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Abstract: Driving environment perception for automated vehicles is typically achieved by the use
of automotive remote sensors such as radars and cameras. A vehicular wireless communication
system can be viewed as a new type of remote sensor that plays a central role in connected and
automated vehicles (CAVs), which are capable of sharing information with each other and also
with the surrounding infrastructure. In this paper, we present the design and implementation of
driving environment perception based on the fusion of vehicular wireless communications and
automotive remote sensors. A track-to-track fusion of high-level sensor data and vehicular wireless
communication data was performed to accurately and reliably locate the remote target in the vehicle
surroundings and predict the future trajectory. The proposed approach was implemented and
evaluated in vehicle tests conducted at a proving ground. The experimental results demonstrate that
using vehicular wireless communications in conjunction with the on-board sensors enables improved
perception of the surrounding vehicle located at varying longitudinal and lateral distances. The
results also indicate that vehicle future trajectory and potential crash involvement can be reliably
predicted with the proposed system in different cut-in driving scenarios.

Keywords: connected and automated vehicle; cooperative perception; V2X communications; sensor
fusion; advanced driver assistance system; trajectory prediction; risk assessment; collision warning

1. Introduction

Automated driving has generated increasing interest in recent decades due to its
potential to address some of the most challenging issues faced by people and communities
across the world. Road traffic crashes account for 1.35 million deaths a year worldwide,
and they are the leading cause of death among children and young adults aged 5 to
29 years [1]. In addition, many people in different parts of the world still lack access to
mobility, particularly in rural areas, and the number of older people who are no longer
physically capable of driving has been increasing globally at the fastest rate recorded [2].
Another important issue in large metropolitan areas throughout the world is excessive
traffic congestion, which is directly related with the growing number of vehicles on the
road [2,3]. These challenges can be addressed by successful implementation of automated
driving on public roads. With automated vehicles it is possible to achieve greater road
safety, universal access to mobility, and higher transportation efficiency [4].

SAE International proposed different levels for driving automation, which include six
levels ranging from no driving automation (level 0) to full driving automation (level 5) [5].
In level 0–2 systems, the driver is expected to respond to any evident vehicle system
failure. A level 0 system does not provide any driving automation functions, while a
level 1 system supports the driving task by performing either the longitudinal or the lateral
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motion control. A level 2 system performs both the longitudinal and the lateral motion
control when engaged, and the driver is expected to supervise the automation system
and take over the driving task whenever necessary to maintain safe driving. In level 3–5
systems, the driver determines whether to engage the automated driving system, and when
engaged, the system performs the entire driving task. A level 3 system offers conditional
driving automation, which permits the engagement of the automated driving functions
only within its operational design domain (ODD). When engaged, the driver is expected to
be responsive to a request to intervene and any system failures, and be ready to perform
the driving task fallback in a timely manner. Similarly, a level 4 system also permits the
automated driving engagement only within its ODD, but the driver is not expected to
perform the driving task fallback and becomes a passenger of the vehicle while the system
is engaged. Finally, a level 5 system permits the automated driving engagement under all
driver-manageable on-road conditions, without limitations on the ODD.

Despite the considerable interest and effort devoted to automated driving in the past
decades, most experts agree that level 5 systems are still decades away from becoming
a reality on public roads [6]. At the moment, most automakers provide level 1 and 2
automation functions in the production vehicles. One of the most widely known level 2
systems is the Tesla Autopilot [7]. It has been stated that Tesla vehicles had logged a total
of 3 billion miles with the Autopilot engaged as of February 2020 [8]. Tech companies
such as Waymo and Uber have been working on the development of level 4 systems for
ride-hailing services that involve a fleet of automated vehicles operating only within its
ODD (e.g., specific geographical locations and appropriate weather conditions) [9]. The
driving automation functions of automobiles require accurate and reliable perception of
the surrounding environment, which is typically achieved by the use of remote sensors,
such as radars, cameras, and lidars [10–14]. However, perception is a very challenging task
due to the highly dynamic and complex nature of driving and traffic environment as well
as varying lighting and weather conditions that affect the performance of the on-board
sensors [15]. Perception errors in automated vehicles have resulted in a number of fatal
crash incidents, and here we discuss some of the notable examples. In May 2016, the
camera system of a Tesla Model S failed to distinguish the white side of a tractor trailer
against the bright sky, and the vehicle hit the side of the trailer and passed underneath it,
resulting in the first case of a traffic fatality involving automated vehicle technology [16].
In March 2018, the lane-keeping system of a Tesla Model X steered into a gore area and
crashed into an impact attenuator when the perception system failed to recognize faded
lane markings [17]. A crash incident that is very similar to the 2016 Tesla Model S crash
occurred in March 2019, where a Tesla Model 3 crashed into the side of a tractor trailer
and then drove beneath the trailer [18]. An Uber test vehicle was involved in a crash that
resulted in a pedestrian fatality in March 2018, where the vehicle hit a pedestrian who was
pushing a bicycle across the road at night [19]. The crash was predictable and avoidable,
but a series of design flaws in the perception system contributed to the fatal outcome.

