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Abstract: In this paper, we present an efficient way to find a gateway deployment for a given
sensor network topology. We assume that the expired sensors and gateways can be replaced and
the locations of the gateways are chosen among the given sensor nodes. The objective is to find a
gateway deployment that minimizes the cost per unit time, which consists of the maintenance and
installation costs. The proposed algorithm creates a cost reference and uses it to find the optimal
deployment via a divide and conquer algorithm. Comparing all cases is the most reliable way to find
the optimal gateway deployment, but this is practically impossible to calculate, since its computation
time increases exponentially as the number of nodes increases. The method we propose increases
linearly, and so is suitable for large scale networks. Additionally, compared to stochastic algorithms
such as the genetic algorithm, this methodology has advantages in computational speed and accuracy
for a large number of nodes. We also verify our methodology through several numerical experiments.

Keywords: wireless sensor networks (WSNs); internet of things (IoT); optimal gateway deployment;
divide and conquer

1. Introduction

Wireless sensor networks (WSNs) consist of sensor nodes and sinks. The sensor nodes
detect physical phenomena and transmit all collected data to a gateway called a sink in a
multi-hop manner according to a designated routing protocol [1]. These WSNs are used in
many areas. For example, collecting and transmitting data by applying internet of things
(IoT) technology makes it easier to manage the power transmission system located in a
dangerous terrain [2]. In addition, sensor networks are applied in various areas, including
human health monitoring [3], home IoT [4], smart factories [5], environmental and weather
information measurement [6], stability measurement of buildings [7,8], and control of
various smart devices [9].

The sensor-based IoT is regarded as one of the key technologies of the Fourth Indus-
trial Revolution. Since the fields that utilize sensor-based IoT are expected to increase
further [10] and the network size also increases [11], the need for optimizing gateway
development emerges [12]. Effective deployment of gateways is also important for the
stability of the entire sensor network [13]. If the gateways are distributed too sparsely,
individual sensors may not be able to transmit data to the gateway after sensing it, which
leads to propagation latency or data loss. On the other hand, if the gateways are dense,
then the lifespan of the network is reduced.

This study deals with an efficient way to find a gateway deployment to minimize the
total cost of a system with a large number of nodes. For a given sensor node topology, we
can choose the gateway locations among the sensor nodes. In general, gateways are more
powerful than sensor nodes, while installation and maintenance costs are more expensive
than sensor nodes [14]. Therefore, determining the number and location of gateways
greatly affects the overall cost and performance of the network. Much literature on optimal
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gateway deployment attempts to find the longest lifetime deployment for a determined
number of sensors and gateways [15]. However, due to recent advances in various delivery
technologies and the miniaturization of sensors, it is easy to replace expired sensors with
new ones. This process can be expressed as a function of cost. Therefore, to minimize
the cost of the entire network, it is reasonable to consider the cost per unit time rather
than maximizing the lifetime of the network with non-replaceable nodes. Additionally, we
consider the gateway as a terminal to simplify our problem, and the communication cost
between terminal points will not be considered. See [14] for related issues.

In this graph model, the simplest way to find the optimal gateway deployment is by
searching all possible locations of the gateways and comparing their costs of all cases under
the connectivity constraints. From this, we can obtain the optimal gateway placement for a
given topology. However, this method takes a lot of computation time. For example, if we
use a personal computer to compare the costs of all possible cases for 30 sensor nodes, it
would take about 3663 days, or about 10 years. Therefore, it is practically impossible to
enumerate all possible cases on a large number of nodes.

We propose a simple iterative algorithm to find a sufficiently efficient gateway de-
ployment in a short time. The main idea is to consider subgraphs and cost references. In
the optimization point of view, by considering cost reference for the subgraphs, we can
get the optimal cost. Therefore, it is easily applicable to the industry. The entire network
is processed in four steps. We find the optimal location of the gateway by dividing the
network based on the communication distance in the first step and the cost in the second
step. In the third step, we use a cost reference and some kind of puzzle-solving method to
find an effective deployment. After the third step, if there is a sub-network in which one
gateway takes charge of sensor nodes higher than a certain level, then additional gateways
are placed in the sub-network.

We note that stochastic methodologies have been widely used in recent years. How-
ever, they have a large fluctuation in the speed and accuracy of calculation depending
on the network topology, and their computation time is proportional to the square of the
number of nodes and the number of generations. Considering various realistic constraints
also increases the amount of computation cost. In addition, there is a problem of finding
an appropriate random parameter for each topology, which may make it difficult to apply
these kinds of methodologies to practical problems.

However, the accuracy and calculation speed of our methodology are relatively uni-
form regardless of the shape of the topology and the amount of computation is proportional
to the number of nodes. Therefore, our methodology is suitable to be applied to a network
with a large number of nodes. To verify this, we provide comparisons between the ge-
netic algorithm and our methodology. Moreover, in our algorithm, we compute the cost
reference only once. We can then use it repeatedly for different topologies to reduce the
computation time.

