 contains the NDVI time series peak, and there is
a positive correlation between leaf area duration (LAD) and corn yield during GP3 [19].
The GP4R had the smallest impact on yield among the four most essential metrics. The
GP1R, which had a relatively large explanatory ability for the yield in Table 1, was not
selected in the models, indicating there was collinearity among all phenological metrics.
For the semi-arid region, beside GP2D, GP2R, and GP3D, GP4D was also a critical impact
factor, which indicated that in the semi-arid region, the longer the fourth stage, the higher
the crop yield.

Figure 7 shows the leave-one-year-out cross-validation results of the phenological
yield prediction models constructed with the four most significant metrics (Table 2) in
the three regions from 2008 to 2018. The medians of the R2 values were 0.6–0.8, and the
medians of the RMSE values were 900–1200 kg ha−1. Results from the semi-arid region
presented the highest R2 and lowest RMSE, followed by the non-semi-arid region, and the
results in the whole region presented the worst R2 and RMSE. In addition, the results for
2012 were different from those of other years in the whole and non-semi-arid regions with
the lowest R2 values (Figure 7A).

3.4. Yield Prediction with Phenological Metrics and NDVI

The combination of three phenological metrics variables (GP1D, GP3D, and GP4D
or GP1R, GP3D, and GP4R) and Max-R2 improved the performance of the Max-R2 yield
prediction models (Table 1), with a higher R2 value of 0.65, 0.73, and 0.68 (Table 3) in the
whole region, semi-arid region, and non-semi-arid region, respectively. The prediction
models in Table 3 did not have the problem of multi-collinearity with VIF values for all
metrics < 4.
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Figure 7. Boxplot of phenological yield prediction model performance for (A) R2 and (B) RMSE in the whole region,
semi-arid region, and non-semi-arid region. The models were built with the four most significant phenological metrics
using leave-one-year-out cross-validation from 2008 to 2018.

Table 3. Results for stepwise multiple regression between Max-R2 with rate and duration and yield. Dates from 2008 to
2018.

Region Equation R2 VIFs

Whole region Y = −11,872.08−56.01GP1D + 45.88GP3D
+ 56.74GP4D + 27,674.64Max-R2 0.65 X < 1.60

Semi-arid region Y = −12,081.43 + 46,3358.80GP1R + 56.88GP3D
+ 545,886.68GP4R + 28,890.95Max-R2 0.73 X < 2.61

Non-Semi-arid region Y = −15530.44−77.19GP1D + 56.39GP3D
+ 72.03GP4D + 31,959.49Max-R2 0.68 X < 1.46

After adding the maximum correlation NDVI (Max-R2), the phenological metric
variables used to construct the multivariate regression model changed compared with
phenological metric models (Table 2). For the semi-arid region, the variables changed
from the combination of GP2D, GP2R, GP3D, and GP4R to that of GP1R, GP3D, and GP4R.
Combining the growth state, time, and rate, the yield prediction model will have more
biophysical significance and better results in the semi-arid region. For the non-semi-arid
region, the variables changed from the combination of GP2D, GP2R, GP3D, and GP4R to
that of GP1D, GP3D, and GP4D. The Max-R2 replaced all rate variables indicating that
crop growth state and time are more important than the growth rate in a relatively humid
environment. The whole region contains more counties located in the non-semi-arid region,
and its model variables are the same as that in the non-semi-arid region.