There has been increasing interest in connected and automated vehicles (CAVs) in
recent years due to its potential to improve road safety, convenience, and energy effi-
ciency [20–22]. The full benefits of automated driving can only be achieved when vehicles
are capable of communicating and exchanging information with each other and also with
the surrounding infrastructure. Vehicular wireless communications, which is often re-
ferred to as vehicle-to-everything (V2X) communications, incorporates various types of
communication options depending on the participating entities. Some of the well-known
types include vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian
(V2P), and vehicle-to-network (V2N) communications. With V2X communications, it is
possible to overcome the functional and environmental limitations of the on-board sensors.
The advantages of V2X communications in terms of road safety and how it can comple-
ment and extend the perception methods based on automotive remote sensors have been
described in more detail in [23].
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The majority of recent studies on CAVs focus on cooperative adaptive cruise control,
cooperative intersection control, and cooperative perception [22]. Although these studies
present promising applications, not many studies have examined the benefits of the fusion
of on-board remote sensors and cooperative approaches in the context of safety applications.
An object association method based on V2V communications and on-board sensors was
presented in [24], where the relative sender position and orientation were determined by
using point matching algorithms. In [25], the plausibility checking of V2V communication
data was implemented based on a multiple object tracking system with a camera sensor.
Based on their evaluation, the authors reported that the proposed approach can overcome
spoofing attacks if ghost vehicles are located within the camera field-of-view (FOV). A
fusion approach based on radar and V2V communication data was suggested in [26], where
an improved perception range and more accurate position and velocity estimates were
obtained in a car-following scenario. In [27], an object matching algorithm based on V2V
communication messages and radar measurements was presented and tested in highway
driving scenarios, and the authors suggested that the track-to-track association algorithm
can reliably handle the ambiguity issue in object matching. A simulation-based study on
cooperative vehicle positioning was presented in [28], where average position errors were
calculated for a varying percentage of the vehicles equipped with ranging sensors and V2V
communication devices. A high-level fusion approach based on multiple on-board sensors
and V2V/V2P communications was presented in [23] for the purpose of providing a timely
warning prior to a possible collision. The proposed approach was evaluated in virtual
driving environments, and the results demonstrated that reliable environment perception
and collision prediction can be achieved by introducing V2X communications, even in
scenarios where it is difficult to avoid a collision with existing safety systems based only
on on-board sensors.

In this paper, we present the design and implementation of cooperative environment
perception based on the fusion of V2X communications and automotive remote sensors. In
continuation of our previous work [23], the Kalman-filter-based approach is employed for
the high-level fusion of radar, camera, and V2X communication data, and the proposed
cooperative approach is tested and evaluated in test-track environments. The experiments
are carried out with two test vehicles, where each vehicle is equipped with a 5.9 GHz
dedicated short-range communications (DSRC) transceiver along with a global navigation
satellite system (GNSS) receiver for the exchange of vehicle state information. The host
vehicle is additionally equipped with automotive radar and camera systems for remote
sensing of the surrounding objects. The performance of the proposed approach for driving
environment perception is evaluated at varying relative distances between the two test
vehicles. The positioning accuracies at different longitudinal and lateral target vehicle
positions are computed for each remote sensing system as well as for the proposed fusion
method. The performance of the trajectory prediction and risk assessment is evaluated
in different cut-in driving scenarios where the remote vehicle performs a lane-change
maneuver in front of the host vehicle.

The rest of the paper is organized as follows. In Section 2, the overall architecture
of the proposed driving environment perception system is described and background
information about automotive remote sensors and V2X communications is provided. In
Section 3, the proposed method for object state estimation and risk assessment is presented.
The experimental results are reported and discussed in Section 4, and conclusions and
directions for future research are presented in Section 5.

2. System Overview
2.1. Overall Design of the Proposed System

The overall design of the proposed cooperative environment perception approach
based on on-board sensors and vehicular wireless communications is illustrated in Figure 1.
The system is designed to serve as a flexible platform that enables reliable vehicle driving
environment recognition and to provide appropriate road safety applications. Automotive
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remote sensors (e.g., radars and cameras) are often connected to the controller area network
(CAN) bus such that the data from these sensors along with other data generated by
in-vehicle electronic control units (ECUs) are collected in the form of CAN messages.
The DSRC messages received with an on-board unit (OBU) are collected via Ethernet
interfaces. For the enhancement of GNSS positioning performance, RTCM corrections,
which contain differential corrections for the GNSS as defined by the Radio Technical
Commission for Maritime Services (RTCM) Special Committee 104, can be obtained either
through Networked Transport of RTCM via Internet Protocol (NTRIP) when an Internet
connection is available, or through DSRC RTCM messages as defined in SAE J2735 [29]
when it is possible to utilize roadside units (RSUs) capable of RTCM applications.
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For cooperative relative positioning, and particularly for the fusion of the on-board
sensors and V2X communications, it is necessary to transform the GNSS positioning
information (i.e., latitude and longitude) of the host vehicle and the remote targets from
the World Geodetic System 1984 (WGS 84) reference frame to the host vehicle reference
frame. For this, WGS-84 coordinates are converted to earth-centered, earth-fixed (ECEF)
coordinates and then to east-north-up (ENU) coordinates. The GNSS course heading
of the host vehicle is utilized to finally rotate the remote target positions and find their
relative positions in the host vehicle reference frame. The relative positions and other
dynamic information on remote targets acquired from V2X communications can be used
in conjunction with the measurements from on-board sensors for more accurate and
reliable target state estimation, classification, and trajectory prediction. Some of the safety
applications that can be offered with this cooperative approach are shown in the safety
applications block in Figure 1.

2.2. Automotive Remote Sensors

The types of sensors used for driving environment perception and object tracking in
recent years include radars, cameras, and lidars. These sensors perform detection of objects
in the vehicle surroundings and provide information on the object state (e.g., relative
position and relative speed) and object classification. Some of the most common advanced
driver assistance system (ADAS) applications enabled by the environment perception
technology include forward collision warning (FCW), automatic emergency braking (AEB),
adaptive cruise control (ACC), lane departure warning (LDW), and lane keeping assist
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system (LKAS). For this study, we equipped our test vehicle with radar and camera sensors
that have already been incorporated into production vehicles.

Automotive radar, which is an active ranging sensor designed for detecting and
tracking remote targets in the surrounding environment, is one of the most used ranging
sensors for ADAS functions these days. Automotive radars are capable of providing the
relative position and speed information about the objects located within the sensor FOV,
and they operate even in adverse weather conditions such as rain, fog, and snow. Two
frequency bands, 24 GHz and 77 GHz, have been predominantly exploited for automotive
radars [30–32]. The 24-GHz band is mainly used for short-range radar systems with a
detection range up to 30 m [30,33], while the 77-GHz band is mainly used for long-range
radar systems with a detection range up to 250 m [31]. A frequency modulated continuous
wave (FMCW) radar is the most common type of automotive radars used for remote
sensing of surroundings [31]. FMCW radars transmit a frequency-modulated signal in a
continuous manner. The frequency of the signal changes linearly with time, and this enables
accurate time measurement based on the frequency difference between the transmitted
and received signals, which can be converted into range information. The specification of
Delphi ESR 2.5, the multimode radar system utilized for the driving experiments in this
study, is shown in Table 1.

