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Abstract: It is highly desirable to have a compact laser interferometer for detecting gravitational
waves. Here, a small-sized tabletop laser interferometer with Fabry–Perot resonators consisting of
two spatially distributed “mirrors” for detecting gravitational waves is proposed. It is shown that the
spectral resolution of 10−23 cm−1 can be achieved at a distance between mirrors of only 1–3 m. The
influence of light absorption in crystals on the limiting resolution of such resonators is also studied.
A higher sensitivity of the interferometer to shorter-wave laser radiation is shown. A method for
detecting gravitational waves is proposed based on the measurement of the correlation function of
the radiation intensities of non-zero-order resonant modes from the two arms of the Mach–Zehnder
interferometer.

Keywords: Mach–Zehnder interferometer; Fabry–Perot resonator; periodic diffraction structure;
gravitational wave detection; spectral resolution; frequency shift

1. Introduction

The idea of using laser interferometers to detect gravitational waves was first ex-
pressed in 1962 in Reference [1], where a new method for registering gravitational waves
was proposed, based on the use of a laser interferometer. In 2015, these waves were detected
experimentally by two detectors of the Laser interference gravitational wave Observatory
(LIGO) in Hanford and Livingston (USA) [2,3]. A detailed analysis of the current state is
given in the review [4].

It is known that the sensitivity of detectors for detecting gravitational waves (GWs)
is determined by the reflectivity of mirrors. The minimum displacement of the body
that can be registered is proportional to the reflectivity of mirrors in the gravitational
wave detector (xmin~(1 − R), where R is the mirror reflection coefficient) [5–7]. Thus, to
increase the sensitivity of the detector, it is necessary to increase the reflection coefficient
R. The main problems that limit the capabilities of detectors are quantum shot noise and
thermal effects due to the absorption of optical laser radiation. Increasing the stored power
in the Fabry–Perot resonator reduces quantum shot noise at high frequencies inversely
proportional to the square root of the stored power. The Advanced LIGO interferometer
is supposed to increase the stored power to 750 kW [8], which will allow achieving the
necessary sensitivity of the measuring system. High power in the interferometer leads
to several effects that interfere with system control. These are angular instabilities due
to light pressure [9], parametric instabilities [10], and thermo-optical distortions due to
optical power absorption [11]. Planned cryogenic gravitational wave detectors will require
improved coatings with deformational thermal noise reduced by 25 times compared to
Advanced LIGO. In Reference [12], a multi-layer structure is proposed as a new coating
material for future detectors, which for the first time can simultaneously meet the strict
requirements for optical absorption and thermal noise of the Einstein cryogenic telescope.
However, the use of multi-layer coatings does not solve the problem of thermal noise.
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The problem of increasing the sensitivity of gravitational antennas leads to the need to
manufacture mirrors with a very high reflection coefficient, or to further increase the inter-
ferometer arms, as it is supposed to do in the space version of the system (the LISO project).

New features appear when using distributed resonator mirrors, which are three-
dimensional diffraction gratings created in the volume of the crystal. As it was shown
in Reference [13], super-narrow transparency lines of such a resonator appear near the
Bragg frequency. The use of Fabry–Perot resonators with periodic structures as reflecting
mirrors for detecting gravitational waves was considered in Reference [14]. It has been
shown that when using such resonators, the sensitivity of the laser gravitational antenna
can be significantly increased compared to conventional Fabry–Perot interferometers. The
distance between the periodic structures was assumed to be 628 m, which is significantly
less than the distance between the mirrors in the LIGO installation. Note that the sensitivity
estimates of the proposed measurement method for changes in the interference pattern
were made for a zero-order maximum. It is interesting to evaluate the sensitivity of the
measurement method by shifting the maxima of resonant modes of non-zero order [15].

This paper shows the possibility of creating a laser interferometer with distributed
mirrors for detecting gravitational waves in laboratory conditions. As reflecting mirrors
forming the optical Fabry–Perot interferometer, it is proposed to use reflecting periodic
structures that have an exponentially narrow bandwidth of laser radiation. It is shown
that the spectral resolution of 10−23 cm−1 can be achieved at a distance between mirrors
of only 1–3 m. The influence of light absorption in crystals on the limiting resolution of
such resonators is also studied. A method is proposed based on measuring the correlation
function of the intensity of non-zero-order resonant modes from the two arms of the
Mach–Zehnder interferometer, whose sensitivity exceeds that of the LIGO system.

