Robust Iris Segmentation Algorithm in Non-Cooperative Environments Using Interleaved Residual U-Net
Abstract
:1. Introduction
2. Related Works
3. Proposed Method
3.1. Iris Mask Estimation
3.2. Scan-and-Cluster Strategy for Saliency Points Estimation for Outer Boundary
Algorithm 1. The algorithm of Scan-and-Cluster for saliency points estimation of iris outer boundary. |
(1) Define the scanning area from 0.25× to 0.75× height of the ROI of estimated iris mask. |
(2) Search all the points within the range for the right and left side of ROI. |
(3) Repeatedly do following step for all points: |
(a) Compute all possible paired distance of two points using Equation (1). |
(b) Find the maximum value of distance. |
(c) Form a set Ω consisting of all distance values computed from (b). |
(4) Apply K-means algorithm with the value of k = 2 on set Ω. Suppose the subset Θ denotes the cluster that has higher value. |
(5) Saliency points are recovered as all the end points corresponding to all lines that belonged to Θ. |
3.3. Saliency Points Estimation for Inner Boundary
4. Experimental Results and Discussion
4.1. Database and Protocol
4.2. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arsalan, M.; Naqvi, R.A.; Kim, D.S.; Nguyen, P.H.; Owais, M.; Park, K.R. IrisDenseNet: Robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors. Sensors 2018, 18, 1501. [Google Scholar] [CrossRef] [Green Version]
- Arsalan, M.; Hong, H.G.; Naqvi, R.A.; Lee, M.B.; Kim, M.C.; Kim, D.S.; Kim, C.S.; Park, K.R. Deep learning-based iris segmentation for iris recognition in visible light environment. Symmetry 2017, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Muhammad, J.; Wang, Y.; He, Z.; Sun, Z. Towards Complete and Accurate Iris Segmentation Using Deep Multi-Task Attention Network for Non-Cooperative Iris Recognition. IEEE Trans. Inf. Forensics Security 2020, 15, 2944–2959. [Google Scholar] [CrossRef]
- Li, Y.-H.; Huang, P.-J.; Juan, Y. An efficient and robust iris segmentation algorithm using deep learning. Mob. Inf. Syst. 2019, 2019. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, D.; Li, N.; Cai, Y.; Zuo, W.; Wang, K. Iris-based medical analysis by geometric deformation features. IEEE J. Biomed. Health Informat. 2012, 17, 223–231. [Google Scholar]
- Chen, Y.; Wang, W.; Zeng, Z.; Wang, Y. An adaptive CNNs technology for robust iris segmentation. IEEE Access 2019, 7, 64517–64532. [Google Scholar] [CrossRef]
- Li, Y.-H.; Aslam, M.S.; Yang, K.-L.; Kao, C.-A.; Teng, S.-Y. Classification of Body Constitution Based on TCM Philosophy and Deep Learning. Symmetry 2020, 12, 803. [Google Scholar] [CrossRef]
- Li, Y.-H.; Huang, P.-J. An accurate and efficient user authentication mechanism on smart glasses based on iris recognition. Mob. Inf. Syst. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, B.; Behringer, M. Biometric Protection for Mobile Devices is Now More Reliable: Research award for the development of an infrared LED for reliable iris recognition in smartphones and tablets. Optik Photonik 2016, 11, 16–19. [Google Scholar] [CrossRef]
- Woodard, D.L.; Pundlik, S.; Miller, P.; Jillela, R.; Ross, A. On the fusion of periocular and iris biometrics in non-ideal imagery. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 201–204. [Google Scholar]
- Daugman, J.G. High confidence visual recognition of persons by a test of statistical independence. IEEE Transact. Pattern Analysis Mach. Intell. 1993, 15, 1148–1161. [Google Scholar] [CrossRef] [Green Version]
- Wildes, R.P. Iris recognition: An emerging biometric technology. Proc. IEEE 1997, 85, 1348–1363. [Google Scholar] [CrossRef] [Green Version]
- Proença, H.; Alexandre, L.A. Iris segmentation methodology for non-cooperative recognition. IEE Proc. Vis. Image Signal Process. 2006, 153, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.; He, Z.; Sun, Z. Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vis. Comput. 2010, 28, 223–230. [Google Scholar] [CrossRef]
- Alvarez-Betancourt, Y.; Garcia-Silvente, M. A fast iris location based on aggregating gradient approximation using QMA-OWA operator. In Proceedings of the International Conference on Fuzzy Systems, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Peláez, J.I.; Doña, J.M. A majority model in group decision making using QMA–OWA operators. Int. J. Intell. Syst. 2006, 21, 193–208. [Google Scholar] [CrossRef]
- Ghodrati, H.; Dehghani, M.J.; Helfroush, M.S.; Kazemi, K. Localization of noncircular iris boundaries using morphology and arched Hough transform. In Proceedings of the 2nd International Conference on Image Processing Theory, Tools and Applications, Paris, France, 7–10 July 2010; pp. 458–463. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Wang, X.-c.; Xiao, X.-m. An Iris segmentation method based on difference operator of radial directions. In Proceedings of the 2010 Sixth International Conference on Natural Computation, Yantai, China, 10–12 August 2010; pp. 135–138. [Google Scholar]
- Jin, L.; Xiao, F.; Haopeng, W. Iris image segmentation based on K-means cluster. In Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China, 29–30 October 2010; pp. 194–198. [Google Scholar]