Table 1. Automotive radar system specifications.

Type
Delphi ESR 2.5

Long-Range Mid-Range

Frequency band 76.5 GHz 76.5 GHz
Range 175 m 60 m

Range accuracy 0.5 m 0.25 m
Angular accuracy 0.5 deg 1.0 deg
Horizontal FOV 20 deg 90 deg

Data update 50 ms 50 ms

Computer vision techniques are increasingly utilized for automotive safety applica-
tions. Camera systems with computer vision methods perform detection and localization
of the objects that have been captured in the camera images. It is also possible to extract
valuable information on the driving environment, such as lane marking positions and road
curvature, from the images obtained with the cameras on board the vehicle. A comprehen-
sive review on computer vision techniques for vehicle detection, tracking, and behavior
characterization is presented in [34]. The most notable camera system that has been widely
incorporated into production vehicles is that of Mobileye [35]. The longitudinal distance
to the surrounding vehicle can be determined based on the image position of the target
and the detected target width or height [36–38]. Based on [36], the accuracy of the range
estimated with the camera system decreases quadratically as the distance to the object
increases, while the error percentage increases linearly, such that a 5% error in range is
expected at 45 m and a 10% error in range is expected at 90 m. The characteristics of the
Mobileye 630 camera system that was installed on our test vehicle are summarized in
Table 2.

Table 2. Automotive camera system specifications.

Type Mobileye 630

Frame size 640 × 480 pixels

Dynamic range 55 dB linear
100 dB in HDR

Range accuracy (longitudinal) <10% (in general)
Width accuracy <10%

Horizontal field-of-view (FOV) 38 deg
Data update 66–100 ms
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Lidar stands for light detection and ranging, and as the name suggests, it measures the
relative distance and angle to a target within its FOV by transmitting laser light and mea-
suring reflected light. Near-infrared light with a wavelength of 905 nm is typically used for
automotive lidars, and they are capable of higher localization performance compared with
other automotive ranging sensors. Lidar sensors attracted much attention of the automated
driving research community since they were used by many groups who participated in the
DARPA Grand Challenges [39–41]. Despite the advantage of lidar sensors, most automak-
ers are yet to incorporate them into production vehicles largely due to their drawbacks
such as the high manufacturing cost and bulky form factor. Moreover, high-performance
lidars generate millions of data points per second [42]. Processing lidar data points is often
computationally expensive and the perception and tracking performance based on lidar
measurements can vary depending on the algorithm used [43–45]. The use of lidar sensors
is outside the scope of this paper, and perception approaches based on multiple remote
sensors including lidars will be investigated in future work.

2.3. V2X Communications

There exists a range of wireless communication technologies that can be employed for
CAV systems and intelligent transportation system (ITS) applications (e.g., 5.9 GHz DSRC,
cellular communications, Wi-Fi, Bluetooth, satellite radio, and visible light communica-
tions) [20,46]. The V2X communications based on 5.9 GHz DSRC is a mature technology
that is the most widely tested and commercially available [46–48]. The DSRC-based V2X
communication technology is based on the IEEE 802.11p and the IEEE 1609 series of stan-
dards, which are collectively known as wireless access in vehicular environments (WAVE)
standards [46]. The 5.9 GHz frequency band is divided into seven 10-MHz channels, which
include one control channel (CCH) and six service channels (SSHs) [49]. As an alternative to
the DSRC-based V2X communications, the cellular V2X (C-V2X) communications based on
the 3GPP standards has attracted significant attention in recent years. The C-V2X commu-
nications utilizes the cellular network infrastructure (e.g., LTE and 5G networks) to enable
V2X applications. For the upper layers, the C-V2X technology is expected to leverage
existing standards (e.g., IEEE, SAE, ISO, and ETSI) and utilize common ITS message types,
such as the basic safety message (BSM) of IEEE WAVE and the cooperative awareness
message (CAM) and the decentralized environmental notification message (DENM) of
ETSI ITS-G5. Some of the advantages of the C-V2X technology over 5.9 GHz DSRC include
a much larger coverage area, higher throughput, lower latency, and more robust scalabil-
ity [47,48]. Despite the advantages, the standardization work of C-V2X communications is
still in process and the availability of C-V2X commercial hardware equipment is limited at
this stage. In this work, we utilized 5.9 GHz DSRC for V2X communications, and the test
vehicles were equipped with Cohda MK5 OBUs for the exchange of information among
vehicles. The characteristics of DSRC-based V2X communications are shown in Table 3.

Table 3. Dedicated short-range communications (DSRC)-based vehicle-to-everything (V2X) commu-
nications characteristics.

Type IEEE WAVE

Frequency 5.850–5.925 GHz
Channel 1 CCH, 6 SCH

Bandwidth 10 MHz
Data rate 3–27 Mbps

Maximum range 1000 m
Modulation OFDM

Media access control CSMA/CA

The vehicle state information is broadcast and shared among the vehicles equipped
with DSRC devices by exchanging the BSM, which is defined in the SAE J2735 message
set dictionary [29]. The BSM contains data obtained from the vehicle CAN bus and the
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GNSS receiver, which include safety critical state information such as the vehicle position,
heading, speed, and yaw rate. The BSM is typically transmitted with a period of 100 ms
on the dedicated safety channel (i.e., Channel 172 in the U.S.) [29,46]. The BSM Part I data
contain the BSM core data frame that shall be included when broadcasting a BSM, while
the BSM Part II data contain optional additional information (e.g., event flags, path history,
path prediction, and exterior lights). The contents of the BSM core data frame are described
in Table 4.

Table 4. Data description for the basic safety message (BSM) core data frame.

Content Description

Message count Sequence number for the same type of messages originated from the
same sender.