2. Fabry–Perot Resonator with Periodical Structures as Reflecting Mirrors

Consider a Fabry–Perot resonator formed by two periodic structures that are located
at a distance d relative to each other (Figure 1). The radiation propagates from left to right.
Our goal is to find the intensity of the radiation that came out of the resonator (or the
hardware function of the resonator).

Figure 1. Fabry–Perot resonator with periodic structures as reflecting mirrors.

The modulation of the dielectric constant of mirrors in a Fabry–Perot resonator is
given by the expression

ε(x) = ε0 + ∆ε cos(qx) (1)

where ε0 is the constant component of the dielectric constant, q is the wavevector of the
periodic structure, ∆ε is the modulation amplitude of the dielectric constant, and ∆ε << ε0.
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The equations for coupled modes in a periodic structure (1) derived from Maxwell’s
equations have the form [14,16]:

dE1
dx = −ik0∆ε(x)ei∆kxE2
dE2
dx = ik0∆ε(x)e−i∆kxE1

(2)

where E1 is the amplitude of the incident wave, E2 is the amplitude of the reflected wave,
k0 = 2π/λ is the wavenumber of the radiation, ∆k = 2k0 − q is the wave detuning that
determines the deviation from the Bragg synchronism condition.

Equation (2) describe the propagation of light in the first (left) periodic structure
(0 ≤ x ≤ L). The equations describing the propagation of light in the right periodic
structure in the region L + d ≤ x ≤ d + 2L, in contrast to Equation (2), ∆ε will contain a
phase factor eiϕ, where ϕ is the phase difference between the periodic structures, which
occurs between the first and second periodic structures by extending a first periodic
structure on the area L + d ≤ x ≤ d + 2L.

Solutions of Equation (2) will be sought under the following boundary conditions:

E1(x = 0) = E0, E2(x = L) = e−ikdE′2(x = L + d);
E′1(x = L + d) = eikdE1(x = L), E′2(x = 2L + d) = 0,

(3)

where the dash at the top indicates the fields of the light wave in the second periodic struc-
ture, L is the thickness of the mirror (crystal), and d is the distance between the mirrors.

The amplitude of the diffracted wave and the reflection coefficient in the case of a
medium with a constant value ∆ε along the length of the crystal is determined analyti-
cally [16]. The case, when the value ∆ε changes along with the crystal, is also of practical
interest for controlling the hardware function of the resonator. However, in this case,
Equation (2) can only be solved by numerical methods [13,17]. The influence of various
apodization functions of ∆ε on the diffraction curves of reflection and transmission, taking
into account light absorption, was studied in Reference [18]. It is shown in Reference [19]
that the reflection and transmission coefficients are affected by the polarization of the inci-
dent radiation and changes in the geometric parameters and the concentration of dielectric
inclusions in the medium. The solution of the boundary value problem (3) leads to the
following expression for the amplitude of the wave exiting the resonator:

t =
E′0(2L + d)

E0(0)
=

s2 exp(ikd + i∆kd/2 + 3i∆kL/2)

(s · ch(sL)− (∆k/2)sh(sL))2 + |Γ|2sh2(sL) exp(−i∆kd/2− iϕ)
(4)

where s =
(
|Γ|2 − (∆k/2)2

)1/2
, Γ = ∆εk0, ϕ is the phase difference and d is the distance

between two periodic structures.
The relative intensity of the transmitted radiation or the transmission coefficient is

determined by the expression

T = |t|2 =

∣∣∣∣E′0(2L + d)
E0(0)

∣∣∣∣2 (5)

The general shape of the transmission function is shown in Figure 2. It is seen that the
transmission spectrum consists of a set of maxima (Figure 2). The transmission maxima
are observed when the Bragg resonance condition is fulfilled and their frequencies are
determined by the distance between the mirrors d:

ξm =
2mπ

d
, m = 0,±1,±2, . . . , (6)

where m is the resonance mode order.
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Figure 2. Transmittance as function of detuning ∆k. (a) A set of peaks from the two arms of the Mach–
Zehnder interferometer with different distances between the mirrors; (b) the peaks corresponding to
the 1st order modes; (c) the peaks corresponding to the 3rd order modes. d = 100π cm, L = 0.75 cm,
λ = 630 nm.
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When the phase shift in the harmonic profile of the refractive index distribution of
the first and second mirrors is equal to ϕ = π and the exact synchronization condition is
met, the main zero-order maximum occurs. Note that the zero order disappears for other
phase values.

