Physical-Layer Security Improvement with Reconfigurable Intelligent Surfaces for 6G Wireless Communication Systems
Abstract
:1. Introduction
- We propose an RCR technique that repeats some random channel by repeating a certain number of reflecting matrices of the RIS. With the RCR technique, we can design a repeating random communication channel, possibly even in a short enough time that the communication channel will not be changed.
- Based on the RCR technique, user scheduling for each random channel was performed to maximize the secrecy rate. It was shown that the proposed RCR-based scheduling technique can achieve better performance than the network without any RIS and than a random scheduling technique.
2. System and Channel Model
3. The RIS-Based Channel Randomization Technique for Secure Communication
Algorithm 1 Time slot allocation algorithm for user equipment (UE) scheduling. |
Input:, |
Output: |
for do |
for do |
end for |
end for |
Algorithm 2 Transmit beamforming design at the base station (BS) for all time slots. |
Input:S, , |
Output: |
for do |
if then |
else |
end if |
All column vectors of are normalized to the unit norm. |
end for |
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AN | Artificial-noise |
AP | Access point |
BS | Base station |
CSI | Channel state information |
DTD | Data transmission duration |
EVE | Eavesdropper |
IoT | Internet-of-things |
IRS | Intelligent reflecting surface |
LOS | Line-of-sight |
MISO | Multiple-input multiple-output |
mmWave | Millimeter wave |
NOMA | Non-orthogonal multiple access |
PLS | Physical-layer security |
PSD | Pilot signal duration |
RCR | RIS-based Channel Randomization |
RIS | Reconfigurable intelligent surface |
SIMO | Single-input multiple-output |
SINR | Signal to interference-plus-noise ratio |
SNR | Signal-to-noise ratio |
TDD | Time-division duplex |
THz | Tera-hertz |
UE | User equipment |
ULA | Uniform linear array |
References
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Tech. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless networks. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Renze, M.D.; Debbah, M. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Basar, E.; Renzo, M.D.; Rosny, J.D.; Debbah, M.; Alouini, M.-S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- ElMossallamy, M.A.; Zhang, H.; Sultan, R.; Seddik, K.G.; Song, L.; Li, G.Y.; Han, Z. On spatial multiplexing using reconfigurable intelligent surfaces. IEEE Wirel. Commun. Lett. 2021, 10, 226–230. [Google Scholar] [CrossRef]
- Chu, Z.; Xiao, P.; Shojafar, M.; Mi, D.; Mao, J.; Hao, W. Intelligent reflecting surface assisted mobile edge computing for internet of things. IEEE Wirel. Commun. Lett. 2020. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Using intelligent reflecting surfaces for rank improvement in MIMO communications. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020. [Google Scholar]
- Shiu, Y.-S.; Chang, S.Y.; Wu, H.-C.; Huang, S.C.-H.; Chen, H.-H. Physical layer security in wireless networks: A tutorial. IEEE Wirel. Commun. 2011, 18, 66–74. [Google Scholar] [CrossRef]
- Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.-K.; Gao, X. A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Wang, P.; Alipour-Fanid, A.; Jiao, L.; Zeng, K. Physical-layer security of 5G wireless networks for IoT: Challenges and opportunities. IEEE Internet Things J. 2019, 6, 8169–8181. [Google Scholar] [CrossRef]
- Li, Z.; Guan, L.; Li, C.; Radwan, A. A secure intelligent spectrum control strategy for future THz mobile heterogeneous networks. IEEE Commun. Mag. 2018, 56, 116–123. [Google Scholar] [CrossRef]
- Khan, R.; Kumar, P.; Jayakody, D.N.K.; Liyanage, M. A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions. IEEE Commun. Surv. Tuts. 2020, 22, 196–248. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Shin, W.-Y.; Jung, B.C. On the multi-user diversity with secrecy in uplink wiretap networks. IEEE Commun. Lett. 2013, 17, 1778–1781. [Google Scholar] [CrossRef]
- Chorti, A.; Perlaza, S.M.; Han, Z.; Poor, H.V. On the resilience of wireless multiuser networks to passive and active eavesdroppers. IEEE J. Sel. Areas Commun. 2013, 31, 1850–1863. [Google Scholar] [CrossRef] [Green Version]
- Kapetanovic, D.; Zheng, G.; Rusek, F. Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Commun. Mag. 2015, 53, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Joung, J.; Choi, J.; Jung, B.C.; Yu, S. Artificial noise injection and its power loading methods for secure space-time line coded systems. Entropy 2019, 21, 515. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Joung, J.; Jung, B.C. Space-time line code for enhancing physical layer security of multiuser MIMO uplink transmission. IEEE Syst. J. 2020. [Google Scholar] [CrossRef]