Temporary ID Device identifier that is modified periodically for on-board units
(OBUs). This value may be fixed for roadside units (RSUs).

DSRC second Milliseconds within a minute that typically represents the moment
when the position was determined.

Position Geographic latitude, longitude, and height.

Position accuracy Semi-major axis (length and orientation) and semi-minor axis (length)
of an ellipsoid representing the position accuracy.

Transmission state Vehicle transmission state (i.e., neutral, park, forward, and reverse).
Speed Vehicle speed.

Heading Vehicle heading. Past values may be used if the sender is stopped.
Steering wheel angle Angle of the vehicle steering wheel.

Acceleration Vehicle acceleration in longitudinal, lateral, and vertical axes.
Yaw rate Vehicle yaw rate.

Brake system status Status of the brake and other control systems (i.e., traction control,
ABS, stability control, brake boost, and auxiliary brake).

Vehicle size Vehicle width and length.

3. State Estimation and Prediction

A Kalman-filter-based fusion approach that was previously described in [23] is em-
ployed in this study for state estimation and trajectory prediction of the remote targets in
the vehicle surroundings. At each time step, the measurements from the on-board remote
sensors as well as the BSMs received from the remote targets are collected and processed
with Kalman filter algorithms, which reduce the measurement noise and output the state
and error covariance for each track. The types of information we used in this study to
estimate the state and future trajectory of the remote target include the following: Position,
speed, heading, yaw rate, and size information from the V2X communications; range
and azimuth information from the radar system; and longitudinal and lateral distance
information from the camera system. The state estimates from different tracks are then
associated and fused together, where the weight for each track is determined based on
the error covariance. The future trajectory of the remote target detected in the perception
stage is estimated with the constant turn rate and velocity (CTRV) motion model. For
performance evaluation in the context of safety applications, the future trajectory of the
remote target is compared with the future trajectory of the host vehicle and an appropriate
warning is generated when a possible collision is detected.

3.1. Kalman Filtering

Kalman filtering [50,51] is a recursive algorithm that estimates the state of a system as
well as the estimation uncertainty based on the prior state and the noisy measurements.
The operation of the Kalman filter is described in Figure 2. In the prediction step, the state
x̂k|k−1 and the error covariance P̂k|k−1 are projected with the state transition matrix A from
the previous state x̂k−1|k−1 and the corresponding error covariance P̂k−1|k−1. The random
variable wk is the process noise, which is assumed to be normally distributed with the
process noise covariance Qk, such that wk ∼ N(0, Qk). The process noise covariance Qk
assumed here to be constant, but it may be changed during the filter operation for adjust-
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ment to different dynamics. In the update step, the error covariance P̂k|k−1 is used along
with the measurement matrix H and the measurement error covariance Rk to compute the
Kalman gain Kk. The measurement matrix H maps the state vector xk to the measurement
vector zk such that

zk = Hxk + vk. (1)
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The random variable vk is the measurement noise, which is assumed to be normally
distributed with the measurement error covariance Rk, such that vk ∼ N(0, Rk). Finally,
the state x̂k|k and the error covariance P̂k|k are updated based on the Kalman gain Kk and
the measurement vector zk obtained at time step k.

The relative positions and the motion equations of the remote targets in the vehicle
surroundings are typically given in Cartesian coordinates, and it is necessary to perform a
polar-to-Cartesian transformation when the ranging measurements obtained from remote
sensors (e.g., radar sensors) are in polar coordinates. An extended Kalman filter (EKF) is
often utilized to handle such nonlinear systems; however, the linear approximation of a
nonlinear system may result in highly unstable performance, and the derivation of the
Jacobian matrices is often nontrivial in many applications [52]. More advanced nonlinear
filtering approaches such as sequential Monte Carlo methods, also known as particle
filters, have been introduced [53], but the computation complexity becomes enormous
for high dimensional problems and the use of particle filters should be determined based
on the degree of the system nonlinearity [54]. In this study, the unbiased converted
measurement Kalman filter algorithm as presented in [55,56] is employed to perform the
coordinate transformation without bias and to obtain the correct covariance. This converted
measurement approach yields nearly optimal estimates and provides higher estimation
accuracy than the EKF [57].

The operation of the unbiased converted measurement Kalman filter is described
in Figure 3. The filtering process includes additional steps to compute the covariance of
the unbiased conversion compared with the linear Kalman filtering described above. The
range measurement rm and the azimuth measurement θm are defined as

rm = r + vr (2)

θm = θ + vθ (3)

where r and θ are the true range and azimuth of the remote target, respectively, and vr and
vθ are the associated measurement noise with an error standard deviation of σr and σθ ,
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respectively. The unbiased converted measurements xm and ym are computed by taking
into account the bias compensation factor such that

xm = λ−1
θ rm cos θm (4)

ym = λ−1
θ rm sin θm. (5)
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The computation of the unbiased converted measurements as well as the associated
covariance requires the compensation factors λθ and λ′θ , which are determined from

λθ = E[cos vθ ] = e−σ2
θ /2 (6)

λ′θ = E[cos 2vθ ] = e−2σ2
θ . (7)

The rest of the steps for obtaining the covariance of the unbiased conversion are as
shown in Figure 3, and the state x̂k|k and the error covariance P̂k|k are updated according to
the Kalman gain Kk and the measurement zk.