It follows from simulations (Figure 2) that the shift between the resonant modes from
the two arms of the Mach–Zehnder interferometer increases with the order of the recorded
mode. However, the line width (spectral resolution) of the modes remains constant at
the same time. This indicates that the sensitivity of the interferometer increases with an
increase in the order of the recorded resonant modes.

The frequency distance ∆ζ between the transmission maximums is defined by the ex-
pression

∆ζ = ξm+1 − ξm =
2π

d
(7)

It can be seen from Figure 2 that a change in the distance between mirrors entails
a change in the transmission spectrum of the interferometer: the distance between the
maxima changes due to the frequency shift of the resonant modes of non-zero order with
m 6= 0. Note that the shift of the peaks increases with the order of the mode.

Figure 3 shows the transmission curves for different values of the dielectric constant
(permittivity) modulation amplitude ∆ε and radiation wavelength λ.

As follows from the simulations, the width of the transmission line decreases sharply
with the increase of the amplitude of the refractive index modulation. The line width of the
transmittance can reach the values of δk ' 10−23 cm−1 at ∆ε = 3.3 · 10−4 and d = 1 m for
the radiation wavelength 630 nm. This indicates that the spectral resolution of the filter is
equal to

δλ/λ0 = δk/k0 =
λ0

2π
· 10−23cm−1 ' 10−28

Such a resolution of the filter corresponds to the quality factor of the resonator Q ≈ 1028.
The spectral line widths δk increase significantly with the increase of the radiation

wavelength (Figure 3c,d and Table 1). This suggests that the use of short-wave laser
radiation is more preferable.

Figure 3. Cont.



Sensors 2021, 21, 1877 6 of 19

Figure 3. Transmission coefficients as function of the detuning of the resonator. L = 0.75 cm, d = 1 m.
(a) ∆ε = 2.1 · 10−4, λ = 630 nm; (b) ∆ε = 2.9 · 10−4, λ = 630 nm; (c) ∆ε = 2.1 · 10−4, λ = 1064 nm;
(d) ∆ε = 2.9 · 10−4, λ = 1064 nm.
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Table 1. The widths of transmission curves δk for different modulation amplitudes ∆ε and wave-
lengths λ . L = 0.75 cm, d = 1 m.

∆ε λ, nm δk, cm−1

2.1 · 10−4 630
1064

1.5 · 10−15

6 · 10−10

2.9 · 10−4 630
1064

7.8 · 10−21

5.4 · 10−13

When ϕ = π, the hardware function near the zero maximum has a Lorentz form and
can be represented as:

T(L, Γ, ∆k, d) ' 1

1 + (∆k/δk)2 (8)

where δk ' 4 exp(−2ΓL)
d is the width of the transmission curve determined at the half-height

of the maximum, and ΓL > 1.
Of practical interest is the estimation of the effect of asymmetry caused by the differ-

ence in the thickness of the left and right periodic structures δL = L1 − L2. Modeling shows
that such an asymmetry leads to a decrease in the amplitude of the transmission coefficient
and a change in the width of the spectral line (Table 2). However, with existing manufac-
turing technologies, the effect of thickness errors on each mirror will be insignificant.

Table 2. The widths of transmission curves δk amplitudes of transmission coefficients Tmax for
different modulation amplitudes ∆ε and asymmetry values δL. L = 0.75 cm, d = 1 m, λ = 630 nm.

