Frequency-Tunable Terahertz Plasmonic Structure Based on the Solid Immersed Method for Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Design Using Electromagnetic Field Analysis
2.2. Device Fabrication
3. Results
3.1. Electromagnetic Field Analysis Result
3.2. Transmission Measurement Results
4. Discussion and Future Plan
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ashworth, P.C.; MacPherson, E.; Provenzano, E.; Pinder, S.E.; Purushotham, A.D.; Pepper, M.; Wallace, V.P. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt. Express 2009, 17, 12444. [Google Scholar] [CrossRef]
- Reid, C.B.; Reese, G.; Gibson, A.P.; Wallace, V.P. Terahertz time-domain spectroscopy of human blood. IEEE J. Biomed. Health Inform. 2013, 17, 774–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Stantchev, R.I.; Sun, Q.; Chiu, T.; Ahuja, A.T.; MacPherson, E.P. THz in vivo measurement: The effects of pressure on skin reflectivity. Biomed. Opt. Express 2018, 9, 6467–6476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llombart, N.; Chattopadhyay, G.; Skalare, A.; Mehdi, I. Novel Terahertz Antenna Based on a Silicon Lens Fed by Leaky Wave Enhanced Waveguide. IEEE Trans. Antennas Propag. 2011, 59, 2160–2168. [Google Scholar] [CrossRef]
- Arikawa, T.; Morimoto, S.; Tanaka, K. Focusing light with orbital angular momentum by circular array antenna. Opt. Express 2017, 15, 13728–13735. [Google Scholar] [CrossRef]
- Okamoto, O.; Fujimura, N.; Crespi, L.; Kodera, T.; Kawano, Y. Terahertz detection with an antenna-coupled highly-doped silicon quantum dot. Sci. Rep. 2019, 9, 18574. [Google Scholar] [CrossRef]
- Jakhar, A.; Dhyani, V.; Das, S. Room temperature terahertz detector based on single silicon nanowire junction-less transistor with high detectivity. Semicond. Sci. Technol. 2020, 35, 125020. [Google Scholar] [CrossRef]
- Kannegulla, A.; Cheng, L.J. Subwavelength focusing of terahertz waves in silicon hyperbolic metammaterials. Opt. Lett. 2016, 41, 3539–3542. [Google Scholar] [CrossRef] [PubMed]
- Salama, N.A.; Desouky, M.; Obayya, S.S.A.; Swillam, A. Free space super focusing using all dielectric hyperbolic metamaterial. Sci. Rep. 2020, 10, 11529. [Google Scholar] [CrossRef]
- Ishihara, K.; Hatakoshi, G.; Ikari, T.; Minamide, H.; Ito, H.; Ohashi, K. Terahertz Wave Enhanced Transmission through a single Subwavelength Aperture with Periodic Surface Structures. Jpn. J. Appl. Phys. 2005, 44, L1005–L1007. [Google Scholar] [CrossRef]
- Drezet, A.; Genet, C.; Ebbesen, T.W. Miniature Plasmonic Wave Plates. Phys. Rev. Lett. 2008, 101, 043902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beruete, M.; Beaskoetxea, U.; Zehar, M.; Agrawal, A.; Liu, S.; Blary, K.; Chahadih, A.; Han, X.; Navarro-Cia, M.; Salinas, D.E.; et al. Terahertz Corugated and Bull’s-Eye Antennas. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 740–747. [Google Scholar] [CrossRef]
- Heggie, T.J.; Naylor, D.A.; Gom, B.G.; Bordatchev, E.; Trimboli, M.G. Enhanced Terahertz Transmission Through Bullseye Plasmonics Lenses Fabricated Using Micromilling Techniques. Plasmonics 2016, 11, 1139–1149. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, K.; Ikari, T.; Minamide, H.; Shikata, J.; Ohashi, K.; Yokoyama, H.; Ito, H. Terahertz Near-Field Imaging Using Enhanced Transmission through a Single Subwavelength Aperture. Jpn. J. Appl. Phys. 2005, 44, L929–L931. [Google Scholar] [CrossRef]
- Deng, X.; Kawano, Y. Surface plasmon polariton graphene midinfrared photodetector with multifrequency resonance. J. Nanophotonics 2018, 12, 026017. [Google Scholar] [CrossRef]
- Liu, S.; Shou, X.; Nahata, A. Coherent Detection of Multiband Terahertz Radiation Using a Surface Plasmon-Polariton Based Photoconductive Antenna. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 412–415. [Google Scholar] [CrossRef]