3.2. Data Fusion

A track-to-track fusion approach is employed in this study for combining high-level
data from multiple sources. The data processing for each sensor system is performed indi-
vidually at the sensor level in a high-level fusion system. Each sensor system outputs one or
more tracks based on the sensor measurements, and the state estimates from multiple sen-
sor tracks are associated and combined with a track-to-track fusion algorithm. A high-level
fusion of multiple sensors has been successfully implemented in many studies dealing with
automotive applications [58–62]. Important advantages of the high-level fusion approach
lie in spatial and temporal alignment, modularity, and communication overhead [63,64].
A simple block diagram for the high-level fusion system architecture [63,65] is shown in
Figure 4.
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One of the most widely used algorithms for track-to-track fusion is the convex combi-
nation algorithm [65–68], and it has been used extensively for its simple implementation.
Two state estimates xi and xj with the corresponding covariance Pi and Pj, respectively, can
be fused to obtain the state estimate x̌ by

x̌ = Pj
(

Pi + Pj
)−1xi + Pi

(
Pi + Pj

)−1xj= P̌
(

Pi
−1xi + Pj

−1xj

)
(8)

where P̌ is the covariance associated with the fused estimate, which is given by

P̌ = Pi − Pi
(

Pi + Pj
)−1Pi= Pi

(
Pi + Pj

)−1Pj=
(

Pi
−1 + Pj

−1
)−1

. (9)

3.3. Trajectory Prediction and Risk Assessment

The future trajectory of the remote target in the vehicle surroundings is estimated
with a CTRV model. The state space at time step k is defined as

xk = [Xk Yk vk ψk ωk]
T (10)

where Xk is the relative distance in the longitudinal direction, Yk is the relative distance in
the lateral direction, vk is the target speed, ψk is the relative course heading, and ωk is the
yaw rate. The state transition equation for the prediction of the state at time step k + 1 is
given by

xk+1 = xk +


vk
ωk
(sin(ψk + ωk∆t)− sin(ψk))

vk
ωk
(− cos(ψk + ωk∆t) + cos(ψk))

0
ωk∆t

0

 . (11)

For the purpose of risk assessment, the circle model described in [23] is employed and
a possible collision event is predicted based on the future trajectories of the remote vehicle
and the host vehicle as shown in Figure 5. The host vehicle radius RHV and the remote
vehicle radius RRV are given by

RHV =

√
WHV2 + LHV2

2
(12)

RRV =

√
WRV2 + LRV2

2
(13)



Sensors 2021, 21, 1860 11 of 29

where WHV and LHV denote the width and the length of the host vehicle, respectively,
and WRV and LRV denote the width and the length of the remote vehicle, respectively. A
possible collision is determined if the following inequality is true:√

(XHV − XRV)
2 + (YHV −YRV)

2 ≤ RHV + RRV . (14)
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The detection of a possible collision leads to the generation of a collision warning
to the host vehicle. Based on the time-to-collision (TTC) estimate, four different collision
warning messages are provided. Following the collision warning stages discussed in [69],
the warning messages provided by the proposed system include “no threat” for no possible
collision, “threat detected” for TTC > 2.6 s, “inform driver” for 1.6 s < TTC ≤ 2.6 s, and
“warn driver” for TTC ≤ 1.6 s. The description for each warning message is described in
Table 5. The conditions for the collision warning messages defined here are similar to those
of Daimler PRE-SAFE [70] and Mobileye FCW [71]. The PRE-SAFE and Mobileye systems
warn the driver approximately 2.6 s and 2.7 s before the expected collision, respectively. In
the case of the PRE-SAFE system, an additional warning is provided at approximately 1.6 s
before the expected collision.

Table 5. Vehicle collision warning conditions [23].

Condition Stage Warning Type Color

No collision detected No threat (Level 0) Visual Gray
TTC > 2.6 s Threat detected (Level 1) Visual Green

1.6 s < TTC ≤ 2.6 s Inform driver (Level 2) Visual and audible Yellow
TTC ≤ 1.6 s Warn driver (Level 3) Visual and audible Red

4. Experimental Evaluation

The proposed system for cooperative driving environment perception was evaluated
experimentally in test-track environments. Two test vehicles were utilized for the exper-
iments where both vehicles were equipped with V2X communication devices such that
the exchange of the BSM between the two test vehicles was enabled. In order to evaluate
the benefits of introducing V2X communications to the currently available environment
perception systems, the host vehicle in this work was additionally equipped with radar
and camera systems that have already been adopted in production vehicles.

4.1. Vehicle Configuration

Two Kia Soul cars, one in white and the other in yellow as shown in Figure 6a, were
used for the experiments. The experiment setup consisted of a combination of hardware
and software components that enabled the host vehicle to gather information on the vehicle
surroundings by means of on-board remote sensors and V2X communications. As shown
in Figure 6b, the host vehicle (Kia Soul in white) was equipped with a Delphi ESR 2.5 radar
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and a Mobileye 630 camera for detection of surrounding objects, and each test vehicle
was equipped with a Cohda MK5 OBU, a DSRC antenna, a u-blox F9P GNSS receiver,
and a GNSS antenna, all of which together enabled the vehicles to exchange BSM via
V2X communications and share vehicle position information with a lane-level accuracy.
The u-blox F9P device is a low-cost GNSS module with built-in support for standard
RTCM corrections.
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For real-time data acquisition and processing, the host vehicle was equipped with a
dSPACE SCALEXIO AutoBox, which is an in-vehicle prototyping system with a real-time
processor and interfaces for CAN and Ethernet communications. The signals transmitted
from the radar and camera systems as well as the in-vehicle ECUs were acquired via CAN
interfaces, and the signals transmitted from the DSRC OBU were acquired via Ethernet
interfaces. RTCM corrections were acquired with an NTRIP client running on a smartphone
and streamed via a Bluetooth connection to the u-blox C099-F9P application board. In order
to obtain ground truth positions for the test vehicles, both vehicles were equipped with
an Ascen AKT980R, which is a highly accurate GNSS receiver that provides GNSS carrier
phase measurements with a horizontal positioning accuracy of 0.008 m and a heading
accuracy of 0.09 deg with a 2-m baseline. The overview of the hardware interface for the
proposed system is presented in Figure 7. The driving experiments were conducted at the
proving ground available at Korea Automotive Technology Institute which is shown in
Figure 8.
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4.2. Surrounding Vehicle Localization
4.2.1. Experimental Environment