4. Discussion
4.1. Contributions of This Study

First, this study demonstrated the feasibility of phenological metrics derived from
satellite remote sensing data for crop yield prediction. The first group showed that some
phenological metrics (durations and rates) have interpretation ability to the corn yields
(R2 ranged from 0.18 to 0.44 in Table 1) in the three regions, but the ability was limited
(maximum R2 = 0.44). Compared with this condition, the multivariate regression models
built with some phenological metrics in the second group improved the yield prediction
accuracy. The multivariate phenological metrics models’ stability and validity were proved
through leave-one-year-out cross-validation, and these models can explain 60–80% of the
yields. It indicated that phenological metrics from emergence to maturity were meaningful
for crops and could be used as input variables to predict yield. Multivariate regression
models in the third group built with some phenological metrics and NDVI obtained better
yield prediction results than the NDVI univariate regression models in the first group.
This indicates that phenological metrics derived from the NDVI time series could be
incorporated with other parameters to improve yield prediction in large-scale.
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Besides, our result is a useful supplement to phenological variables. Previous stud-
ies [14] had proven that phenological variables (phenological date) were closely correlated
with crop yields. Phenological date variables can, directly and indirectly, influence the
photosynthesis and respiration, which will change the accumulation of effective dry matter.
The accumulation of effective dry matter is also affected by the time and rate of photosyn-
thesis and respiration. We used statistic methods to investigate the impacts of phenological
metrics (duration and rate) on corn yields. Some phenological metrics can achieve yield
prediction, which had the interpretation ability of 60–80% in this paper. We recommend
adopting combined phenological date and metrics variables in the future applications
related to agricultural yield predictions. Besides, relationships between the phenological
metrics derived from MODIS data at a large scale and yield were consistent with the
actual growth characteristics of crops in the field. The relationships help the management
department make agricultural production decisions in a unified manner. For example,
fertilizing before and after the jointing stage increases the growth rate of corn.

Finally, this study provides a method reference for establishing the yield prediction
model of other crops. The R2 between the yield and NDVI rate of GP1, GP2, and GP4
ranged from 0.27 to 0.44, indicating that it may be more beneficial to organize time series
data parameters based on the GP [25] and provide support for dynamic yield predictions
with the growth stages as a time unit [26]. The combination of the duration and rate in each
GP can simply simulate the crop growth process. Each crop has its growth characteristics at
different growth stages, and the characteristics of each growth stage can be described by the
growth duration time and rate. Thus, the models constructed with phenological metrics are
based on the inherent growth and development of crops, and the yield prediction method
is applicable to other crops (e.g., soybean and wheat).

4.2. Factors Affecting Model Accuracy

Our proposed yield prediction method may be affected by the following factors.
First, the spatial resolution of the NDVI time series has an impact on our method. The
models’ explanatory power in the second group was relatively weak compared with the
phenological yield prediction models based on the NDVI time series derived from ground-
based sensors [36]. This situation is understandable because there is a gap between the
county-level NDVI obtained with 250-m resolution pixels and the NDVI obtained from
the ground-based sensors. The commonly used MODIS-based 250-m products are suitable
for many regions, such as the Great Plains of the US, which have large field sizes (mean
field size of 19.3 ha [42]), and countries in Europe [4,47,52], which have small field sizes
(two-thirds of Europeans fields are less than 5 ha [53]). Many methods (pixel-based crop
planting ratio, phenological information, among others) have been proposed to improve
the accuracy of MODIS in agricultural applications [28,41,46,52,54], such as crop map
masks and phenological information adjustment used in this study. The NDVI is the most
commonly used vegetation index, calculated from the two bands of the MODIS 250-m
reflectivity products. Crop-specific NDVI selected by the crop mask [2,46] contains signals
from all land surface types; therefore, it is still a mixture of the signals, which partially
affects the accuracy of the phenology extraction and yield prediction.

Second, the NDVI time series need be collected from years with different climate con-
dition (such as wet years and dry years). The yield prediction method using phenological
metrics works best in the semi-arid region (Table 2, Figure 7). The United States suffered
a drought in 2012, resulting in severe crop yield losses [55]. For the whole and non-semi-
arid region, the explanatory power (R2) for models constructed with data including 2012
(average R2 = 0.64, 0.67) was higher than that of models built without 2012 data (R2 =
0.59, 0.59). It indicates that phenological metrics can respond to disasters, and datasets
containing disaster information can describe more environmental characteristics. Thus, the
model constructed using the datasets of 2012 can provide more yield information. Models
constructed with data that did not include disaster information had higher RMSEs when
predicting the yield in 2012 (Figure 7B—whole region/non-semi-arid region). However, the
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semi-arid region did not indicate the above situation. Irrigated corn was mainly planted in
semi-arid regions [56], and farmers focused more on agricultural water management to
alleviate the impacts of the drought.

