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Abstract: Soil crusts and surface roughness are properties which are highly dynamic in both space
and time that change in response to biotic processes, meteorological conditions and farming opera-
tions. These factors, however, are difficult to quantify and are usually described using simplified
expert-based classes. This hampers a clear identification of the controlling factors and their relation to
soil erosion and sediment generation processes. The availability of new small portable multispectral
cameras offers the potential to study soil surface dynamics at a high spatial and temporal resolution.
The objective of this study was to analyse the relationship between soil crusting, represented by
cumulative rainfall kinetic energy, and soil surface reflectance, as derived from vis-NIR multispectral
imaging. We designed a series of rainfall-soil surface experiments to disentangle the effects of soil
crusting on spectral reflectance factors from those related to surface micro-scale roughness. Partial
least squared regression (PLSR) models were developed to predict both kinetic energy and roughness
from multispectral images. We evaluated different roughness removal methods which were based on
the transformation of reflectance through standard normal variate (SNV) and roughness threshold-
ing using high resolution digital elevation models. Furthermore, we assigned the light scattering
effect related to roughness in the multispectral spatial domain by calculating the inter-quantile
range of the reflectance values in a kernel. Our experiments and workflow demonstrate that it is
possible to model crust development, using rainfall kinetic energy as a proxy, from vis-NIR based
multispectral imaging.

Keywords: soil crusting; multispectral imaging; soil roughness; photogrammetry; rainfall
kinetic energy

1. Introduction

There have been persistent issues in relation to the reliability of runoff and soil loss
assessments and their scientific interpretations. A long-standing challenge in the field
has been the observation that the cause of soil surface runoff is non-unique; i.e., the same
apparent soil surface and rainfall conditions do not necessarily result in the same runoff
and erosion rate [1–3]. This is convincingly demonstrated by data from replicate plots
where the variability of runoff and erosion response reaches up to two orders of magnitude
difference [4,5]. This feature makes the robust assessment of soil runoff/erosion and
subsequently landscape management difficult; more importantly, this calls for further
scrutiny of other contributing factors. Small-scale experimental [1,6–9] and modelling [10]
have suggested that micro-scale properties of the first few centimetres of the soil surface
strongly affects its infiltration capacity and erodibility. These studies showed that soil
physical degradation from the changes in roughness and the development of soil crusts
are important factors controlling the above-mentioned variability, particularly on fine-
textured soils.

The term soil crusting refers to the forming processes and the consequences of a thin
layer at the soil surface with reduced porosity and high penetration resistance, favouring
runoff initiation and inter-rill soil erosion. Soil crusting can be monitored directly through
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morphological changes (e.g., the diameter of the smallest clods not incorporated in the
crust, Dlim), or indirectly through sealing indexes based on the decrease in infiltration
capacity or increase in surface strength. In different studies, both Dlim and sealing indexes
have been linearly related to cumulative rainfall kinetic energy [11]. Crusts are commonly
classified in two subsequent stages, “structural” and “depositional”, respectively based
on the origin of soil seal formation, as the result of two complementary mechanisms [12]:
(i) physical disintegration of surface aggregates caused by wetting of the dry aggregates
and/or the beating action of the raindrops, and subsequent compaction of the disintegrated
aggregates by raindrop impact; (ii) the physicochemical dispersion of soil clays which
migrate downward with the infiltrating water clogging pores.

Contradictory evidence has been reported for the relationship between soil surface
roughness and crust generation and for the effect of roughness on the generation of
runoff [8]. The problem may reside in the fact that these two properties are highly dy-
namic in both space and time in response to biotic processes, the energetic input of rainfall
and/or farming operations. Even under laboratory conditions, or controlled field exper-
iments, these factors are difficult to quantify and are usually described using simplified
expert-based classes [13]. Arguably, one of the reasons that erosion modelling is still chal-
lenging [14] is the lack of good input data that captures the heterogeneity of the soil surface
characteristics. Therefore, one way to improve not only our mechanistic understanding of
rainfall-runoff processes, but also erosion model performance, is to improve the accuracy
and precision of model input data, using new sensor measurement methods, and to test
how sensitive the model is to variations in input data [15].

In this context, soil spectral analysis was proven to be very effective in the estimation
of a wide range of soil properties [16]. The spectral properties of crusted soils were already
the subject of several studies looking at specific spectral features [17], and this was also
related to soil infiltration rates and cumulative rainfall kinetic energy [18–20]. The recent
advent of small portable sensors with multi-spectral capabilities now provide the means,
the accuracy and the resolution to quantitatively and accurately assess spatial-temporal
variability of soil conditions at different scales, especially if combined with low altitude
flights with unmanned aerial systems (UAS) [21]. These systems have the potential to
present a better alternative to ground surveys, on one side, and satellite data on the other:
they offer superior spatial and temporal resolution at a better time- resource- and cost-
efficiency. For example, Croft et al. in several studies [22–24] successfully developed and
refined models of soil surface roughness using proximal hemispherical measurements of
hyperspectral directional reflectance factors. Nonetheless, they recognized the difficulty of
separating the contribution of soil variable like roughness, moisture, and organic carbon
to soil reflectance factors, and the complexity that exists in attempting to retrieve them
from optical remotely sensed data [25]. Elucidating the factors, as well their interactions,
that shape the soil spectral signature is therefore critical. This is important in the context
of developing predictive models of soil crust development suitable for proximal sensing
applications and/or low altitude UAS flights.