In order to obtain relative position estimates of the remote vehicle from the radar
and camera and also from V2X communications, driving experiments were conducted
under the scenarios where the remote vehicle is driven ahead the host vehicle. For the
performance evaluation of the proposed data fusion approach for different relative target
locations, the relative distance between the two test vehicles was gradually increased. As
shown in Figure 9, the first set of experiments was carried out under a scenario where both
test vehicles drove in the same lane, and the second set of experiments was conducted
under a scenario where the remote vehicle drove in the adjacent lane. The two driving
scenarios, which are referred to as the “normal driving scenarios” here, are summarized in
Table 6. For these two normal driving scenarios, dynamic driving maneuvers such as lane
change maneuvers were not performed. For both driving scenarios, the host vehicle was
driven at a speed of about 20 km/h while the remote vehicle was driven at about 25 km/h.
The red and blue dashed lines in Figure 9 indicate the FOV of the camera and radar
sensors, respectively. The narrower set of dashed lines in blue indicates the long-range
radar coverage, whereas the wider set indicates the mid-range radar coverage. The relative
positions of the target vehicle obtained from the radar, camera, and V2X communications
are plotted in different colors. The red dot indicates the camera measurement while the blue
dot indicates the radar measurement. The dot in magenta indicates the relative position
obtained based on V2X communication data, and finally black dot denotes the ground
truth position. All of these dots represent the estimated distance to the rear center of the
remote vehicle from the origin, which is the center of the front bumper of the host vehicle.



Sensors 2021, 21, 1860 14 of 29

The magenta bounding box is created and rotated based on the width, length, and heading
information obtained from V2X communications at a given time step. Finally, the black
bounding box represents the ground truth position of the remote vehicle.
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Table 6. Normal driving scenario descriptions.

Scenario
Number

Host Vehicle
Speed (km/h)

Remote Vehicle
Speed (km/h)

Remote Vehicle
Driving Lane

1 20 25 Same as HV
2 20 25 Adjacent to HV

4.2.2. Performance Evaluation

Figure 10a,b show the ground truth distance to the remote vehicle obtained for the
driving scenario where both vehicles are in the same lane. The longitudinal and lateral
relative distance obtained from separate test runs are concatenated and presented together.
The time step between two consecutive frames from the same test run corresponds to 0.1 s.
The separation between the two test vehicles gradually increases while both vehicles stay
in the same lane. The absolute error for the relative position in the longitudinal and lateral
directions is presented in Figure 10c,d. The results of the proposed data fusion method are
presented along with those of individual remote sensing systems. Despite the fluctuations
observed in the position estimates of the radar, camera, and V2X communications, the
proposed method enables reliable estimation of the relative position of the remote target at
varying distances.
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Figure 10. Relative distance to the remote vehicle during the normal driving scenario 1. (a) Ground
truth longitudinal distance; (b) ground truth lateral distance; (c) absolute error for longitudinal
distance estimates; (d) absolute error for lateral distance estimates.
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As presented in Tables 7 and 8, the performance of the proposed data fusion method
is evaluated by computing the root mean squared error (RMSE) and the standard deviation
of the error, and compared with those calculated for other remote sensing systems. In
order to determine the positioning accuracy at varying relative distances, the results are
grouped in separate 10-m bins (in the longitudinal direction). For the driving scenario with
both vehicles in the same lane, the longitudinal and lateral localization accuracies of the
proposed method in terms of the RMSE are found to be 0.22 m and 0.13 m, respectively,
when taking into account all the results that correspond to the range of longitudinal
distances between 0 and 70 m.

Table 7. Relative positioning accuracy in the longitudinal direction for the measurements obtained during the normal
driving scenario 1.

Data Range
(m)

Camera Lon. Position Error Radar Lon. Position Error V2X Lon. Position Error Fusion Lon. Position Error

RMSE (m) SD (m) RMSE (m) SD (m) RMSE (m) SD (m) RMSE (m) SD (m)

0–10 0.36 0.24 0.39 0.18 0.25 0.22 0.13 0.13
10–20 0.19 0.15 0.51 0.21 0.31 0.28 0.12 0.11
20–30 0.33 0.23 0.54 0.15 0.38 0.37 0.24 0.09
30–40 0.63 0.45 0.56 0.20 0.33 0.33 0.29 0.16
40–50 1.23 0.79 0.74 0.42 0.40 0.38 0.24 0.23
50–60 1.82 0.98 1.09 0.57 0.33 0.33 0.23 0.23
60–70 2.73 1.69 0.83 0.32 0.26 0.25 0.28 0.16

Total 1.16 0.96 0.67 0.35 0.34 0.32 0.22 0.18

Table 8. Relative positioning accuracy in the lateral direction for the measurements obtained during the normal driving scenario 1.

Data Range
(m)

Camera Lat. Position Error Radar Lat. Position Error V2X Lat. Position Error Fusion Lat. Position Error

RMSE (m) SD (m) RMSE (m) SD (m) RMSE (m) SD (m) RMSE (m) SD (m)

0–10 0.05 0.05 0.21 0.21 0.12 0.09 0.05 0.04
10–20 0.05 0.04 0.21 0.16 0.24 0.10 0.06 0.04
20–30 0.06 0.06 0.26 0.20 0.32 0.13 0.09 0.06
30–40 0.07 0.07 0.24 0.19 0.45 0.16 0.14 0.08
40–50 0.11 0.10 0.28 0.28 0.62 0.20 0.19 0.11
50–60 0.12 0.12 0.34 0.29 0.70 0.31 0.20 0.10
60–70 0.15 0.15 0.28 0.28 0.84 0.41 0.19 0.12

Total 0.09 0.09 0.26 0.23 0.48 0.28 0.13 0.09

The results obtained when the target vehicle is at a relative longitudinal distance of
70 m or longer are not used for this performance evaluation, considering that the lateral
position accuracy of the GNSS system used for ground truth degrades at such long distances
due to the limited heading accuracy such that it may not be appropriate to be utilized
as a reference system. In addition, the Mobileye camera used in this work appears to
suffer from significant degradation in longitudinal accuracy for remote targets located at
such distances.