Third, the determination of the phenology stage dates has potential impacts on our
results. We divided the whole corn growing season into four relatively large GPs based
on the MODIS-NDVI time series and corn growth characteristics. The phenological dates
determine each GP, and the smoothing methods and phenology extraction methods based-
on VI time series jointly determine the extraction of phenological dates. Besides, NDVI
is sensitive to high-density vegetation and has a saturation phenomenon [57]. The NDVI
saturation occurs in the curve peak of time series, which also influences the phenology
stage dates and further affects the GP2, GP3, and GP4. Because there are generally two
types of peaks, i.e., steep [54] and steady [58], this was consistent with the peaks obtained
in this study. The peak’s steepness refers to two phenological dates in the GP3 and one
phenological date in the GP2 (GP4) determined by the phenological extraction method.
However, the effect of smoothing (phenology extraction) methods and NDVI saturation are
relatively minor. The R2 was 0.50 and 0.65 for corn emerged and mature, respectively. The
corresponding RMSE values were 4.90 and 0.65 days. The phenological metrics models’
interpretation ability is more than 60%. Based on the above-mentioned phenology dates
and yield models accuracy, we proved the feasibility of our method and showed that the
phenological information metrics obtained from remote sensing data could be used to
predict large-scale yield.

4.3. Direction of Future Improvement

The ability to predict yield using phenological metrics can be further improved.
Further research should attempt to select pixels with a higher crop planting proportion to
weaken the effect of sub-pixel mixtures. It also can use other indices, such as the enhanced
vegetation index (EVI) and wide dynamic range vegetation index (WDRVI) [25,39], to
obtain phenological information to avoid the impact that high-density vegetation cover
has on NDVI saturation. Some remote sensing-based indices can also attempt to extract
phenological information, such as the solar induced florescence (SIF), thermal decay rate,
and vegetation optical depth (VOP), given that they have all become available at higher
spatial resolutions. The SIF can capture vegetation’s photosynthesis process, the thermal
decay rate monitors vegetation through diurnal temperature variations [59], and the VOP
is highly sensitive to the water content and above-ground biomass of vegetation.

We used stepwise regression models to prove that the selected phenological metrics
can be used to predict crop yield. Generally speaking, the use of more parameters can
more comprehensively describe the crop growth environment conditions and growth
status, which is conducive to better prediction of yield. In the future, we can combine
phenological metrics with other parameters, such as the climate and vegetation index, as
input to machine learning or deep learning which can effectively solve collinearity and
extensively investigate the data features to predict the yield. These climate and vegetation
index parameters also can take the phenological stage as the time unit, and combining
phenology, climate, and vegetation index data to explore the ability to dynamically predict
yield in the continuous phenological stages.

5. Conclusions

We used the MODIS MOD09Q1 product to calculate the corn NDVI time series and
then divided it into four GPs. The phenological information metrics (duration and rate
information) obtained in each GP were used to analyze the relationships between them and
the corn yield and combine with the maximum correlation NDVI to build yield prediction
models.

We obtained two main conclusions from the results of this study. First, most phenolog-
ical metrics (duration and rate in different phases) extracted from the MODIS-NDVI time
series strongly correlate with corn yield. Some phenological metrics can be combined to
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predict corn yield with relatively good results at a large scale. As a result of the interaction
between crops and the environment, phenological information is a comprehensive and
indirect crop yield indicator. It can be applied to yield predictions or estimations for other
crop types (e.g., soybeans, wheat, cotton, and rice) and other regions. Second, phenologi-
cal metrics can also be combined with other types of parameters, such as the maximum
correlation NDVI, to improve the yield prediction or estimation accuracy.

The yield is the comprehensive performance of crop growth conditions throughout
the season. Dividing the season into multiple phases and using duration and rate extracted
from NDVI to describe crop growth duration and rate in different phases can simulate the
crop growth. Crops require different environmental conditions and have different growth
characteristics at different GPs. The NDVI rate based on GP shows a strong relationship
with the yield. Therefore, for other yield predictions or estimation parameters, using
the GP as the time scale to avoid geospatial data heterogeneity may be more reasonable,
as the crop phenology varies by location and changes from one year to the next. A
limitation of this study is that it did not clarify the effect of the time series smoothing
methods, phenology extraction methods, and GP division method on the establishment of
yield models. Moreover, there is no comparison among the performances of the different
vegetation indices in this yield prediction method. In the future, these two aspects can be
further analyzed to broaden the applicability of the current study to include more crop and
vegetation indices’ diversity characteristics and to understand any limitations that may be
present in the method.
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