The general objective of this study is to analyse the functional relationships between
soil crusting and soil surface reflectance as derived from multispectral imaging and how this
can be inferred from low-altitude UAS sensors. More specifically, we aim at disentangling
the effects of soil surface roughness from those of crust development on spectral reflectance
factors, by establishing and evaluating a dedicated data pre-processing protocol. To this
end, we carried out indoor and outdoor experiments to monitor the evolution of soil
crust and micro-scale soil roughness in response to cumulative rainfall kinetic energy. We
combine data from a hyperspectral sensor for spectral feature characterization at high
resolution with image analysis in the spatial domain using a vis-NIR multispectral camera
and high-resolution photogrammetry. The dynamics of soil crusting and soil roughness
development were studied at two spatial scales: (i) at the 2 mm scale, which is the size of
the small soil clods affecting micro-scale roughness, and (ii) at the 15 mm scale, which is
the resolution obtainable by low-altitude UAS flights.
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2. Materials and Methods
2.1. Experiment Design and Data Series

Soil samples were subjected to two separate phases of simulated or natural rainfalls:
the aim was to force the evolution of soil crust and changes in surface micro-scale random
roughness while controlling rainfall input. The runoff coefficient (RC) was calculated
for every rainfall event as the ratio between the amount of runoff and the amount of
precipitation. Soil crust development was first quantified from the changes in runoff
caused by the progressive surface sealing. The amount of rainfall kinetic energy (KE)
previously applied to a soil sample to generate each specific crust condition was then used
as a proxy for crust development. Surface conditions were sensed under dry soil conditions
at the start of the experiment and after each rainfall application phase. Sensing was
executed by means of close-up photogrammetry, multispectral imaging, and hyperspectral
point measurements. This data was acquired to (i) estimate surface random roughness (RG)
from a high-resolution digital terrain model (DTM) and (ii) to provide a spectral descriptor
for crust development. In this way, both soil crusting and roughness were related as a
response to cumulative rainfall kinetic energy. Four data series, consisting of three phases
of surface monitoring, were generated to obtain a range of KE/RC/RG values. Three of
the data series, each with 3 replicates, were obtained under laboratory conditions using
simulated rainfall, while one data series, with six replicates, was obtained outdoor under
natural rainfall. The data series structure is summarized in Figure 1.
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2.2. Samples Setup

Soil samples were collected from two cultivated fields situated in the Belgian loam
belt. They are classified as silt-loam by texture according to the USDA classification.
Each container, from now referred to as “soilbox” (Figure 2), consists of a wooden box of
30 cm × 30 cm wide, 15 cm tall, open on the top and filled with 14 cm of manually
compacted soil. The downslope side of the soilbox accommodates two sections that allow
for water outflow: (i) on the top, a rectangular broad-crested weir, 30 cm wide and 2 cm
tall, levelled with the soil for surface runoff: (ii) on the bottom, a rectangular hole 30 cm
wide and 2.5 cm tall, for water exfiltration. A 2.5 cm thick metallic grate covered with
geo-tissue was placed on the floor of the soilbox, acting like a selective membrane toward
the exfiltration hole, to prevent soil loss while allowing water outflow.
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2.3. Rainfall Data

An indoor rainfall simulator, consisting of an axial-flow full cone nozzle (Series
490/491 Lechler spray nozzles and engineered systems, Lechler GmbH, Metzingen, Ger-
many) was positioned at a height of 3 m. The nozzle was connected to the water grid
through a discharge gauge in order to set and monitor the amount of litres/second of
water applied. A panel of 30 cm × 30 cm with 16 small buckets, was used to calibrate the
rainfall simulator by converting the measured discharge to mm/h at floor level (after a
drop fall of 3 m). Natural rainfall was measured with a tipping bucket rain gauge with
a time resolution of 5 min and depth resolution of 0.25 mm. Rainfall intensity was kept
constant during the simulated events and was variable under natural rainfall.

To estimate the combined effect of rainfall duration and intensity on the soil surface
(i.e., the destruction of clods and particle displacement), cumulative kinetic energy was
chosen as an indicator. To estimate the kinetic energy KEp (J·m−2) applied during each
measurement phase, time-specific rainfall kinetic energy KEt (J·m−2·h−1) was first esti-
mated using the universal power law proposed by [26], for each 5 min measuring time-step.
KEp was then estimated as the sum of KEt for each measurement time step during a phase.
This method is a simplification based on the assumption that the drop-size distribution is
uniform in constant rainfall intensity. The cumulated kinetic energy KE was then estimated
for each dry soil phase as the sum of each antecedent KEp since the start of the experiment.

