Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors
Abstract
:1. Introduction
2. Methods and Materials
2.1. Reagents
2.2. Apparatus
2.3. Synthesis
2.3.1. 1,2,3,4-Tetrafluoro-9(10),16(17),23(24)-tri(tosylamino)phthalocyaninatozinc(II) (Pc1)
2.3.2. Phthalocyanine-Functionalized Magnetic Silica Nanoparticles (MSNP-Pc1)
2.4. Anion Binding Studies
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Anion Binding Studies
3.3. Reversibility and Reusability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, M.-H.; Thomas, J.L.; Ho, M.-H.; Yuan, C.; Lin, H.-Y. Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine. ACS Appl. Mater. Interfaces 2010, 2, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- El-Boubbou, K.; Zhu, D.C.; Vasileiou, C.; Borhan, B.; Prosperi, D.; Li, W.; Huang, X. Magnetic glyco-nanoparticles: A tool to detect, differentiate, and unlock the glyco-codes ofcancer via magnetic resonance imaging. J. Am. Chem. Soc. 2010, 132, 4490–4499. [Google Scholar] [CrossRef] [PubMed]
- Fa, S.X.; Zhao, Y. Water-Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides. Chem. Eur. J. 2018, 24, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Hua, B.; Shao, L.; Zhang, Z.H.; Sun, J.F.; Yang, J. Pillar[6]arene/acridine orange host-guest complexes as colorimetric and fluorescence sensors for choline compounds and further application in monitoring enzymatic reactions. Sens. Actuators B 2018, 255, 1430–1435. [Google Scholar] [CrossRef]
- Kim, S.K.; Sessler, J.L. Ion pair receptors. Chem. Soc. Rev. 2010, 39, 3784–3809. [Google Scholar] [CrossRef]
- Kubik, S. Anion recognition in water. Chem. Soc. Rev. 2010, 39, 3648–3663. [Google Scholar] [CrossRef]
- Han, S.-T.; Peng, H.; Sun, Q.; Venkatesh, S.; Chung, K.-S.; Lau, S.C.; Zhou, Y.; Roy, V.A.L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef]
- Lim, J.Y.C.; Marques, I.; Felix, V.; Beer, P.D. A chiral halogen-bonding [3]rotaxane for the recognition and sensing of biologically relevant dicarboxylate anions. Angew. Chem. Int. Ed. 2018, 57, 584–588. [Google Scholar] [CrossRef]
- Qu, W.J.; Li, W.T.; Zhang, H.L.; Wei, T.B.; Lin, Q.; Yao, H.; Zhang, Y.M. A rational designed fluorescent and colorimetric dual-channel sensor for cyanide anion based on the PET effect in aqueous medium. Sens. Actuators B 2017, 241, 430–437. [Google Scholar] [CrossRef]
- Kumar, A.; Lee, J.Y.; Kim, H.S. Sensitive and selective fluorescence OFF-ON-OFF sensor for cascade detection of Ga3+ cation and I-anion based on pyrenesulfonamide-functionalized inorganic/organic hybrid nanoparticles. Sens. Actuators B 2017, 239, 85–93. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.; Ma, H.; Zhang, Z.; Zhang, M.; Hao, S. A simple fluorescent film probe for the detection of fluoride anion in organic solution. Dyes Pigm. 2018, 153, 200–205. [Google Scholar] [CrossRef]
- Cakmaz, D.; Ozarslan, A.; Aydiner, B.; Eroglu, A.B.; Seferoglu, N.; Senoz, H.; Seferoglu, Z. The novel sensitive and selective chemosensors for determination of multiple analytes. Dyes Pigm. 2020, 183, 108701. [Google Scholar] [CrossRef]
- Singh, A.S.; Sun, S.S. Recognition, encapsulation, and selective fluorescence sensing of nitrate anion by neutral C3-Symmetric tripodal podands bearing amide functionality. J. Org. Chem. 2012, 77, 1880–1890. [Google Scholar] [CrossRef]
- Hargrove, A.E.; Nieto, S.; Zhang, T.; Sessler, J.L.; Anslyn, E.V. Artificial receptors for the recognition of phosphorylated molecules. Chem. Rev. 2011, 111, 6603–6782. [Google Scholar] [CrossRef] [Green Version]