∆ε δL, µm δk, cm−1 Tmax

2.1 · 10−4 10
100

1.6 · 10−15

1.4 · 10−15
0.997
0.97

2.9 · 10−4 5
10

2.3 · 10−20

2.6 · 10−20
0.71
0.64

Imperfections in the manufacturing process, such as deviations from perfectly sym-
metrical periodic structures in Fabry–Perot resonators, can also reduce the sensitivity of
the interferometer. One of the parameters is the difference in the modulation amplitudes
of the dielectric constants of the left and right periodic structures δε = ∆ε1 − ∆ε2. It
follows from the simulation that a 1% difference in the modulation amplitude will not
lead to a significant change in the spectral line width and the transmission coefficient at
moderate values of the modulation amplitude (Table 3). However, for the highest values of
the modulation amplitude, this deviation cannot be ignored. Alignment of the incident
beam wavefront with periodic structures is important for reducing Fresnel losses. To avoid
this problem, laser beam expanders to shape a wavefront with a high degree of accuracy
can be used. Currently, various types of divergence adjustable laser beam expanders are
designed to compress the beam divergence angle by expanding the laser beam diameter,
and they can also be used to adjust the divergence angle to compensate for the input
beam divergence.

The reduction of the thickness of the periodic structure can be performed with the
preservation of the resolution while increasing the distance between the structures or
the amplitude of the modulation of the permittivity. Figure 4 shows the transmission
coefficients depending on the detuning at different values of the distance d between the
mirrors and the amplitude of the dielectric constant modulation ∆ε.

It can be seen that the transmission line width decreases linearly with increasing
distance d, while the dependence on the modulation amplitude of the permittivity is
exponential (Figure 4 and Table 4).
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It is interesting to compare the sensitivity of the proposed method with the sensitivity
of the measurement method in the LIGO installation, which uses a conventional Fabry–
Perot interferometer with freely suspended mirrors. The mirror reflection coefficient
achieved so far is R = 0.999994, and the distance between the mirrors is d = 4 · 105 cm.

The expression for the hardware function of a conventional Fabry–Perot interferometer
has the form [20]:

TF−P =
1

1 + 4R2

(1−R2)
2 sin2 n0kd

2

' 1

1 + 4R2

(1−R2)
2

(
n0d

2

)2
(∆k)2

, (9)

where R is the reflection coefficient of the mirrors, d is the distance between mirrors, n0 is
the refractive index of the medium between the mirrors, n0 = 1.

Figure 5 shows the transmission curves calculated using the formula (9) for different
values of the reflection coefficient R.

Table 5 shows the transmission curve widths obtained from (9) for the different
reflection coefficients R of the mirrors and the distances d between them.

It follows that the resolution of a conventional Fabry–Perot interferometer increases
linearly with the distance between the mirrors.

If the condition ΓL > 1
2 ln 4R

1−R2 is met, the transmission line width of an interferometer
based on periodic structures will be less than the line width of conventional interferometers.

Table 3. The widths of transmission curves δk and amplitudes of transmission coefficients Tmax for
different modulation amplitudes ∆ε2 and asymmetry values δε. L = 0.75 cm, d = 1 m, λ = 630 nm.

∆ε2 δε δk, cm−1 Tmax

2.1 · 10−4 2.1 · 10−6

−2.1 · 10−6
1.4 · 10−15

1.0 · 10−15
0.98
0.96

2.9 · 10−4 8.7 · 10−6

−8.7 · 10−6
2.6 · 10−20

4.0 · 10−20
0.67
0.47

Note that there is an asymmetry with respect to the sign of δε , i.e., different resolutions can be obtained depending
on the sign of the difference in the values of the modulation amplitudes in the left and right periodic structures.

Figure 4. Cont.
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Figure 4. Transmission coefficients as function of the detuning of the resonator. λ = 630 nm,
L = 0.40 cm. (a) ∆ε = 3.0 · 10−4, d = 1 m; (b) ∆ε = 3.0 · 10−4, d = 3 m; (c) ∆ε = 5.0 · 10−4, d = 1 m;
(d) ∆ε = 5.0 · 10−4, d = 3 m.



Sensors 2021, 21, 1877 10 of 19

Table 4. The widths of transmission curves δk for different modulation amplitudes ∆ε and distances
d. L = 0.40 cm, λ = 630 nm.