2.4. Sensors

A Nikon D3100 camera (Nikon Inc., Tokyo, Japan) was used for photogrammetric soil
surface reconstruction. The camera model is based on a DX format RGB CMOS sensor
with a max resolution of 4608 × 3072 (14.2 effective megapixels). The camera was mounted
with an 18-55 mm objective which was fixed at a focal length of 30 mm. The multispectral
sensors employed was a Micasense Rededge-M multispectral camera (MicaSense Inc.,
Seattle, WA, USA). This camera is equipped with five imaging sensors filtering for spectral
bands centred at 475, 560, 668, 717 and 840 nm wavelengths, with a bandwidth (FWHM)
of 20, 20, 10, 40 and 10 nm respectively. The image resolution is 1280 × 960 pixels and
the camera has a focal length of 5.4 mm. The hyperspectral sensor was an ASD Fieldspec
3 FR spectro-radiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) that provides
single-spot measurements of light intensity data in the vis-NIR-SWIR region
(350–2500 nm) with an optical resolution of 3 nm in the 350–1000 nm region and 10 nm for
the 1000–2500 nm region, all resampled at a 1 nm data output resolution.
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2.5. Roughness Characterization Using Photogrammetry

For the photogrammetric surface reconstruction, 16 images were taken with the Nikon
camera from different positions regularly distributed in a dome above the soil box, between
0.5 and 1 m of distance (see Figure 3a). A DTM with 0.2 mm resolution was then generated
for each soilbox/phase with the software Pix4D [27] (Figure 3c), then resampled to 2 mm
for calculation purposes. Four ground control points marked on the wooden frame of
each soilbox were used to increase the accuracy of the DTMs and to allow the subsequent
alignment of the multispectral images with the custom coordinate system of the surface
elevation models. Geolocation accuracy of the control points was estimated at 1, 1, and
0.5 mm for the X, Y and Z components, respectively. The wooden frames were then
cropped out of the DTMs. For each DTM, the residual topography (the DTM detrended
from the effect of the general soilbox inclination) was extracted subtracting the plane of
the average soilbox slope from all DTM elevations. Maps of random roughness (RG) were
then generated by calculating the standard deviation of the elevations on the residual
topography in a moving square window of 21 mm × 21 mm (example of roughness map
series in Figure 3d, and corresponding RGB images in Figure 3e). The average value of
random roughness for the whole box window was calculated in the same way.
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2.6. Spectral Data Acquisition and Pre-Processing

Soil spectral measurements were carried out in outdoor conditions in an open area to
minimize reflection from vertical objects in the surroundings, during stable, clear-sky and
natural sunlight conditions for the whole duration of the measurements. Measurements
were taken within two hours of solar noon. Before every sensor measurement took place,
the soil-boxes were oven-dried at 60 ◦C for 72 h and then air-dried in open air for at least
other 48 h. For the hyperspectral measures, the sensor head was set at c. 6 cm height
above the soil surface, at the nadir position, providing a measurement footprint with a
diameter of c. 2.6 cm. This footprint was chosen to allow for an easy individuation on the
multispectral images for spectral comparison. Each single spectral acquisition with the ASD
instruments was performed with an integration time of 5.4 s. 25 measurements were taken
during each phase, in a regular 5 cm × 5 cm grid. Radiometric calibration for the ASD was
automatically managed by its hardware + software routine. For the conversion of radiance
to reflectance a Spectralon white reference surface measurement was repeated every ten
samples. Bandwidths below 400 nm and above 2400 nm were removed because they
typically contain excessive noise, as well as the bandwidths influenced by water vapour
absorption in the intervals 1350–1450 and 1800–1950 nm. Spectra were also smoothed
with a Savitzky-Golay smoothing filter [28] using a second order polynomial fit. Spectral
outliers were removed, at each box/phase level, setting a threshold of three times the
standard deviation of the Mahalanobis distance of the spectra projected in the first two
latent variables of the principal component space. The average of the 25 spectra (minus
outliers) was then used as representative for each box/phase.

For multispectral imaging, a single picture was taken for each soilbox phase, from 1 m
distance at the nadir position. Radiometric calibration, image correction and conversion
to reflectance for the Rededge-M images were performed in post processing following
the procedure described on the manufacturer’s website [29] using the software R [30].
Conversion to reflectance was possible thanks to the employment of a calibrated reflectance
panel (provided by the Rededge-M manufacturer MicaSense Inc., Seattle, WA, USA), which
was sampled before each sample image acquisition. Reflectance images were then scaled
to true dimension (resulting in pixel size of c. 0.5 mm) and orthorectified by anchoring the
4 ground control points visible in the pictures to those identified in the photogrammetric
procedure, using R software and gdal [31] scripts. Scaling and orthorectification were
executed separately for each image in the 5 spectral bands to account for the different offset
of the Rededge-M sensors. Finally, images were resampled at two resolutions: 2 mm and
15 mm.

Since multispectral images were acquired at very high resolution, shadows cast on the
soil surface were affecting a substantial portion of the soil surface. Shadows commonly
cause partial or total loss of radiometric signature, hence shadow reduction or removal
becomes important during image analysis [32]. A threshold segmentation method applied
on the intensity (also referred as brightness) component I of the HSI colour system [33]
was calibrated and found to be sufficient for shadow detection and elimination on our case
study. The method is discussed in detail in the Appendix A. Shadows from micro-reliefs
and soil cracks were removed from all multispectral images with this method to create the
base dataset (example in Figure 4, central column). Furthermore, a new set of multispectral
maps (“DR”) was generated by removing pixels where the random roughness was above
the threshold of 2 mm, which was visually assessed as appropriate to discard soil clods,
and consistent with the minimum pixel size (example in Figure 4, right columns). The
underlying idea is that this allows isolating soil crust colour information from the light
scattering effect of roughness.
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with white lines the 6 × 6 grid used for partitioning reflectance histogram extraction.