The rest of this paper is organized as follows: In Section 2, we provide a brief review
of the research related to gateway deployment. In Section 3, we define a cost function
and generate a cost reference. The proposed method for gateway deployment is described
in Section 4. In Section 5, we compare the suggested method in this paper and existing
methods through simulations. Finally, in Section 6, we complete the paper with a discussion
and conclusions.

2. Related Works

As the field of application of WSNs is diverse, WSNs of various structures are utilized.
For this reason, various gateway deployment methods have been proposed. They are
broadly divided into evolutionary and deterministic methods. Here, we review genetic
algorithms and recursive algorithms for the evolutionary methodology and degree-based
algorithms and linear programming for the deterministic methodology.
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2.1. Evolutionary Algorithms

The genetic algorithm is one of the most frequently used methods for optimization
problems. For example, the genetic algorithm-based self organizing network clustering
(GASONeC) method is used for selecting optimal cluster headers among sensor nodes.
In this selection process, GASONeC considers the number of sensor nodes and the dis-
tances between the selected nodes and the remaining sensor nodes as fitness function
variables [15]. It also can be applied to gateway deployment problems assuming that the
energy of the selected node is infinite. Its methodology is simple so that it can be easily
applied to a variety of problems. However, for each calculation, this method may not get
the same result, since it uses a random probability to select the location of the gateways.
Moreover, as the number of sensor nodes increases, the complexity is increased significantly.

The genetic algorithm for hop count optimization (GAHO) also uses the genetic
algorithm to minimize data latency which causes data transmission delay and increases
the possibility of packet loss [16]. The GAHO divides the entire network into clusters, and
deploys a gateway for each cluster. The genetic algorithm is applied to divide the entire
network into clusters. After calculating the central location of each cluster, it is used as the
temporary location of the gateway. The area around the temporary location is divided into
several grid areas. The gateway is placed in the grid cell that has the maximum number
of sensors. In [16], the genetic algorithm is not used to find the location of the gateway,
but only to form clusters. Here, one gateway must be unconditionally arranged for each
cluster. Therefore, when the cluster configuration is not optimal, it is difficult to optimize
the gateway arrangement.

In selective gateway and reinforcement learning-based routing (SGRL) method [17], a
gateway deployment is proposed to increase the network stability between the gateways
by avoiding route flapping. Moreover, taking into account the loss ratio, interference ratio
and load at the gateways, this methodology selects the gateway deployment by using a
reinforcement learning-based algorithm.

In [18], the authors consider the minimum set covering the problem and propose a
recursive algorithm. This method is the most similar to our algorithm. Each sensor has its
own transmission range because of its lifetime. The algorithm contains three main parts:
decomposition, multiple search, and compression. In the decomposition step, it finds the
covering that covers all sensors and finds duplicated sets that cover the same sensor in the
multiple search step. Finally, the over installed gateway is eliminated in the compression
step. This method repeats the process until the algorithm finds the minimal coverings.

2.2. Deterministic Algorithms

The gateway deployment problems can be formulated as a maximization problem
for the objective function with constraints. Linear programming (LP) or integer linear
programming (ILP) are used to find the optimal locations for gateways.

In the heuristic internet gateway (H-IGW) placement method [19], deploying gateways
is treated as a linear program issue and two algorithms are proposed for cost-effective
gateway deployment. Degree-based greedy dominating tree set partitioning (GDTSP)
sets the node with the highest connection degree as a gateway, and weight-based GDTSP
sets the node with the most paths from all other nodes as a gateway. The two algorithms
complement a large amount of computation for deploying gateways to large-scale networks
using linear formulations. The H-IGW placement method assumes that there is no power
constraint. For a given natural number R ∈ N, this method divides the entire graph into
subgraphs with an R-hop diameter, and places the gateway for each subgraph by selecting
degree-based or weighted-based GDTSP.

The ILP model is used in [20] to find the optimal gateway placement when the number
of gateways is fixed. In [14], the objective function is set up to minimize installation cost
and the number of overload critical nodes with coverage flow and balance constraints. The
authors used an ILP model and they also proposed a heuristic algorithm to tackle large
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scale networks. See also [21] and its references for numerous literatures dealing with ILP
or LP problem.

The multiple-gateway deployment (MGD) method deploys gateways where the av-
erage distance between the nodes and the gateways is minimized [22]. The distance is
calculated based on the hop count and the expected number of transmissions. In the MGD
method, the target network is regarded as a connected graph G(V,E) and is divided into k
groups that have the same number of vertices. Then this method formulates k connected
trees from k groups and selects a gateway for each tree to minimize the sum of the distance
between the gateway and the rest nodes on each tree.

The zero degree (ZD) algorithm method aims to increase efficiency by minimizing the
number of gateways to reduce the total number of clusters and the number of hops between
the gateway and the other nodes [23]. A gateway is selected by the ZD-S algorithm or the
ZD -L algorithm. The ZD-S algorithm selects the node with the fewest general nodes that
can be reached with one hop as a gateway, and the gateways are placed close to each other.
The ZD-L algorithm selects the node with the highest connectivity with the neighboring
nodes as a gateway, and the gateways will be located far from each other.