- Zou, Q.; Tao, F.; Wu, H.; Yu, W.W.; Li, T.; Cui, Y. A new carbazole-based colorimetric and fluorescent sensor with aggregation induced emission for detection of cyanide anion. Dyes Pigm. 2019, 164, 165–173. [Google Scholar] [CrossRef]
- Alizada, M.; Gul, A.; Oguz, M.; Kursunlu, A.N.; Yilmaz, M. Ion sensing of sister sensors based-on calix[4]arene in aqueous medium and their bioimaging applications. Dyes Pigm. 2021, 184, 108741. [Google Scholar] [CrossRef]
- Rodrigues, J.M.M.; Farinha, A.S.F.; Muteto, P.V.; Woranovicz-Barreira, S.M.; Paz, F.A.A.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S.; Tomé, A.C.; Gomes, M.T.S.R.; Sessler, J.L.; et al. New porphyrin derivatives for phosphate anion sensing in both organic and aqueous media. Chem. Commun. 2014, 50, 1359–1361. [Google Scholar] [CrossRef]
- Wang, L.; Ding, H.; Ran, X.; Tang, H.; Cao, D. Recent progress on reaction-based BODIPY probes for anion detection. Dyes Pigm. 2020, 172, 107857. [Google Scholar] [CrossRef]
- Croissant, J.G.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 2018, 7, 1700831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, M.-Y.; Yang, H.-W.; Chuang, C.-K.; Tsai, R.-Y.; Chen, W.-J.; Chuang, K.-L.; Chang, Y.-H.; Chuang, H.-C.; Pang, S.-T. Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 2010, 31, 7355–7363. [Google Scholar] [CrossRef] [PubMed]
- Losic, D.; Yu, Y.; Aw, M.S.; Simovic, S.; Thierry, B.; Addai-Mensah, J. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: Toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 2010, 46, 6323–6325. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 2019, 109, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Thenmozhi, R.; Moorthy, M.S.; Sivaguru, J.; Manivasagan, P.; Bharathiraja, S.; Oh, Y.O.; Oh, J. Synthesis of silica-coated magnetic hydroxyapatite composites for drug delivery applications. J. Nanosci. Nanotechnol. 2019, 19, 1951–1958. [Google Scholar] [CrossRef]
- Cha, B.G.; Kim, J. Functional mesoporous silica nanoparticles for bio-imaging applications. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beker, U.; Cumbal, L.; Duranoglu, D.; Kucuk, I.; Sengupta, A.K. Preparation of Fe oxide nanoparticles for environmental applications: Arsenic removal. Environ. Geochem. Health. 2010, 32, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, A.; Norooz-Asl, R. Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles. Colloids Surf. A 2009, 346, 52–57. [Google Scholar] [CrossRef]
- Figueira, F.; Cavaleiro, J.A.S.; Tomé, J.P.C. Silica nanoparticles functionalized with porphyrins and analogs for biomedical studies. J. Porphyr. Phthalocyanines 2011, 15, 517–533. [Google Scholar] [CrossRef]
- El-Said, W.A.; Fouad, D.M.; Ali, M.H.; El-Gahami, M.A. Green synthesis of magnetic mesoporous silica nanocomposite and its adsorptive performance against organochlorine pesticides. Int. J. Environ. Sci. Technol. 2018, 15, 1731–1744. [Google Scholar] [CrossRef]
- Carvalho, C.M.B.; Alves, E.; Costa, L.; Tomé, J.P.C.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Tomé, A.C.; Cavaleiro, J.A.S.; Almeida, A.; Cunha, A.; et al. Functional cationic nanomagnet—Porphyrin hybrids for the photoinactivation of microorganisms. ACS Nano 2010, 4, 7133–7140. [Google Scholar] [CrossRef]
- Alves, E.; Rodrigues, J.M.M.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S.; Lin, Z.; Cunha, A.; Nadais, M.H.; Tomé, J.P.C.; Almeida, A. A new insight on nanomagnet-porphyrin hybrids for photodynamic inactivation of microorganisms. Dyes Pigm. 2014, 110, 80–88. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167–R181. [Google Scholar] [CrossRef] [Green Version]