2.7. Multispectral Data Extraction

Previous studies [23,24] on the directional reflectance properties of soil surface showed
that rough soils exhibit higher degrees of spectral anisotropy, resulting in wavelength-
dependent spectral variability. We thus hypothesise that the residual (after de-shadowing)
light scattering effect related to soil surface irregularities (i.e., roughness) in the multispec-
tral spatial domain could be assigned to a spectral variability index in its spatial domain.
We hereby propose to calculate this variability with a wavelength-specific inter-quantile
range (iqr, visualized in Figure 5) of the reflectance values on a given surface. To do so,
local spectral histograms for all the multispectral bands were extracted at two spatial scales,
on each soilbox,: (i) in a 5 cm × 5 cm grid (example in Figure 4, top-right) on the images
at 2 mm resolution (total of 36 squares per soilbox, number of total sampling locations
n = 36 × 42 = 1512); (ii) on the whole soilbox for the images at 15 mm resolution (number
of sampling locations n = 42). From each histogram two indexes for each of the five avail-
able broad-bands were used to summarize the multispectral data: the mean reflectance
value and the inter-quantile range (iqr). This information was extracted both from the
base dataset and from the DR one. Mean multispectral values were also compared for
consistency with hyperspectral values at the same sampling locations (Figure 5b).
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Previous studies [23,24] on the directional reflectance properties of soil surface 

showed that rough soils exhibit higher degrees of spectral anisotropy, resulting in wave-
length-dependent spectral variability. We thus hypothesise that the residual (after de-
shadowing) light scattering effect related to soil surface irregularities (i.e., roughness) in 
the multispectral spatial domain could be assigned to a spectral variability index in its 
spatial domain. We hereby propose to calculate this variability with a wavelength-specific 
inter-quantile range (iqr, visualized in Figure 5) of the reflectance values on a given sur-
face. To do so, local spectral histograms for all the multispectral bands were extracted at 
two spatial scales, on each soilbox,: (i) in a 5 cm × 5 cm grid (example in Figure 4, top-
right) on the images at 2 mm resolution (total of 36 squares per soilbox, number of total 
sampling locations n = 36 × 42 = 1512); (ii) on the whole soilbox for the images at 15 mm 
resolution (number of sampling locations n = 42). From each histogram two indexes for 
each of the five available broad-bands were used to summarize the multispectral data: the 
mean reflectance value and the inter-quantile range (iqr). This information was extracted 
both from the base dataset and from the DR one. Mean multispectral values were also 
compared for consistency with hyperspectral values at the same sampling locations (Fig-
ure 5b). 
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Figure 5. Cont.
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Figure 5. (a) Example of the evolution of the multispectral pixel density histograms, for two spectral bands drawn as an example (blue
and nir, respectively colored in blue and grey), from a single soilbox across two different amounts of cumulated rainfall kinetic energy
(0 and 5500 J/m2). The iqr is visualized as the span distance between the 1st and 3rd quantile of each histogram; (b) example of the
evolution of mean multispectral reflectance values (points) and corresponding hyperspecral reflectance samples (lines) at the same
soilbox location, for three levels of KE (0, 1160 and 2320 J/m2).

2.8. Spectral Modelling

The aim of the spectral data acquisition was to build a spectral model for soil crust de-
velopment and to disentangle the effects of random roughness from soil physical-chemical
changes on reflectance factors. In this framework, crust development (through its proxy
kinetic energy) and roughness were used as the main target variables for partial least
squared regression (PLSR) spectral modelling. Hyperspectral-based models were only
used to assess the relative relevance of VIS, NIR and SWIR spectral bands in KE models
through the variable importance in projection (VIP) score analysis and to motivate the
choice for VIS-based multispectral data. Multispectral-based models were developed and
validated to find the optimal data pre-treatment techniques for KE and RG prediction and
mapping purposes.

From the hyperspectral data, PLSR models were developed on both raw reflectance
(refl) and reflectance transformed through standard normal variate (SNV), using the R
package “pls”. Standard normal variate normalizes each vector of spectral data by subtract-
ing its mean and dividing by its standard deviation. It is intended to normalize spectral
data to correct for light scattering, normally influenced by irregular surface geometry and
particle size. In this study, its intended purpose was to understand to what degree it could
be used to separate colour features from roughness features.

From the multispectral data, PLSR models were developed on datasets that were
filtered and/or transformed to remove the effect of roughness on spectral features in a
gradual way: (i) base reflectance maps; (ii) reflectance maps with DR filter; (iii) SNV
transform; (iv) SNV transform and DR filter. Models were developed at a 2 mm and
15 mm resolution. A “leave-one-out” cross validation was used to select the optimal
number of latent variables for each sub-dataset. The best PLSR model was selected based
on the number of latent variables (PLSR components) above which a decrease in RMSE
was not significative. To evaluate the stability and consistency of the models a validation
was then performed splitting each dataset into calibration and validation (80% and 20%,
respectively), with random selection and model re-calibration for 200 repetitions. The
performance of the models was evaluated on the validation datasets using the mean of
200 simulations of the following metrics: (i) relative error percentage (RE%), (ii) root
mean square error of prediction (RMSE), (iii) coefficient of determination (R2) and (iv)
ratio of performance to interquartile range (RPIQ). The VIP was used to assess variable
importance in the PLS regressions. A threshold VIP score of 1 was used to highlight relevant
variables (ref).