These gateway deployment methods take a lot of time to get a solution. Evolutionary
algorithms spend a little time relatively, but because they are based on probability, the
solution obtained is often not optimal. Also, the solution is unreliable because the result is
different each time the algorithm is applied to the same network topology. The method
proposed in this paper shows near-optimal results while consuming a short time by using
divide-and-conquer algorithm. The results are reliable because they are always the same
every time when this method is applied for the same network topology.

3. Network Model and Cost Function

In this paper, we find the most cost-effective gateway deployment for a given network
topology. The two dimensional and single-tier multi-hop network is considered. We
assume that for the fixed flat architecture network, the collected data in some sensor
node are relayed to a gateway as the terminal base station and there is no communication
between gateways. In addition, there are many factors regarding cost and efficiency. The
other settings are described as follows:

(1) Sensor nodes and gateways are replaced when their lifetimes are over. Thus, repetitive
reinstallation costs occur.

(2) The maintenance cost depends only on the number of hops between nodes
and gateways.

(3) For a given sensor node network, we choose the gateway locations among the sen-
sor. nodes.

(4) Efficiency is sufficient if the information from each node can be transmitted to at least
one gateway.

(5) All sensors produce and transmit the same amount of information with the same fre-
quency, and consume the same amount of energy each time they
transmit information.

(6) The depreciation costs are incurred in proportion to the amount of information
transmitted. Then the energy consumption and depreciation cost of each node and
gateway depend on the number of hops between the nodes and gateways.

Next, we need to define the cost function. The cost function reflects the energy
consumed and the lifespans of the sensor nodes and gateways. For a given set of sensor
nodes Vs = {x1, . . . , xn} and gateway nodes Vg = {y1, . . . , ym}, the entire network is
represented by a graph G(V, E) consisting of the set of edges E connecting each node and
the set of vertices V = Vs ∪ Vg = {x1, . . . , xn, y1, . . . , ym}. For each sensor node xi, only
one gateway for receiving information will be assigned We denote the assigned gateway
of xi by f(xi). Thus, f is a function from Vs to Vg. In the graph G(V, E), if the minimum
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number of hops connecting two nodes vi and vj is expressed as H[vi,vj], the sum of energy
consumption and depreciation cost of all sensor nodes is given by:

Costs = ∑n
i=1 cse(H[xi, f(xi)]). (1)

where cse is a function that expresses the sum of the average energy consumption cost of
the sensor node for each hop per unit time, and the average depreciation cost of one sensor
node over its lifespan. Here, cse contains the installation cost. In a similar way, the set
of sensor nodes connected to gateway yi is simply expressed by f−1(yi). Therefore, for
number of gateways m ∈ N, the sum of energy consumption and depreciation costs of all
gateways is given by:

Costg = m cgi + ∑m
j=1 ∑x∈ f−1(yj)

cge
(

H
[
yj, x

])
, (2)

where cge is a function that express the sum of the average energy consumption cost for
each hop count of the gateway per unit time and the average depreciation cost of one
gateway over its lifespan, and cgi is the installation cost of one gateway. In the cost function,
to apply this method to real situation, the parameters cse, cge, and cgi are calculated by a
statistical method. For example, the estimated values for cgi is obtained by dividing the
installation cost by the average usage time.

The entire topology can be divided into several subgraphs centered on each gateway.
The total cost for the entire topology is the same as the sum of the subgroup costs, since
only one gateway will be assigned for each sensor node. Thus, if our partitioning is proper
and we find a deployment for the minimum cost in each subgraph, then we can obtain the
total minimum cost for the entire topology. This method has the advantage of shortening
the computation time. Finding the optimal placement for the whole network takes a lot of
time, but repeatedly finding the optimal placement for the subgraphs does not take much
time. However, if it is not properly divided into subgroups, there may be a lot of differences
from the ideal optimal cost. Therefore, we need to divide the groups appropriately to
obtain a deployment close to the ideal optimal cost in a short time.

We next create a cost reference using the Equations (1) and (2). The cost reference is
information for all topology cases that can be generated for each number of sensor nodes
and the location of the gateway that minimizes the cost in a given topology. We let p be the
gateway capacity, i.e., the maximum number of sensor nodes that can be connected to one
gateway is p. Then, the cost reference has information from 1 to p sensor nodes. Figure 1
is an example of the cost reference. The gray circles are sensor nodes and red circles are
gateway locations that minimize cost.

In Figure 1, in the case of one sensor node, it is only the case that the corresponding
sensor node is set as a gateway. In the case of two sensor nodes, there is only one topology,
and there is no difference in cost when either of them is designated as a gateway. In the
case of three sensor nodes, the topology is one, and it is optimal that the sensor node
at the center is designated as a gateway. In the case of 4 sensor nodes, there are two
topology cases, and the ideal location of the gateway for each topology is marked with
red in Figure 1. In the case of 5 sensor nodes, the number of topology cases is 4, and the
optimal gateway designation position for each topology is also marked with a red gateway.
As above, all topology cases from 1 to p sensor nodes and the optimal gateway location for
each case can be found and stored in the cost reference.
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Figure 1. Example of the cost reference.