- Frey, N.A.; Peng, S.; Cheng, K.; Sun, S. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532–2542. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.-H.; Salabas, E.L.; Schueth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, L.; Lin, Z.; Schneider, R.J.; Esteves, V.I.; Cunha, A.; Tomé, J.P.C. Antimicrobial photodynamic activity of cationic nanoparticles decorated with glycosylated photosensitizers for water disinfection. ChemPhotoChem 2018, 2, 596–605. [Google Scholar] [CrossRef]
- Fernandez, L.; Borzecka, W.; Lin, Z.; Schneider, R.J.; Huvaere, K.; Esteves, V.I.; Cunha, A.; Tome, J.P.C. Nanomagnet-photosensitizer hybrid materials for the degradation of 17β-estradiol in batch and flow modes. Dyes Pigm. 2017, 142, 535–543. [Google Scholar] [CrossRef]
- Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P.A. Applications of supramolecular anion recognition. Chem. Rev. 2015, 115, 8038–8155. [Google Scholar] [CrossRef]
- Stock, R.I.; Dreyer, J.P.; Nunes, G.E.; Bechtold, I.H.; Machado, V.G. Optical chemosensors and chemodosimeters for anion detection based on Merrifield resin functionalized with Brooker’s merocyanine derivatives. ACS Appl. Polym. Mater. 2019, 1, 1757–1768. [Google Scholar] [CrossRef]
- Chaudhuri, T.; Mondal, A.; Mukhopadhyay, C. Benzimidazole: A solid state colorimetric chemosensor for fluoride and acetate. J. Mol. Liq. 2018, 251, 35–39. [Google Scholar] [CrossRef]
- Farinha, A.S.F.; Calvete, M.J.F.; Paz, F.A.A.; Tomé, A.C.; Cavaleiro, J.A.S.; Sessler, J.L.; Tomé, J.P.C. Octatosylaminophthalocyanine: A reusable chromogenic anion chemosensor. Sens. Actuators B 2014, 201, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.M.M.; Farinha, A.A.S.; Tomé, A.C.; Cavaleiro, J.A.S.; Tomé, J.P.C. Highly selective optical chemosensor for cyanide in aqueous medium. Sens. Actuators B 2016, 224, 81–87. [Google Scholar] [CrossRef]
- Connors, K.A. Binding Constants: The Measurement of Molecular Complex Stability; Wiley: New York, NY, USA, 1987; pp. 1–432. ISBN 978-0-471-83083-2. [Google Scholar]
- Tsui, Y.-K.; Devaraj, S.; Yen, Y.-P. Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: A new selective chromogenic and fluorogenic sensor for cyanide ion. Sens. Actuators B Chem. 2012, 161, 510–519. [Google Scholar] [CrossRef]
Pc1 | MSNP-Pc1 | ||
---|---|---|---|
Anion | KDMSO | KDMSO | KWater |
AcO− | 3.65 × 1010 | 5.50 × 107 | n.d |
CN− | 3.41 × 1010 | 8.75 × 108 | 1.47 × 108 |
F− | 6.87 × 1010 | 2.42 × 109 | n.d |
H2PO4− | 3.32 × 1010 | 5.72 × 107 | n.d |
NO2− | 4.18 × 1010 | n.d | n.d |
OH− | 6.35 × 1010 | 1.13 × 109 | 6.73 × 107 |
Pc1 | MSNP-Pc1 | ||
---|---|---|---|
Anion | LoD DMSO | LoD DMSO | LoD Water |
AcO− | 5.00 | 4.59 | – |
CN− | 5.55 | 5.04 | 0.278 |
F− | 3.33 | 3.12 | – |
H2PO4− | 4.76 | 4.22 | – |
NO2− | 7.17 | – | – |
OH− | 3.69 | 3.31 | 0.125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.M.M.; Farinha, A.S.F.; Lin, Z.; Cavaleiro, J.A.S.; Tome, A.C.; Tome, J.P.C. Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors. Sensors 2021, 21, 1632. https://doi.org/10.3390/s21051632
Rodrigues JMM, Farinha ASF, Lin Z, Cavaleiro JAS, Tome AC, Tome JPC. Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors. Sensors. 2021; 21(5):1632. https://doi.org/10.3390/s21051632
Chicago/Turabian StyleRodrigues, João M. M., Andreia S. F. Farinha, Zhi Lin, José A. S. Cavaleiro, Augusto C. Tome, and Joao P. C. Tome. 2021. "Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors" Sensors 21, no. 5: 1632. https://doi.org/10.3390/s21051632
APA StyleRodrigues, J. M. M., Farinha, A. S. F., Lin, Z., Cavaleiro, J. A. S., Tome, A. C., & Tome, J. P. C. (2021). Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors. Sensors, 21(5), 1632. https://doi.org/10.3390/s21051632