The modelled datasets are summarized in flow chart (Figure 6).
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Figure 6. Flowchart of data selection and sub-setting for the PLSR modelling of multispectral data.

3. Results and Discussion
3.1. KE, Crusting and Roughness Data

Figure 7 shows the relationship between the runoff coefficient (RC) and the amount of
kinetic energy KE previously received by the soil samples surface during the experiments.
RC was positively correlated with KE, with an overall significant correlation of 0.82. These
results are in line with the evidence, provided by previous studies [11,17], that the amount
of KE received by a soil surface can be linked to the sealing effects and decrease in infiltra-
tion rate due to the development of a soil crust. This provides, together with the observed
changes in soil spectra discussed below, a solid basis to link soil crust development to
cumulative rainfall kinetic energy.
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Figure 7. Scatterplot of KE in J/m2 and runoff coefficient RC. The pertinence to the four data series is
highlighted with colours. Correlation values with p < 0.05 are marked with *.

Figures 8 and 9 synthesizes the data obtained for KE and roughness for the two
resolutions (i.e., 2 and 15 mm, respectively), and their relationship during the experiments.
Both scatterplots show that the soilboxes were prepared with a range of starting roughness
conditions (i.e., between 0–5 mm and 0 J/m2 of KE) that were subsequently levelled by
rainfall to values between 1 and 2 mm. This resulted in a roughness distribution skewed
toward these values, but with significant correlations (0.37 < r < 0.87) for all four data series.
One data series (3rd) provided data with KE amount higher than 3000 J/m2, resulting in
skewed distribution also for KE values.
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PLSR models based on the hyperspectral data were developed aiming at the best fit 

to highlight the optimal variable importance for KE with different datasets. Full range 
reflectance data (Figure 10) provided the best model fit but the full range SNV (Figure 11) 
attributed more importance to the vis-NIR portion of the spectrum with comparable per-
formance. Common peaks of information were found at 570, 930 and 1130 nm for the vis-
NIR region and 1950, 2000, 2140 and 2200 nm for the SWIR region. The 2140 and 2200 nm 
peaks were already individuated and described by other studies [17,18] working on the 
spectral properties of soil crust and assigned to the enrichment of soil surface in clay par-
ticles during the crusting process. The use of only the vis-NIR portion of reflectance spec-
tra (Figure 12a) and SNV (Figure 12b) with hyperspectral data showed that modelling of 
KE was possible, thus motivating the prospect of using the vis-NIR range only, in both 
base reflectance and SNV transformation. No sensible reflectance/SNV difference was ob-
tained in either variable selection (except a peak on the blue reflectance wavelengths) nor 
performance, and a peak on information was observed in both datasets at 762 nm. An 
increase in baseline (albedo) was generally observed with increasing levels of KE (as re-
ported in the example in Figure 5), in line with the observations made by the studies just 
mentioned [17,18]. Nevertheless, changes in slope in the vis-NIR portion of our soil spec-
tral may have played an important role in KE model performance. These same studies 
[17,18] also pointed out that reflectance changes in soil crust are dependent on soil texture 

Figure 8. Scatterplot of KE in J/m2 and measured roughness in mm of standard deviation, detailed
for the 2 mm resolution. Data histograms are plotted side by side to the respective axes.
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3.2. Hyperspectral Variable Importance

PLSR models based on the hyperspectral data were developed aiming at the best
fit to highlight the optimal variable importance for KE with different datasets. Full
range reflectance data (Figure 10) provided the best model fit but the full range SNV
(Figure 11) attributed more importance to the vis-NIR portion of the spectrum with compa-
rable performance. Common peaks of information were found at 570, 930 and 1130 nm for
the vis-NIR region and 1950, 2000, 2140 and 2200 nm for the SWIR region. The 2140 and
2200 nm peaks were already individuated and described by other studies [17,18] working
on the spectral properties of soil crust and assigned to the enrichment of soil surface in clay
particles during the crusting process. The use of only the vis-NIR portion of reflectance
spectra (Figure 12a) and SNV (Figure 12b) with hyperspectral data showed that modelling
of KE was possible, thus motivating the prospect of using the vis-NIR range only, in both
base reflectance and SNV transformation. No sensible reflectance/SNV difference was
obtained in either variable selection (except a peak on the blue reflectance wavelengths)
nor performance, and a peak on information was observed in both datasets at 762 nm.
An increase in baseline (albedo) was generally observed with increasing levels of KE (as
reported in the example in Figure 5), in line with the observations made by the studies just
mentioned [17,18]. Nevertheless, changes in slope in the vis-NIR portion of our soil spectral
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may have played an important role in KE model performance. These same studies [17,18]
also pointed out that reflectance changes in soil crust are dependent on soil texture and
mineralogy; the soil samples used in this study were homogeneous in texture and collected
from the same area. Although this allows us to compare the different experiments, it
represents a limiting factor for the generalization of our results.
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shown for comparison.