4. Divide and Conquer Algorithm with a Reference Deployment Set

The most obvious way to find the optimal gateway deployment is to compare the
total costs of all possible cases. The number of gateways that can be installed here ranges
from one to the total number of sensor nodes. This method takes into account all possible
gateway deployments, so the optimal result must be obtained. However, as the number
of sensor nodes increases, the computational amount increases exponentially. Therefore,
when the number of nodes is rather large, it is almost impossible to obtain the optimal
gateway deployment by this method. In this section, we propose an efficient method to
obtain the optimal gateway deployment in a short time for use in real industries. The
proposed method is a kind of ‘divide and conquer’ algorithm.

Our method is divided into four steps. In the first and second steps, the sensor nodes
are classified based on the communication distance and the cost function. In the third
step, a gateway deployment is found by dividing the sensor nodes using the defined cost
function. In the fourth step, if one gateway is connected to more sensor nodes than a
given standard, a gateway is additionally arranged in the corresponding zone. We note
that although this method does not achieve the smallest cost deployment in all cases,
it is possible to obtain a sufficiently efficient gateway deployment in a short time. The
GASONeC, GAHO, SGRL, H-IGW placement, MGD, and ZD algorithms, which have been
studied for gateway deployment, also do not lead to an ideal optimal result, but they allow
sufficiently effective placements in a relatively short time.

4.1. (Step 1) Node Classification Based on the Communication Distance

In this step, the entire network is divided based on the communication distance.
Since data are transmitted in a multi-hop manner, we must install a gateway for each
isolated node individually. Therefore, these kinds of nodes should be considered prior to
gateway deployment.

Figure 2 shows the methodology before and after going through the first step. The
gray points represent the sensor nodes. In Figure 2, the orange dotted circles indicate
the communication range of the corresponding sensor nodes. Sensors 1 and 2 cannot
communicate with sensor 3. Therefore, sensor 3 must be set as a gateway for the connection
constraint. With this motivation, in the first step, the network is divided into several
subgraphs so that nodes within a communication range are defined as a group. For
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example, in Figure 2, it is divided into three groups: a group containing sensors 1 and 2, a
group containing sensor 3, and a group containing sensors 4 and 5.

Figure 2. Division based on the communication distance in Step 1.

4.2. (Step 2) Node Classification Based on the Cost Function

In this step, the network is divided once more based on the cost function in the
subgroup classified in the previous step. Here, the cost of each topology is calculated as the
sum of Equations (1) and (2) defined in Section 3. From a given group obtained in Step 1,
we generate an undirected graph looking for a combination of sensor nodes and gateways
that make up the topology and minimizes its cost.

Let p be the maximum number of sensor nodes that can be connected to one gateway
and q be the maximum number of gateways. Then we generate all sequences of numbers
such that each number is less than p and the sum of all numbers in each sequence is the
total number of the subgraph. Next, we remove the sequences that are longer than q. The
numbers in the sequence will be one of the number of nodes in a subgroup. Then we can
calculate the minimum cost for each sequence by referring to the cost reference obtained in
the previous section.

For example, Figure 3 shows the topology of the leftmost group after the first step in
Figure 2. It consists of a total of 12 sensor nodes. When the maximum sensor node of each
combination is p = 9 and the maximum number of gateway arrangements is q = 5, there are
several cases in which 12 sensor nodes are divided. The smallest unit can be a combination
of 12 groups with one sensor node, such as:

(1,1,1,1,1,1,1,1,1,1,1,1).
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Figure 3. Generated tree from the subgraph after Step 1.

Next, it can be divided into combinations of two groups having one or two sensor
nodes such as:

(2,1,1,1,1,1,1,1,1,1,1), (2,2,1,1,1,1,1,1,1,1), (2,2,2,1,1,1,1,1,1),

(2,2,2,2,1,1,1,1), (2,2,2,2,2,1,1), (2,2,2,2,2,2).

Combinations of one, two, and three sensor nodes are as follows:

(3,2,1,1,1,1,1,1,1), (3,3,1,1,1,1,1,1), (3,3,2,1,1,1,1),

(3,3,2,2,1,1), (3,3,2,2,2), (3,3,3,1,1,1), (3,3,3,2,1).

Similar to the above cases, we can obtain all possible combinations. Since the
maximum number of gateways is 5, we remove the sequences that are longer than 5.
For example:

(1,1,1,1,1,1,1,1,1,1,1,1), (2,1,1,1,1,1,1,1,1,1,1), (2,2,1,1,1,1,1,1,1,1), (2,2,2,1,1,1,1,1,1),

(2,2,2,2,1,1,1,1), (2,2,2,2,2,1,1), (2,2,2,2,2,2), (3,2,1,1,1,1,1,1,1), (3,3,1,1,1,1,1,1),

(3,3,2,1,1,1,1), (3,3,2,2,1,1), (3,3,2,2,2), (3,3,3,1,1,1), . . .

Then we calculate the lowest cost of each sequence and assign it to that sequence.