- Deng, X.; Li, L.; Enomoto, M.; Kawano, Y. Continuously Frequency-Tunable Plasmonic Structure for Terahertz Bio-sensing and Spectroscopy. Sci. Rep. 2019, 9, 3498. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, D.A.; Crozier, K.B.; Guarini, K.W.; Minne, S.C.; Kino, G.S.; Quate, C.F.; Goodson, K.E. Microfabricated silicon immersion lens. J. Microelectromech. Syst. 2001, 10, 450–459. [Google Scholar] [CrossRef]
- Mansfield, S.M.; Kino, G.S. Solid immersion microscope. Appl. Phys. Lett. 1990, 57, 2615–2616. [Google Scholar] [CrossRef]
- Hailu, D.M.; Alqarni, S.; Cui, B.; Saeedkia, D. Terahertz Surface Plasmon Resonance Sensor and Bull’s eye Structure for Material Sensing. In Proceedings of the 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1–6 September 2013. [Google Scholar] [CrossRef]
- Temnov, V.V.; Woggon, U.; Dintinger, J.; Devaux, E.; Ebbesen, T.W. Surface plasmon interferometry: Measuring group velocity of surface plasmons. Opt. Lett. 2007, 32, 1235–1237. [Google Scholar] [CrossRef]
- Wang, K.; Mittleman, D.M. Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range. Phys. Rev. Lett. 2006, 96, 157401. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, T.; Sugaya, T.; Kawano, Y. Silicon-immersed terahertz plasmonic structures. Appl. Phys. Lett. 2017, 110, 151105. [Google Scholar] [CrossRef]
- Wen, Q.; Zhang, H.; Yang, Q.; Xie, Y.; Chen, K.; Liu, Y. Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 2010, 97, 021111. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Li, J.; Yang, Y.; Huang, J.; Ma, C.; Ma, Z.; Zhang, Z.; Liang, L.; Yao, J. Frequency-switchable VO2-based coding metasurfaces at the terahertz band. Opt. Commun. 2020, 458, 124744. [Google Scholar] [CrossRef]
- Zhong, M. Design and verification of a temperature-sensitive broadband metamaterial absorber based on VO2 film. Opt. Mater. 2020, 109, 110467. [Google Scholar] [CrossRef]
- Karaoglan-Bebek, G.; Hoque, M.N.F.; Holtz, M.; Fan, Z.; Bernussi, A.A. Continuous tuning of W-doped VO2 optical properties for terahertz analog applications. Appl. Phys. Lett. 2014, 105, 201902. [Google Scholar] [CrossRef] [Green Version]
Solid Immersed | Λ | C | h | D | k |
---|---|---|---|---|---|
W/O | 300–200 | 750–500 | 30 | 150 | 75 |
W | 88–60 | 220–150 | 9 | 40 | 15 |
Solid Immersed | X Excitation | Y Excitation | ||||
---|---|---|---|---|---|---|
Peak Frequency (THz) | |E| Peak (mV/m) | EC Peak (a.u.) | Peak Frequency (THz) | |E| Peak (mV/m) | EC Peak (a.u.) | |
W/O | 1.36 | 133 | 8.33 | 1.22 | 128 | 7.48 |
W | 1.34 | 2328 | 188 | 1.22 | 2227 | 153 |
Polarization | Full Time Window | 25–45 ps Time Window | ||
---|---|---|---|---|
Peak (THz) | Transmission (%) | Peak (THz) | Transmission (%) | |
0 deg. | 1.40 | 4.81 | 1.44 | 0.67 |
45 deg. | 1.28 | 4.59 | 1.32 | 0.64 |
90 deg. | 1.19 | 4.36 | 1.24 | 0.48 |
135 deg. | 1.08 | 4.35 | 1.12 | 0.51 |
180 deg. | 1.01 | 4.64 | 1.04 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugaya, T.; Kawano, Y. Frequency-Tunable Terahertz Plasmonic Structure Based on the Solid Immersed Method for Sensing. Sensors 2021, 21, 1419. https://doi.org/10.3390/s21041419
Sugaya T, Kawano Y. Frequency-Tunable Terahertz Plasmonic Structure Based on the Solid Immersed Method for Sensing. Sensors. 2021; 21(4):1419. https://doi.org/10.3390/s21041419
Chicago/Turabian StyleSugaya, Toshio, and Yukio Kawano. 2021. "Frequency-Tunable Terahertz Plasmonic Structure Based on the Solid Immersed Method for Sensing" Sensors 21, no. 4: 1419. https://doi.org/10.3390/s21041419
APA StyleSugaya, T., & Kawano, Y. (2021). Frequency-Tunable Terahertz Plasmonic Structure Based on the Solid Immersed Method for Sensing. Sensors, 21(4), 1419. https://doi.org/10.3390/s21041419