The ground truth distance to the remote vehicle during the driving scenario where the
remote vehicle is in the adjacent lane is shown in Figure 11a,b. As previously explained, the
relative positions of the remote vehicle acquired from separate test runs are concatenated
and presented together, and the time step between two consecutive frames from the same
test run corresponds to 0.1 s. The separation between the two test vehicles gradually
increases while the remote vehicle stays in the adjacent lane. The absolute error for the
longitudinal and lateral distances to the remote vehicle is presented in Figure 11c,d. Similar
to the aforementioned case with both vehicles in the same lane, the proposed fusion method
reliably estimates the remote target position at varying distances even at times when the
accuracy of individual remote sensors becomes severely degraded.
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Figure 11. Relative distance to the remote vehicle during the normal driving scenario 2. (a) Ground
truth longitudinal distance; (b) ground truth lateral distance; (c) absolute error for longitudinal
distance estimates; (d) absolute error for lateral distance estimates.
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The performance of the individual remote sensing systems and the proposed coop-
erative environment perception approach is evaluated by computing the RMSE and the
standard deviation of the error at different relative distances as shown in Tables 9 and 10.
Similar to the previous scenario, the results are grouped in separate 10-m bins (in the
longitudinal direction) to determine the positioning accuracy at varying relative distances
for the driving scenario with the remote vehicle driving in the adjacent lane. Taking into
account all of the position estimates that fall between 0 and 70 m in the longitudinal direc-
tion, the longitudinal and lateral localization accuracies of the proposed method in terms
of the RMSE are found to be 0.33 m and 0.09 m, respectively.

Table 9. Relative positioning accuracy in the longitudinal direction for the measurements obtained during the normal driving
scenario 2.

Data Range
(m)

Camera Lon. Position Error Radar Lon. Position Error V2X Lon. Position Error Fusion Lon. Position Error

RMSE (m) SD (m) RMSE (m) SD (m) RMSE (m) SD (m) RMSE (m) SD (m)

0–10 N/A N/A 0.30 0.28 0.44 0.40 0.31 0.31
10–20 0.49 0.48 0.40 0.31 0.36 0.36 0.34 0.32
20–30 0.91 0.80 0.44 0.39 0.41 0.40 0.40 0.40
30–40 1.52 1.37 0.43 0.40 0.47 0.46 0.42 0.42
40–50 2.80 1.82 0.37 0.33 0.34 0.33 0.31 0.30
50–60 3.61 2.52 0.39 0.26 0.27 0.26 0.24 0.22
60–70 4.29 3.50 0.31 0.26 0.38 0.33 0.28 0.27

Total 2.62 2.20 0.39 0.32 0.37 0.37 0.33 0.32

Table 10. Relative positioning accuracy in the lateral direction for the measurements obtained during the normal driving scenario 2.

Data Range
(m)

Camera Lat. Position Error Radar Lat. Position Error V2X Lat. Position Error Fusion Lat. Position Error

RMSE (m) SD (m) RMSE (m) SD (m) RMSE (m) SD (m) RMSE (m) SD (m)

0–10 N/A N/A 0.32 0.22 0.15 0.09 0.11 0.09
10–20 0.15 0.07 0.29 0.18 0.18 0.06 0.05 0.05
20–30 0.16 0.08 0.28 0.25 0.31 0.15 0.09 0.08
30–40 0.17 0.11 0.25 0.24 0.42 0.19 0.07 0.06
40–50 0.28 0.14 0.25 0.25 0.57 0.20 0.07 0.07
50–60 0.27 0.17 0.26 0.26 0.68 0.30 0.12 0.12
60–70 0.26 0.17 0.25 0.24 0.79 0.32 0.09 0.09

Total 0.22 0.14 0.27 0.26 0.51 0.30 0.09 0.09

Figure 12 shows the relative positioning accuracy in the longitudinal and lateral direc-
tions for the combined sets of the measurements from the two normal driving scenarios.
In the longitudinal direction, the total RMSE of the relative position estimated with the
proposed fusion approach is 0.27 m, which corresponds to an improvement of 86% and
52% compared to the total RMSE of the relative position estimated with the camera and
radar sensors, respectively. In the lateral direction, the total RMSE of the relative position
estimated with the proposed fusion approach is 0.12 m, which corresponds to an improve-
ment of 27% and 56% compared to the total RMSE of the relative position estimated with
the camera and radar sensors, respectively.

4.3. Cut-In Driving Scenario
4.3.1. Experimental Environment

The performance of the proposed cooperative environment perception approach was
also evaluated in cut-in driving scenarios where the remote vehicle performs a lane-change
maneuver in front of the host vehicle. Three different cut-in scenarios were considered in
this work as described in Table 11. The host vehicle traveled at 40–45 km/h at the start of
the cut-in maneuver in all three cut-in driving scenarios, while the remote vehicle originally
driving in the adjacent lane cut in at a distance of 15–20 m in front of the host vehicle. The
speed of the remote vehicle was set differently for each cut-in scenario in order to vary the
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level of collision threat, such that the scenario 1 presents the lowest level of threat while
the highest level of threat is expected in the scenario 3.
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Table 11. Cut-in driving scenario descriptions.

Scenario
Number

Host Vehicle
Speed (km/h)

Remote Vehicle
Speed (km/h)

Cut-In
Distance (m)

Number of Cut-In
Maneuvers

1 40–45 35–40 15–20 4
2 40–45 25–30 15–20 5
3 40–45 15–20 15–20 8

4.3.2. Performance Evaluation

The ground truth relative position of the remote vehicle and the absolute error for
the relative position during the cut-in driving scenario 1 are shown in Figure 13. The
longitudinal and lateral relative distance measurements obtained from separate test runs
are concatenated and shown together. The start and the duration of the cut-in events can be
conveniently observed in Figure 13b, where the lateral distance changes from the center of
the adjacent lane towards the center of the lane that the host vehicle is positioned. The TTC
results and the corresponding levels of the collision warning obtained from the proposed
method for trajectory prediction and risk assessment are presented in Figure 14. Possible
collision events are successfully predicted for all four cut-in maneuvers performed by the
remote vehicle. The TTC results for the collision detection shown are above 4 s except the
third cut-in case. The levels of these threats other than the third one are minor, resulting in
level-1 warnings only for a short duration of time. A level-2 warning is given for the third
cut-in event, which is due to the more abrupt change in the longitudinal distance just prior
to and during the lane-change maneuver.