4.3. (Step 3) Topology Reconstruction

In this step, we use the combinations obtained in the previous step as puzzle pieces.
Then we try to reconstruct the network graph by assembling the combinations. We fill the
topology with the puzzle pieces in order beginning with the smallest cost. We have to check
whether the subgraph can be reconstructed with the previous combinations or not, because
the smallest cost case may not be constructed in the subgraph. Additionally, if an isolated
sensor node occurs during reconstruction, the combination is corrected and applied again.
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Therefore, when an isolated sensor node occurs, the sensor node is necessarily included
and divided accordingly.

For example, Figure 4 begins by substituting the combination of (5,5,2), which is the
least cost case in Figure 3, and finally results in reconfigurable (5,7). First, we start with
sensor 1 and make it into one subgroup up to 5, and then we designate sensor 2 as a
gateway by the cost reference. The cost is also calculated according to the cost reference.
Thereafter, starting from sensor 7, the group is composed of 5 sensor nodes. If sensors 6, 7,
8, 9, and 10 are included in order, 11 and 12 are isolated. See the left figure in Figure 4. The
red dotted line represents the groupings with the lowest cost. In this case, a total of seven
sensor nodes are grouped, including sensor nodes that can be isolated. According to the
cost reference, designating sensor 10 as a gateway is the minimum cost case.

Figure 4. Division based on the cost function and optimal location of a gateway.

4.4. (Step 4) Additional Arrangement

In this step (Algorithm 1), if one gateway is responsible for more than a certain
number of sensor nodes in the previous result, the gateway is additionally placed in the
corresponding zone. Here, the standard can be freely set by the administrator. When
applying an algorithm to avoid isolated nodes in the previous step, too many nodes may
be connected to one gateway. The reason why gateways are additionally deployed in this
step is to compensate for this phenomenon.

Algorithm 1. Additional Arrangement

1: Generate a cost reference ‘C = {c1, c2, ... , cm}’
2: ∀c

i ∈ C, calculating the cost by sum of equation (a) and equation (b) defined in Section 3.
3: ∀c

i ∈ C, save optimal position of gateway
4: the entire network is divided into ‘n’ subgraphs S = {s1, ..., sn}
based on the communication distance
5: for i = 1, 2, . . . , n{
6: for j = 1, 2, . . . , q{
7: while(find minimum sum of equation (a) and equation (b)) {
8: divide si into subgraphs ga, 1 ≤ a ≤ q with |ga| ≤ p.
9: }
10: }
11: }
12: if (there is isolated sensor node){
13: include that sensor node to ga
14: }

m: the number of cost reference
p: capacity of gateway
q: the maximum number of gateway arrangements
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5. Numerical Simulations

In this section, we will numerically determine the optimal gateway deployment using
the described method in Sections 3 and 4. By comparing all possible cases, the optimal
gateway deployment for a given topology can be obtained. We first compare the times
for the method presented in this paper and the method considering all cases. The time
refers to the time spent to obtain a solution for deploying gateways by applying the
methodology. Next, we present the numerical results to compare the genetic algorithm
and our algorithm. As we pointed out in the previous section, the proposed algorithm
may not give the optimal gateway placement but provides a result sufficiently close to
the optimal. Therefore, to check the validity for the total cost, we compare the proposed
method with the method checking all cases that spends much time to obtain the result but
gives the exact optimal placement for the gateway. By comparing the results obtained from
the proposed method and checking all cases, we can check that how close the proposed
method to optimal placement. A genetic algorithm is a comprehensive algorithm for
graphical models. Therefore, we compare the proposed method with the genetic algorithm
in terms of cost and computation time.

5.1. Comparison with the Method to Check All Cases

For simulation, we use Matlab and set the cost functions as follows:

cse(x) = 3 +
√

x, cgi = 10, cge =
√

x, p = 9, q = 5. (3)

In our methodology, when one gateway is responsible for more than half of the
entire topology in the previous result, the gateway will be additionally placed in the
corresponding zone. The topology is randomly generated by increasing the number of
sensor nodes from 11 to 18 by one. Tables 1 and 2 show the averages of the time taken to
find the gateway deployments for five topologies per number of sensor nodes. Table 1 is
the result of finding the optimal gateway layout among all cases, and Table 2 is the result
of applying the method proposed in this study to find the optimal gateway layout.

Table 1. Average spending time to check all cases.

The Number of Sensor Nodes

11 12 13 14 15 16 17 18

Number
of

Simula-
tion

Runs

1 45.33768 108.856 252.2552 588.867 1395.777 3346.086 7030.184 16088.71

2 46.4142 108.5474 253.049 649.4481 1356.374 3065.544 6912.407 15885.37

3 45.92477 106.6081 252.0893 630.1877 1403.543 3412.523 7123.94 15923.11

4 45.42486 107.6882 256.8998 639.413 1389.235 3387.412 7111.85 15488.22

5 45.09183 108.1149 258.3735 640.1325 1394.432 3314.324 6899.523 16183.2

Average(s) 45.63867 107.9629 254.5334 629.6096 1387.872 3305.178 7015.581 15913.72

Table 2. Average spending time for the proposed method.