- Yan, F.; Tian, Y.; Wu, H.; Zhou, Y.; Cao, L.; Zhou, C. Iris segmentation using watershed and region merging. In Proceedings of the 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; pp. 835–840. [Google Scholar]
- Roerdink, J.B.; Meijster, A. The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae 2000, 41, 187–228. [Google Scholar] [CrossRef] [Green Version]
- Abate, A.F.; Frucci, M.; Galdi, C.; Riccio, D. BIRD: Watershed based iris detection for mobile devices. Pattern Recognit. Letters 2015, 57, 43–51. [Google Scholar] [CrossRef]
- Radman, A.; Zainal, N.; Suandi, S.A. Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut. Digital Signal Process. 2017, 64, 60–70. [Google Scholar] [CrossRef]
- Banerjee, S.; Mery, D. Iris segmentation using geodesic active contours and grabcut. In Proceedings of the Image and Video Technology, Auckland, New Zealand, 23–27 November 2015; pp. 48–60. [Google Scholar]
- Rongnian, T.; Shaojie, W. Improving iris segmentation performance via borders recognition. In Proceedings of the 2011 Fourth International Conference on Intelligent Computation Technology and Automation, Shenzhen, China, 28–29 March 2011; pp. 580–583. [Google Scholar]
- Liu, N.; Li, H.; Zhang, M.; Liu, J.; Sun, Z.; Tan, T. Accurate iris segmentation in non-cooperative environments using fully convolutional networks. In Proceedings of the 2016 International Conference on Biometrics (ICB), Halmstad, Sweden, 13–16 June 2016; pp. 1–8. [Google Scholar]
- Hofbauer, H.; Jalilian, E.; Uhl, A. Exploiting superior CNN-based iris segmentation for better recognition accuracy. Pattern Recognit. Lett. 2019, 120, 17–23. [Google Scholar] [CrossRef]
- Kerrigan, D.; Trokielewicz, M.; Czajka, A.; Bowyer, K.W. Iris recognition with image segmentation employing retrained off-the-shelf deep neural networks. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–7. [Google Scholar]
- Jalilian, E.; Uhl, A. Iris segmentation using fully convolutional encoder–decoder networks. In Deep Learning for Biometrics; Springer: Berlin, Germany, 2017; pp. 133–155. [Google Scholar]
- Lian, S.; Luo, Z.; Zhong, Z.; Lin, X.; Su, S.; Li, S. Attention guided U-Net for accurate iris segmentation. J. Vis. Commun. Image Represent. 2018, 56, 296–304. [Google Scholar] [CrossRef]
- Bazrafkan, S.; Thavalengal, S.; Corcoran, P. An end to end deep neural network for iris segmentation in unconstrained scenarios. Neural Netw. 2018, 106, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Arsalan, M.; Kim, D.S.; Lee, M.B.; Owais, M.; Park, K.R. FRED-Net: Fully residual encoder–decoder network for accurate iris segmentation. Expert Syst. Appl. 2019, 122, 217–241. [Google Scholar] [CrossRef]
- Lozej, J.; Meden, B.; Struc, V.; Peer, P. End-to-end iris segmentation using u-net. In Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), San Carlos, Costa Rica, 18–20 July 2018; pp. 1–6. [Google Scholar]
- Wu, X.; Zhao, L. Study on iris segmentation algorithm based on dense U-Net. IEEE Access 2019, 7, 123959–123968. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X.; Gu, Y.; Liu, Y.; Meng, X.; Li, J. A robust iris segmentation scheme based on improved U-net. IEEE Access 2019, 7, 85082–85089. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Gautam, G.; Mukhopadhyay, S. Challenges, taxonomy and techniques of iris localization: A survey. Digit. Signal Process. 2020, 102852. [Google Scholar] [CrossRef]
- Wang, C.; He, Y.; Liu, Y.; He, Z.; He, R.; Sun, Z. Sclerasegnet: An improved u-net model with attention for accurate sclera segmentation. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–8. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv, 2017; preprint. arXiv:1706.05587. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Berkeley, CA, USA, 21 June–18 July 1965; pp. 281–297. [Google Scholar]
- CASIA. Iris Image Database. Available online: http://biometrics.idealtest.org/dbDetailForUser.do?id=4 (accessed on 24 August 2020).
- Kentaro Wada, K. LabelMe: Image polygonal annotation with Python. Available online: https://github.com/wkentaro/labelme (accessed on 10 July 2020).
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-H.; Putri, W.R.; Aslam, M.S.; Chang, C.-C. Robust Iris Segmentation Algorithm in Non-Cooperative Environments Using Interleaved Residual U-Net. Sensors 2021, 21, 1434. https://doi.org/10.3390/s21041434
Li Y-H, Putri WR, Aslam MS, Chang C-C. Robust Iris Segmentation Algorithm in Non-Cooperative Environments Using Interleaved Residual U-Net. Sensors. 2021; 21(4):1434. https://doi.org/10.3390/s21041434
Chicago/Turabian StyleLi, Yung-Hui, Wenny Ramadha Putri, Muhammad Saqlain Aslam, and Ching-Chun Chang. 2021. "Robust Iris Segmentation Algorithm in Non-Cooperative Environments Using Interleaved Residual U-Net" Sensors 21, no. 4: 1434. https://doi.org/10.3390/s21041434
APA StyleLi, Y. -H., Putri, W. R., Aslam, M. S., & Chang, C. -C. (2021). Robust Iris Segmentation Algorithm in Non-Cooperative Environments Using Interleaved Residual U-Net. Sensors, 21(4), 1434. https://doi.org/10.3390/s21041434