Figure 15 shows the ground truth position and the absolute position error in longitu-
dinal and lateral directions during the cut-in driving scenario 2. The data collected from
separate test runs are concatenated as presented. A total of five cut-in events take place in
this scenario, and the start and the duration of these events can be observed in Figure 15b.
The TTC results and the corresponding collision warning levels are presented in Figure 16.
For all five cut-in maneuvers performed by the remote vehicle in the scenario 2, possible
collision events are correctly predicted and corresponding collision warnings are provided.



Sensors 2021, 21, 1860 20 of 29

Sensors 2021, 21, x FOR PEER REVIEW 23 of 32 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Sensors 2021, 21, x FOR PEER REVIEW 23 of 32 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 13. Relative distance to the remote vehicle during the cut-in driving scenario 1. (a) Ground
truth longitudinal distance; (b) ground truth lateral distance; (c) absolute error for longitudinal
distance estimates; (d) absolute error for lateral distance estimates.
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Figure 15. Relative distance to the remote vehicle during the cut-in driving scenario 2. (a) Ground
truth longitudinal distance; (b) ground truth lateral distance; (c) absolute error for longitudinal
distance estimates; (d) absolute error for lateral distance estimates.

Figure 17 presents the ground truth relative position of the remote vehicle and the
absolute error for the relative position during the cut-in driving scenario 3. The data
obtained from separate test runs are concatenated and presented together. A total of eight
cut-in events can be recognized in Figure 17b. An unusual remote vehicle maneuver in the
lateral direction can be noticed before the initiation of the fourth cut-in maneuver. This
was caused by an incident where our driver of the remote vehicle steered away to avoid
another vehicle that was used by a different group in the proving ground. Despite the
higher fluctuations of the position estimates from the individual remote sensing systems as
shown in Figure 17c,d, the proposed cooperative approach provides accurate and reliable
positioning results throughout the execution of cut-in maneuvers. The TTC estimates and
the corresponding warning levels are presented in Figure 18. The results show that the
proposed system for trajectory prediction and risk assessment enables reliable and timely
warning to cope with the sudden lane change maneuvers performed in the cut-in driving
scenario 3.
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5. Conclusions

In this paper, we presented the experimental design and performance evaluation of the
driving environment perception system based on the fusion of multiple on-board sensors
and V2X communications. The two test vehicles used for the driving experiments were
each equipped with DSRC equipment and a low-cost GNSS receiver for the exchange of
BSM data. The host vehicle was additionally equipped with radar and camera sensors that
have already been adopted in production vehicles. The performance of the proposed fusion
approach in terms of relative positioning accuracy was evaluated at varying longitudinal
and lateral distances between the two test vehicles. In the longitudinal direction, the total
RMSE of the relative position estimated with the proposed fusion approach was 0.27 m,
whereas those estimated with the camera and radar sensors were 1.91 m and 0.57 m,
respectively, which correspond to an improvement of 86% and 52%. In the lateral direction,
the total RMSE of the relative position estimated with the proposed method was 0.12 m,
while those estimated with the camera and radar were 0.16 m and 0.26 m, respectively,
corresponding to an improvement of 27% and 56%. The performance of the trajectory
prediction and risk assessment was evaluated in different cut-in driving scenarios where
the remote vehicle performs a lane-change maneuver in front of the host vehicle. The
test results showed that the proposed method provides accurate target localization and
facilitates reliable target trajectory prediction and detection of potential collision during the
events when a remote vehicle driving in an adjacent lane cuts in front of the host vehicle.

Although the proposed cooperative approach for driving environment perception
proved to be successful in the driving scenarios considered in this study, there still exists a
number of challenges to be addressed. The scope of this paper has been limited to driving
scenarios where a single remote target is present in the surroundings of the host vehicle.
As part of future work, the benefits of the cooperative environment perception approach
will be further investigated in scenarios that involve multiple surrounding objects for more
diverse use cases. In addition, various factors that could adversely affect the accuracy and
reliability of on-board sensors (e.g., high-curvature roads and adverse weather conditions)
and V2X communications (e.g., large separations between vehicles, urban environments)
will be examined so that the data quality levels that can be expected for each sensor track
and for V2X communications can be more accurately determined in continuously changing
driving conditions. It is also important to note that the trajectory prediction performed in
the scope of this study was based on the physics-based motion model, which performs
well for short-term prediction but degrades in its performance when the prediction horizon
is extended. Furthermore, this trajectory prediction approach cannot anticipate the state
changes caused by varying road curvature, traffic signals, or future driving maneuver
execution. Therefore, future work should investigate interaction-aware motion models
and also incorporate the map data and the signal phase and timing message, which can
be acquired via V2X communications, for accurate and reliable longer-term trajectory
prediction that takes into account inter-vehicle interaction, road configuration, and traffic
signal dependencies.
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ADAS Advanced driver assistance system
BSM Basic safety message
CAM Cooperative awareness message
CAN Controller area network
CAV Connected and automated vehicle
CTRV Constant turn rate and velocity
C-V2X Cellular vehicle-to-everything
DENM Decentralized environmental notification message
DSRC Dedicated short-range communications
ECU Electronic control unit
FMCW Frequency modulated continuous wave
FOV Field of view
GNSS Global navigation satellite system
ITS Intelligent transportation system
NTRIP Networked Transport of RTCM via Internet Protocol
OBU On-board unit
ODD Operational design domain
RSU Roadside unit
RTCM Radio Technical Commission for Maritime Services
TTC Time-to-collision
V2I Vehicle-to-infrastructure
V2N Vehicle-to-network
V2P Vehicle-to-pedestrian
V2V Vehicle-to-vehicle
V2X Vehicle-to-everything
WAVE Wireless access in vehicular environments
WGS World Geodetic System
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