- Son, W.; Jang, H.; Jung, B.C. A Pseudo-random beamforming technique for improving physical-layer security of MIMO cellular networks. Entropy 2019, 21, 1038. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.A.; Song, H.; Hong, J.-P. Opportunistic scheduling for average secrecy rate enhancement in fading downlink channel with potential eavesdroppers. IEEE Trans. Inf. Forensics Secur. 2019, 14, 969–980. [Google Scholar] [CrossRef]
- Bang, I.; Jung, B.C. Secrecy rate analysis of opportunistic user scheduling in uplink networks with potential eavesdroppers. IEEE Access 2019, 7, 127078–127089. [Google Scholar] [CrossRef]
- Son, W.; Nam, H.; Shin, W.-Y.; Jung, B.C. Secrecy outage analysis of multiuser downlink wiretap networks with potential eavesdroppers. IEEE Syst. J. 2020. [Google Scholar] [CrossRef]
- Lu, X.; Hossain, E.; Shafique, T.; Feng, S.; Jiang, H.; Niyato, D. Intelligent reflecting surface enabled covert communications in wireless networks. IEEE Netw. 2020, 34, 148–155. [Google Scholar] [CrossRef]
- Almohamad, A.; Tahir, A.M.; Al-Kababji, A.; Furqan, H.M.; Khattab, T.; Hasna, M.O.; Arslan, H. Smart and secure wireless communications via reflecting intelligent surfaces: A short survey. IEEE Open J. Commun. Soc. 2020, 1, 1442–1456. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Schober, R. Enabling secure wireless communications via intelligent reflecting surfaces. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Cui, M.; Zhang, G.; Zhang, R. Secure wireless communication via intelligent reflecting surface. IEEE Wirel. Commun. Lett. 2019, 8, 1410–1414. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Hao, W.; Xiao, P.; Shi, J. Intelligent reflecting surface aided multi-antenna secure transmission. IEEE Wirel. Commun. Lett. 2020, 9, 108–112. [Google Scholar] [CrossRef]
- Xiu, Y.; Zhang, Z. Secure wireless transmission for intelligent reflecting surface-aided millimeter-wave systems. IEEE Access 2020, 8, 192924–192935. [Google Scholar] [CrossRef]
- Qiao, J.; Alouini, M.-S. Secure transmission for intelligent reflecting surface-assisted mmWave and Terahertz systems. IEEE Wirel. Commun. Lett. 2020, 9, 1743–1747. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Y.-C.; Pei, Y.; Guo, H. Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access 2019, 7, 82599–82612. [Google Scholar] [CrossRef]
- Lu, X.; Yang, W.; Guan, X.; Wu, Q.; Cai, Y. Robust and secure beamforming for intelligent reflecting surface aided mmWave MISO systems. IEEE Wirel. Commun. Lett. 2020, 9, 2068–2072. [Google Scholar] [CrossRef]
- Xu, D.; Yu, X.; Sun, Y.; Ng, D.W.K.; Schober, R. Resource allocation for secure IRS-assisted multiuser MISO systems. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Guan, X.; Wu, Q.; Zhang, R. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not? IEEE Wirel. Commuin. Lett. 2020, 9, 778–782. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-M.; Bai, J.; Dong, L. Intelligent reflecting surfaces assisted secure transmission without eavesdropper’s CSI. IEEE Signal Process. Lett. 2020, 27, 1300–1304. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Sun, Y.; Ng, D.W.K.; Schober, R. Robust and secure wireless communications via intelligent reflecting surfaces. IEEE J. Sel. Areas Commun. 2020, 38, 2637–2652. [Google Scholar] [CrossRef]
- Hong, S.; Pan, C.; Ren, H.; Wang, K.; Nallanathan, A. Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface. IEEE Trans. Commun. 2020, 68, 7851–7866. [Google Scholar] [CrossRef]
- Hong, S.; Pan, C.; Ren, H.; Wang, K.; Chai, K.K.; Nallanathan, A. Robust transmission design for intelligent reflecting surface aided secure communication systems with imperfect cascaded CSI. IEEE Trans. Wirel. Commun. 2020. [Google Scholar] [CrossRef]
- Chu, Z.; Hao, W.; Xiao, P.; Mi, D.; Liu, Z.; Khalily, M.; Kelly, J.R.; Feresidis, A.P. Secrecy rate optimization for intelligent reflecting surface assisted MIMO system. IEEE Trans. Inf. Forensics Secur. 2021, 16, 1655–1669. [Google Scholar] [CrossRef]
- Khisti, A.; Wornell, G.W. Secure transmission with multiple antennas I: The MISOME wiretap channel. IEEE Trans. Inf. Theory 2010, 56, 3088–3104. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youn, J.; Son, W.; Jung, B.C. Physical-Layer Security Improvement with Reconfigurable Intelligent Surfaces for 6G Wireless Communication Systems. Sensors 2021, 21, 1439. https://doi.org/10.3390/s21041439
Youn J, Son W, Jung BC. Physical-Layer Security Improvement with Reconfigurable Intelligent Surfaces for 6G Wireless Communication Systems. Sensors. 2021; 21(4):1439. https://doi.org/10.3390/s21041439
Chicago/Turabian StyleYoun, Janghyuk, Woong Son, and Bang Chul Jung. 2021. "Physical-Layer Security Improvement with Reconfigurable Intelligent Surfaces for 6G Wireless Communication Systems" Sensors 21, no. 4: 1439. https://doi.org/10.3390/s21041439
APA StyleYoun, J., Son, W., & Jung, B. C. (2021). Physical-Layer Security Improvement with Reconfigurable Intelligent Surfaces for 6G Wireless Communication Systems. Sensors, 21(4), 1439. https://doi.org/10.3390/s21041439