3.3. Correlation with Multispectral Data

A correlation analysis was carried out between the target parameters (i.e., KE and
roughness) and the spectral indices (i.e., spectra and iqr) with different data pre-treatments
(base, roughness thresholding DR, SNV) at the 2 mm spatial scale (Figure 13a,b, for KE and
roughness, respectively). Considering only the results where p < 0.05, four base reflectance
values (excluding the blue band) showed a low positive correlation with KE (0.03 < r < 0.12)
and a low negative correlation with roughness (−0.13 < r < −0.17). On the other hand, iqr
values showed significantly higher correlations, both negatively with KE (−0.24 < r < −0.33)
and positively with roughness (0.21 < r < 0.36). In general, base reflectance and iqr corre-
lation resulted in opposing trends between KE and roughness. The SNV transformation
of base reflectance increased the correlation of some spectral bands with KE (blue = 0.23,
green = −0.28, rededge = −0.27). SNV mildly affected the significative correlation of two
spectral bands with roughness (red = −0.12, rededge = 0.19, with opposite sign respect
to KE) and showed no correlation with the other 3 bands. The DR pre-treatment, with
both KE and roughness, did not influence the correlation values of base reflectance or SNV
but had a sensible effect in lowering the correlation of iqr (−22/24% with KE, −44/50%
with roughness). This analysis shows that KE and roughness are spectrally entangled.
This is also evident from the high correlation of their change after rainfall application.
Nevertheless, the analysis shows that the iqr index seems to be a better index to describe
roughness, due to its overall significant positive correlation and to its negative response to
DR pre-treatment. SNV, on the other hand, was more strongly related to KE.



Sensors 2021, 21, 1850 13 of 20Sensors 2021, 21, x FOR PEER REVIEW 13 of 19 
 

 

  
(a) KE (b) RG 

Figure 13. Correlation of the multispectral indexes with KE (a) and with roughness (b) from the 2 mm resolution dataset: 
“refl” represents the base dataset, “DR” the roughness threshold dataset, “SNV” the Standard Normal Variate transfor-
mation of reflectance data. Points where p < 0.05 were excluded from the plot. 

3.4. Modelling Multispectral Data 
Results from the validation phase of the PLSR models are shown in Figure 14 (R2) 

and Figure 15 (RPIQ). At the 2 mm resolution (Figures 14a and 15a), models for KE per-
formed better when using the combination of pure reflectance + iqr data, while the DR 
pre-treatment did not affect performance (R2 refl = 0.47, refl DR = 0.44). SNV transfor-
mation substantially decreased performance both for the base and DR sub-datasets (R2 
SNV = 0.25, SNV DR = 0.2), on par with the reflectance models based on spectra only (R2 
refl = 0.25, refl DR = 0.23). Regarding roughness, model performance decreased with the 
different techniques used to account for roughness effects: in order, from the base reflec-
tance dataset (R2 = 0.41) to its DR sub-dataset, to SNV, and finally SNV DR (R2 = 0.09). 
Performance using spectra only (no iqr) were low in all cases. In general, at the fine scale, 
the datasets with DR pre-treatment were the ones where the difference between KE and 
roughness model performances was the highest, both with reflectance and SNV. The 
roughness removal pre-processing methods were lowering the performance of the rough-
ness models, as expected, but SNV negatively affected KE models too. Since SNV did not 
affect model performance with hyperspectral data, it is possible that the loss of albedo 
information from this data transformation technique may be necessary for multispectral 
modelling of KE. For our experiments, reflectance + iqr based models with DR pre-treat-
ment seemed to be the data processing protocol with the best combination of high predic-
tive performance and high discrimination between KE and roughness. 

At the 15 mm resolution (Figures 14b and 15b), KE model performance was on aver-
age lower than with the 2 mm resolution with reflectance-based data (R2 refl = 0.34, refl 
DR = 0.35) and slightly better with SNV (R2 SNV = 0.29, SNV DR = 0.31). Roughness mod-
elling performance showed the same decreasing power with the data pre-treatment tech-
niques, as seen with the 2 mm resolution, from R2 = 0.49 to R2 = 0.28. No sensible difference 
was brought by the DR pre-treatment. Regarding the models based on spectra only, KE 
models resulted in equivalent performance as with the iqr dataset, while roughness mod-
els showed generally poor predictions. In general, at the coarser scale, all models for KE 
performed equally but showed a very low RPIQ (~1), probably due to the limited number 
of samples and variability in the calibration dataset. Roughness models, on the other hand, 
provided acceptable predictions. As a result, the best data processing protocol proposed 
for the 2 mm resolution dataset could not be confirmed when using the 15 mm resolution 
dataset. 

Figure 13. Correlation of the multispectral indexes with KE (a) and with roughness (b) from the 2 mm resolution dataset:
“refl” represents the base dataset, “DR” the roughness threshold dataset, “SNV” the Standard Normal Variate transformation
of reflectance data. Points where p < 0.05 were excluded from the plot.