The Number of Sensor Nodes

11 12 13 14 15 16 17 18

Number
of

Simula-
tion

Runs

1 0.695669 1.851832 4.0123 5.398969 5.567255 7.838274 11.45018 14.1234

2 0.489427 1.917904 3.221347 5.350707 6.392298 8.11234 12.4214 14.1256

3 0.554424 2.062249 3.7213 6.063138 6.109328 7.9934 12.15124 15.92189

4 0.431641 1.973217 4.248372 5.23412 7.1143 8.0124 11.94673 15.1235

5 0.585471 1.734261 3.612864 5.28442 6.9932 8.412354 10.93876 15.7315

Average(s) 0.551326 0.551326 1.907893 3.763237 5.466271 6.435276 8.073754 11.78166
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In the case of Table 1, whenever a sensor node is added, it takes about 2.28 times
more time to find the gateway deployment. Figure 5 shows the average spending times
for the method to check all cases. These results show that the spending time increases
exponentially as the total number of nodes increases. When calculating for 21 sensor nodes,
it takes about 2.2 days. This is expected to take about 10 years when targeting 30 sensor
nodes. Therefore, it is impossible to obtain a gateway arrangement by analyzing virtually
all cases.

Figure 5. Average spending time to check all cases.

In the case of Table 2, as the number of sensor nodes increases, the time required
increases by about 1.95 s. Figure 6 shows the average spending time for the proposed
method. This result shows that the spending time increases linearly as the total number of
nodes increases. Even when targeting 30 sensor nodes, it takes about 24 s.

Figure 6. Average time spent by the proposed method.
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Figure 7 compares the costs in the method to check all cases and the method proposed.
In Figure 7, it can be seen that there is little difference between the two methods in terms of
the cost. In addition, when considering the optimal gateway placement result in terms of
the time required, the method considering all cases is not meaningful because it cannot be
applied in the actual industry. Considering the method proposed in the present invention
in terms of time required, it has an advantage over the existing method.

Figure 7. Comparison of the costs in two methods.

Figure 8 shows the results of applying the method proposed in this study to 20 sensor
nodes. A total of six gateways are deployed, and it takes 21.19985 s to obtain the result for
gateway deployment. The gateway deployment in this case is the same as that obtained by
checking all cases.

Figure 8. Example for 20 sensor nodes.

Figure 9 shows the results of applying the method proposed in this study to 30 sensor
nodes. A total of six gateways are deployed, and it took 24.08383 s to obtain the result for
gateway deployment. The gateway deployment in this case is the same as that obtained by
checking all cases.
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Figure 9. Example for 30 sensor nodes.

As a result, the proposed method spends time less compared to method that check all
cases, but there is little difference in cost. The proposed method often produces the same
results as method that checking all cases. Also, although not the most optimal result, the
difference is very slight.

5.2. Comparison with the Genetic Algorithm

We present a comparison with the genetic algorithm. Figure 10 is a topology of 30
sensor nodes. Figure 11 contains the results of numerical simulations using the genetic
algorithm and our methodology for the topology in Figure 10. We use the parameters in
(3) for the cost function. We also assume that if one gateway is responsible for more than
half of the entire topology in the previous result, the gateway is additionally placed in the
corresponding zone.

Figure 10. Topology of 30 sensor nodes.
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Figure 11. The comparison for the genetic algorithm (average for 5 times) and our methodology for
30 nodes topology in Figure 10.

In the genetic algorithm, we set the crossover probability as 0.8 and the mutation
probability as 0.006. The iteration number is 100. Since the genetic algorithm produces
different results for the number of the initial pool, we experimented with increasing the
number of pools such as 5, 10, 20, 30. The experiment was executed five times for each
pool, and Figure 11 is based on the average value of the five simulations.

From these simulations, we observe that the cost of the deployment found by our
methodology is lower than the cost of the deployment found by the genetic algorithm.
Moreover, the computation time of our methodology is less than one of the genetic algo-
rithms. We note that while our method always yields the same results, the genetic algorithm
produces different results for each trial, since it depends on a random process and the given
probabilities. Therefore, to obtain the optimal results for gateway deployment, it is neces-
sary to iteratively experiment with adjusting the crossover and mutation probabilities. This
process consumes a lot of time, but it does not guarantee that the deployment is optimal.

Moreover, in the genetic algorithm, it is difficult to consider the predetermined capacity
of the gateway, which is the number of nodes that can be handled by each gateway.
However, for each iteration in the genetic algorithm, the gateway is randomly chosen by
the already determined parameters so that we cannot control the total number of sensor
nodes that connect to one gateway. For example, we consider the topology in Figure 10
with the parameters in (3).

The genetic algorithm with the crossover probability = 0.8, the mutation
probability = 0.006, the iteration number = 100, and the number of initial pools = 30 gives
the gateway deployment in Figure 12. Since the capacity of the gateway in Figure 12 is 9
these three gateways cannot control all nodes of this network and this gateway deployment
cannot be applied. On the other hand, our methodology produces the gateway deployment
as shown in Figure 13 by applying the capacity which can be applied.
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Figure 12. Gateway deployment by the genetic algorithm.

Figure 13. Gateway deployment by the proposed algorithm.