3.4. Modelling Multispectral Data

Results from the validation phase of the PLSR models are shown in Figure 14 (R2)
and Figure 15 (RPIQ). At the 2 mm resolution (Figures 14a and 15a), models for KE
performed better when using the combination of pure reflectance + iqr data, while the DR
pre-treatment did not affect performance (R2 refl = 0.47, refl DR = 0.44). SNV transformation
substantially decreased performance both for the base and DR sub-datasets (R2 SNV = 0.25,
SNV DR = 0.2), on par with the reflectance models based on spectra only (R2 refl = 0.25,
refl DR = 0.23). Regarding roughness, model performance decreased with the different
techniques used to account for roughness effects: in order, from the base reflectance dataset
(R2 = 0.41) to its DR sub-dataset, to SNV, and finally SNV DR (R2 = 0.09). Performance using
spectra only (no iqr) were low in all cases. In general, at the fine scale, the datasets with
DR pre-treatment were the ones where the difference between KE and roughness model
performances was the highest, both with reflectance and SNV. The roughness removal pre-
processing methods were lowering the performance of the roughness models, as expected,
but SNV negatively affected KE models too. Since SNV did not affect model performance
with hyperspectral data, it is possible that the loss of albedo information from this data
transformation technique may be necessary for multispectral modelling of KE. For our
experiments, reflectance + iqr based models with DR pre-treatment seemed to be the data
processing protocol with the best combination of high predictive performance and high
discrimination between KE and roughness.
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At the 15 mm resolution (Figures 14b and 15b), KE model performance was on
average lower than with the 2 mm resolution with reflectance-based data (R2 refl = 0.34, refl
DR = 0.35) and slightly better with SNV (R2 SNV = 0.29, SNV DR = 0.31). Roughness
modelling performance showed the same decreasing power with the data pre-treatment
techniques, as seen with the 2 mm resolution, from R2 = 0.49 to R2 = 0.28. No sensible
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difference was brought by the DR pre-treatment. Regarding the models based on spectra
only, KE models resulted in equivalent performance as with the iqr dataset, while roughness
models showed generally poor predictions. In general, at the coarser scale, all models
for KE performed equally but showed a very low RPIQ (~1), probably due to the limited
number of samples and variability in the calibration dataset. Roughness models, on the
other hand, provided acceptable predictions. As a result, the best data processing protocol
proposed for the 2 mm resolution dataset could not be confirmed when using the 15 mm
resolution dataset.

Overall, SNV + iqr did not offer better model performances than using only base
reflectance indexes, especially at the finer scale where richer calibration data where avail-
able. Given the good modelling performance with the SNV of hyperspectral data, it is
possible that the available multispectral resolution was not suitable for this kind of data
transformation for KE predictions. The albedo information contained in pure reflectance
data may be critical for KE prediction with multispectral data. Other studies that attempted
modelling crust development [17,18] obtained good results (0.86 < R2 < 0.94) using specific
SWIR hyperspectral bands to predict crusted soil infiltration rates, but did not perform a
validation of their models. To our knowledge, no other studies attempted modelling soil
crusting with vis-NIR multispectral data.

3.5. Multispectral Variable Importance

At the 2 mm spatial scale VIP scores showed some interesting differences in variable
selection between KE and RG models (Table 1). When using reflectance data, KE models
used a combination of base spectral bands (blue, green, NIR) and iqr indexes while rough-
ness models were mainly dependent on iqr indexes (VIP > 1 for red, rededge and NIR).
This supports the hypothesis that emerged from the correlation analysis that the spectral
iqr contains useful information to model roughness. The SNV shifted the weight of KE
model variable selection from iqr towards pure spectral bands (especially on the rededge
channel, as expected from correlation analysis) but had the same effect on roughness mod-
els. Given that model performances were substantially lowered for both KE and roughness
when adopting SNV, it is possible that this technique effectively accounted for the effects
of roughness, but the available multispectral sensor resolution was not suitable for the
modelling of KE.

At the 15 mm resolution, variables behaviour for both KE and roughness models
was similar to that at the finer resolution. In general, blue iqr and green iqr indexes
were discarded by all models (their correlation was also weaker relative to the other
three bands iqr). a possible reason for this, as postulated by [23], is that, due to Rayleigh
scattering effects in the atmosphere, greater directional interference from atmospheric
scattering in shorter wavelengths can cause a less coherent directional signal from the soil in
these channels.
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Table 1. VIP scores from the multispectral data PLSR models of kinetic energy (KE) and roughness (RG) at the two different
resolutions. VIP scores higher than 1 are marked with grey colour cells.

Blue Green Red Reded NIR Blue
iqr

Green
iqr

Red
iqr

Reded
iqr

NIR
iqr

KE
2 mm

refl 1.09 1.33 0.989 0.974 1.14 0.48 0.726 0.938 1.04 1.05
refl DR 1.14 1.35 0.898 0.812 1.01 0.514 0.769 0.998 1.13 1.12

SNV 0.815 1.24 0.996 1.29 0.998 0.86 0.864 0.864 0.94 1.01
SNV DR 0.825 1.34 1.13 1.26 1.01 0.816 0.84 0.796 0.867 0.948

RG
2 mm

refl 0.734 0.906 0.731 0.898 0.974 0.591 0.94 1.18 1.34 1.38
refl DR 0.857 0.97 0.838 0.723 0.927 0.603 0.915 1.18 1.38 1.32