We additionally provide a comparison of the genetic algorithm and our methodology
for the 40 nodes topology in Figure 14. See Figure 15 for the comparison. We also set the
crossover probability = 0.8, the mutation probability = 0.006, and the iteration number = 100
and we increase the number of pools as 5, 10, 20, 30 with the same cost function as in the
previous case. The experiment was executed five times for each pool, and Figure 15 is
based on the average value of five executions. For the genetic algorithm, when the number
of the pools is small, the result may be limited because the result is produced by sampling
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from the pool. Therefore, we cannot obtain the lowest cost case. As the number of pools
increases, the cost decreases, but the computation time increases. Because the combination
of samples increases. On the contrary, the outcome of the proposed method is consistent.

Figure 14. Topology of 40 sensor nodes.

Figure 15. The comparison for the genetic algorithm and our methodology for 40 nodes topology in
Figure 14.

6. Conclusions

In this paper, we propose a method of gateway deployment in WSNs. The proposed
method is divided into four steps to arrange the gateway. With the divide and conquer
method, the entire topology is divided based on the communication range, and the divided
topology is divided once again based on the cost function. Then a gateway is added to



Sensors 2021, 21, 1732 17 of 18

areas where there are many connected sensor nodes. The method proposed in this paper
is advantageous for large size networks due to the small amount of calculations needed.
The main contribution of this study is to determine a gateway deployment that is close
to the ideal gateway deployment in a short time. Additionally, it makes WSNs more
cost-efficient. Moreover, the methodology in this paper would be combined with other
stochastic algorithms described in Section 2 to obtain better results when considering the
hybrid methodology. In addition, it is applicable to more general optimization problems on
graphs of complex structures, such as two-tier problems. For example, there are hospitals
with many wireless devices from patients and medical staff, as well as a power grid
consisting of numerous sensors over a large area.

On the other hand, while our algorithm provides an efficient solution to the single-
objective problem, its application to a multi-objective problem seems to require further
research. We note that lifetime is regarded as an installation cost because sensors can
be replaced in this paper. However, in a sensor-irreplaceable case, we should consider a
multi-objective function that takes into account both lifetime and installation cost. Two-tier
or measuring efficiency problem is also considered as a multi-objective problem. For these
cases, more study is needed to apply a divide and conquer algorithm. Finally, in the case
of the stochastic algorithm such as the genetic algorithm, there are degrees of freedom for
generation and number of iterations, but our methodology lacks the degrees of freedom
for problem solving. The proposed method is well established in most cases. However, we
expect that the results could not sufficiently close to optimal if the network is extremely
linear. These issues will be considered in our future research.

Author Contributions: Conceptualization, S.-H.C. and H.S.; Formal analysis, B.I.H.; Investigation,
I.R.; Methodology, S.-H.C. and Y.J.; Software, Y.J.; Validation, Y.J.; Visualization, H.S.;
Writing—original draft, Y.J.; Writing—review & editing, S.-H.C., H.S., B.I.H. and I.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by Korea Electric Power Corporation (Grant number: R18XA02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: There is no conflict of interest.

References
1. Rendy, M.; Andini, E.S.; Feblia, U.F.S.; Tjahjo, A. Simulation and Analysis of Energy Consumption for S-MAC and T-MAC

Protocols on Wireless Sensor Network. In Proceedings of the IEEE Asia Pacific Conference on Wireless and Mobile (AP-WiMob),
Bandung, Indonesia, 27–29 August 2015; pp. 142–146.

2. Ou, Q.; Zhen, Y.; Li, X.; Zhang, Y.; Zeng, L. Application of internet of things in smart grid power transmission. In Proceedings of
the 2012 3rd FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing, MUSIC 2012, Vancouver, BC,
Canada, 26–28 June 2012; pp. 96–100.

3. Gu, C.; Rice, J.A.; Li, C. A wireless smart sensor network based on multi-function interferometric radar sensors for structural
health monitoring. In Proceedings of the 2012 IEEE Topical Conference on Wireless Sensors and Sensor Networks, Santa Clara,
CA, USA, 15–18 January 2012; pp. 33–36.

4. Yang, T.-Y.; Yang, C.-S.; Sung, T.-W. A Dynamic Distributed Energy Management Algorithm of Home Sensor Network for Home
Automation System. In Proceedings of the 2016 Third International Conference on Computing Measurement Control and Sensor
Network (CMCSN), Matsue, Japan, 20–22 May 2016; pp. 174–177.

5. Lee, S.C.; Jeon, T.G.; Hwang, H.-S.; Kim, C.-S. Design and Implementation of Wireless Sensor Based-Monitoring System for Smart
Factory. In Proceedings of the Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4706,
pp. 584–592.

6. Yawut, C.; Kilaso, S. A wireless sensor network for weather and disaster alarm systems. In International Conference on Information
and Electronics Engineering; IPCSIT: Bangkok, Thailand, 6 May 2011; pp. 155–159.

7. Ceriotti, M.; Mottola, L.; Picco, G.P.; Murphy, A.L.; Guna, S.; Corra, M.; Pozzi, M.; Zonta, D.; Zanon, P. Monitoring heritage
buildings with wireless sensor networks: The Torre Aquila deployment. In Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009; pp. 277–288.



Sensors 2021, 21, 1732 18 of 18

8. Anastasi, G.; Re, G.L.; Ortolani, M. WSNs for structural health monitoring of historical buildings. In Proceedings of the 2009 2nd
Conference on Human System Interactions, Catania, Italy, 21–23 May 2009; pp. 574–579.

9. Li, M.; Lin, H.-J. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power
Line Communications. IEEE Trans. Ind. Electron. 2015, 62, 4430–4442. [CrossRef]

10. Wang, L.; Zhao, W.; Li, Y.; Qu, Y.; Liu, Z.; Chen, Q. Sleep-supported and Cone-based Topology Control Method for Wireless
Sensor Networks. In Proceedings of the 2008 IEEE International Conference on Networking, Sensing and Control, Hainan, China,
6–8 April 2008; pp. 1445–1448.

11. Wu, F.; Wu, T.; Yuce, M.R. Design and Implementation of a Wearable Sensor Network System for IoT-Connected Safety and
Health Applications. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland,
15–18 April 2019; pp. 87–90.

12. Alphonsa, A.; Ravi, G. Earthquake early warning system by IOT using Wireless sensor networks. In Proceedings of the
2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India,
23–25 March 2016; pp. 1201–1205.

13. Nojeong, H. Mixed Deployment Methods for Reinforcing Connectivity of Sensor Networks. J. Inst. Electron. Inf. Eng. 2014, 51,
169–174.

14. Capone, A.; Cesana, M.; De Donno, D.; Filippini, I. Deploying multiple interconnected gateways in heterogeneous wireless sensor
networks: An optimization approach. Comput. Commun. 2010, 33, 1151–1161. [CrossRef]

15. Yuan, X.; Elhoseny, M.; El-Minir, H.K.; Riad, A.M. A Genetic Algorithm-Based, Dynamic Clustering Method Towards Improved
WSN Longevity. J. Netw. Syst. Manag. 2016, 25, 21–46. [CrossRef]

16. Youssef, W.; Younis, M. Intelligent Gateways Placement for Reduced Data Latency in Wireless Sensor Networks. In Proceedings
of the 2007 IEEE International Conference on Communications, Glasgow, Scotland, 24–28 June 2007; pp. 3805–3810.

17. Boushaba, M.; Hafid, A.; Maach, A.; Elghanami, D. SGRL-Selective Gateway and Reinforcement Learning-based routing for
WMN. In Proceedings of the 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA),
Marrakech, Morocco, 17–20 November 2015; pp. 1–8.

18. Xu, K.; Wang, Q.; Hassanein, H.; Takahara, G. Optimal wireless sensor networks (WSNs) deployment: Minimum cost with
lifetime constraint. In Proceedings of the WiMob’2005, IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications, Montreal, QC, Canada, 22–14 August 2005; Volume 3, pp. 454–461.

19. He, B.; Xie, B.; Agrawal, D.P. Optimizing the Internet Gateway Deployment in a Wireless Mesh Network. In Proceedings of the
2007 IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, Pisa, Italy, 8–11 October 2007; pp. 1–9.

20. Wong, J.L.; Jafari, R.; Potkonjak, M. Gateway placement for latency and energy efficient data aggregation [wireless sensor
networks]. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA,
16–18 November 2004; pp. 490–497. [CrossRef]

21. Younis, M.; Akkaya, K. Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks
2008, 6, 621–655. [CrossRef]

22. Xia, M.; Owada, Y.; Inoue, M.; Harai, H. Multiple-gateway deployment for wired/wireless converged access networks. In
Proceedings of the 2010 IEEE 4th International Symposium on Advanced Networks and Telecommunication Systems, Mumbai,
India, 16–18 December 2010; pp. 79–81. [CrossRef]

23. Seyedzadegan, M.; Othman, M.; Ali, B.M.; Subramaniam, S. Zero-Degree algorithm for Internet GateWay placement in backbone
wireless mesh networks. J. Netw. Comput. Appl. 2013, 36, 1705–1723. [CrossRef]

http://doi.org/10.1109/TIE.2014.2379586
http://doi.org/10.1016/j.comcom.2010.01.004
http://doi.org/10.1007/s10922-016-9379-7
http://doi.org/10.1109/lcn.2004.60
http://doi.org/10.1016/j.adhoc.2007.05.003
http://doi.org/10.1109/ants.2010.5983535
http://doi.org/10.1016/j.jnca.2013.02.031

	Introduction 
	Related Works 
	Evolutionary Algorithms 
	Deterministic Algorithms 

	Network Model and Cost Function 
	Divide and Conquer Algorithm with a Reference Deployment Set 
	(Step 1) Node Classification Based on the Communication Distance 
	(Step 2) Node Classification Based on the Cost Function 
	(Step 3) Topology Reconstruction 
	(Step 4) Additional Arrangement 

	Numerical Simulations 
	Comparison with the Method to Check All Cases 
	Comparison with the Genetic Algorithm 

	Conclusions 
	References