SNV 0.497 1.01 1.05 1.24 0.71 0.843 0.883 1.08 1.15 1.27
SNV DR 0.552 0.964 1.55 1.1 0.69 0.821 0.806 0.938 1.05 1.14

KE
15 mm

refl 1.18 1.15 1.09 0.992 1.03 0.778 0.634 0.822 0.945 1.14
refl DR 1.25 1.2 0.985 0.949 1.13 0.655 0.592 0.822 0.997 1.06

SNV 0.821 1.66 1.61 0.947 0.865 0.818 0.412 0.495 0.695 0.772
SNV DR 0.769 1.64 1.66 0.936 0.876 0.768 0.378 0.487 0.782 0.701

RG
15 mm

refl 0.98 0.982 0.906 0.698 1.13 0.591 0.864 1.09 1.15 1.35
refl DR 1.02 1.08 0.995 0.694 1.28 0.59 0.754 1.03 1.03 1.25

SNV 0.835 1.22 1.5 0.797 1.38 0.421 0.607 0.771 0.878 0.976
SNV DR 0.909 1.32 1.49 0.811 1.38 0.41 0.604 0.709 0.814 0.923

4. Conclusions

We have developed PLSR models based on vis-NIR multispectral imaging data to
predict the cumulative kinetic energy received by soil samples, as a proxy for soil crust
development. The combination of hyperspectral data, multispectral imaging and high-
resolution topography from photogrammetry offered insights to identify a suitable data
pre-treatment protocol that allows to isolate the effects of rainfall kinetic energy (and hence
crusting) from micro-scale roughness in soil reflectance factors. After eliminating shadows,
we assigned the residual light scattering effect related to soil surface irregularities (i.e.,
roughness) in the multispectral spatial domain by calculating the inter-quantile range iqr
of the reflectance values in a kernel. A high resolution DTM provided a map to exclude
areas where prominent roughness was present (i.e., DR sub-setting). At the 2 mm image
resolution, the iqr of all multispectral bands was significantly related to soil roughness.
PLSR models suggested that a model based on reflectance + iqr data with DR pre-treatment
provides the best combination of high predictive performance and high discrimination
between kinetic energy and roughness. SNV provided lower performance for kinetic energy
prediction with multispectral data, while it did not deteriorate model performance with
hyperspectral data. This suggests that hyperspectral data contains information to model
kinetic energy (and thus crusting) from small, specific features and this with a high model
performance. In contrast, multispectral datasets have to rely more on albedo information,
which is removed by SNV. At the 15 mm image resolution, the same conclusions could
not be made: models for roughness performed equally or better than those for kinetic
energy and as a result, no clear discrimination between them could be made. This issue
was most probably related to the limited sample size used and the non-optimal distribution
of kinetic energy values for model calibration and our results are therefore not conclusive.
A VIP analysis showed that the variable importance was significantly different between
kinetic energy and roughness models based on reflectance + iqr sub-setting, supporting
our conclusion on the preferential discrimination technique: while kinetic energy models
were also relying on base reflectance information, roughness components were almost
exclusively related to some specific iqr indexes.

As a general conclusion, our experiments suggest that it is possible to model the
amount of rainfall kinetic energy received by a soil sample, as a proxy for crust develop-
ment, from vis-NIR based multispectral imaging. However, there is a caveat: roughness
effects on spectral features should be eliminated before modelling. Among the tested meth-
ods for roughness effect removal, shadow elimination was found to perform consistently
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at both 2 mm and 15 mm image resolution; DR sub-setting and iqr calculation can improve
spectral discrimination of kinetic energy effects from roughness effects, but a fine image
resolution is required (good at 2 mm, insufficient at 15 mm). Although these findings are
limited to a single soil type, the methods and analysis proposed in this study provide a first
workflow to interpret data from multispectral imaging for the mapping of soil crusting.
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Appendix A

Shadow Removal

A calibration dataset was first created by manually selecting 30 illuminated and
30 shadowed pixels per image on two RGB composite images from two soilboxes (total
of 60 and 60 pixels respectively). The difference in reflectance between illuminated and
shadowed pixels was evident in all the five spectral bands (Figure A1a), so the brightness
index was calculated as Equation (A1):

I =
Blue + Green + Red + Rededge + NIR

5
(A1)

A threshold for automatic unsupervised shadow detection was then individuated by:

(1) sorting all pixel I values pertaining to a soilbox;
(2) applying a detrend function to enhance local peaks by fitting a second order linear

model and returning the fitted residuals (Figure A1b);
(3) searching for the first local maximum (vertical grey line Figure A1b).
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Figure A1. Example of the procedure for shadow threshold individuation on a soil multispectral image: difference in
reflectance between illuminated and shadowed calibration pixel (a) and the brightness curves after sorting and detrending
to make the shadow threshold stand out as a local maximum (b).
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The threshold was calculated for each single image, and then applied for pixel selection.
The quality of the output was visually evaluated in a side-by-side comparison between the
original and the de-shadowed image (i.e., Figure A2).
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For all soil samples, the percentage amount of pixel removed for the same soil sample
between the 2 mm and the 15 mm resolution was compared (Figure A3, left). The relative
percentage difference between the removal amount in the two resolutions (Figure A3
right) showed that the majority of samples got almost the same amount of pixels removed
(between the −20% and + 20% difference).
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