∆ε d, m δk, cm−1

3.0 · 10−4 1
3

3.0 · 10−12

1.0 · 10−12

5.0 · 10−4 1
3

3.3 · 10−19

1.1 · 10−19

Figure 5. Transmission curves of the conventional F-P resonator: (a) 1 − R = 6 10−6; (b) 1 − R = 10−8.
d = 4 km, λ0 = 630 nm.

Table 5. The widths of transmission curves δk for different values 1 − R and distances d. λ = 630 nm.

1−R d, km δk, cm−1

6.0 · 10−6 1
4

2.4 · 10−10

6.2 · 10−11

1.0 · 10−8 1
4

4.0 · 10−13

1.0 · 10−13
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Influence of Absorption

The results obtained above relate to the case of periodic media without absorp-
tion. Absorption can be taken into account if in the resulting Formula (4) a replacement
∆k→ ∆k + iα is made, where α = 2k0ni is the absorption coefficient of the light in the
periodic structure, ni is the imaginary part of the refractive index of the periodic structure
(mirror).

Figure 6 shows the transmission curves for different attenuation values. As the
calculations show, the bandwidth increases with increasing absorption (Table 6).

Note that the absorption coefficient in an optical glass BK7 is α = 2.4 · 10−3 cm−1,
ni = 1.2 · 10−8 and α = 3 · 10−6 cm−1 in a medium of SiO2 material at a radiation
wavelength of λ = 0.63 µm [21]. Current technologies permit the manufacture of glasses
for optical fiber cores with an absorption coefficient of 10−7 cm−1.

Figure 6. Transmission curves for different values of absorption. (a) ni = 1.2 · 10−8; (b) ni = 10−6.
∆ε = 2.1 · 10−4; λ = 630 nm; L = 0.75 cm; d = 1 m.

Table 6. The widths of transmission curves δk for different modulation amplitudes ∆ε and absorptions.
λ = 630 nm, L = 0.75 cm, d = 1 m.

∆ε ni δk, cm−1

2.1 · 10−4 1.2 · 10−8

10−6
1.6 · 10−15

5.0 · 10−15
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3. Method for Detecting Gravitational Waves

The experimental installations (the LIGO and Virgo detectors) for detecting gravita-
tional waves are based on a Michelson interferometer with Fabry–Perot resonators in each
arm. The distance between the mirrors in the Fabry–Perot resonators changes under the
influence of a gravitational wave. Such a laser interferometer as a method for detecting
gravitational waves was first proposed in Reference [1]. Similarly, the Mach–Zehnder
interferometer can also be used to register gravitational waves (Figure 7).

Figure 7. Optical scheme of Mach-Zehnder interferometer with periodical structures as reflecting
mirrors. 1—laser, 2—beam splitter, 3—mirror, 4—Fabry-Perot resonator with periodical structures,
5—photodetector.

Under the influence of a gravitational wave, the distance between two free bodies
changes [5–7]:

d→ d0 + ∆d = d0(1 + h), (10)

where ∆d is the small displacement of mirrors and h is the amplitude of a gravitational wave.
Currently, LIGO antennas have achieved a sensitivity h ' 10−21 that is sufficient to

detect gravitational radiation from the merger of two black holes [2].
When mirrors are shifted, the lines corresponding to non-zero order modes are shifted

in the transmission spectrum. The shift of the resonant transmission lines and the change
in the distance between the peaks lead to a change in the correlation function measured in
the experiment.

The sensitivity of the proposed method can be estimated from the shift of lines in
the transmission spectrum when the distance between mirrors changes under the action
of a gravitational wave in one of the arms of the Mach–Zehnder interferometer with
Fabry–Perot resonators.

To resolve very small offsets, narrow transmission lines are required. Small shifts
of wide lines are difficult to distinguish. Narrow lines can be obtained by increasing the
distance between mirrors (inversely proportional dependence), or by increasing the value
∆ε (exponential dependence).

Frequency shifts of peaks of resonant lines are defined by the expression:

∆ξm = −2mπ∆d
d2 , (11)
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where ∆d is the displacement of mirrors.
Thus, the frequency shifts of maxima increase with the mode number m = ±1,±2, . . . ,.
The change in distance ∆d is related to the frequency shift ∆ξm by the relationship

∆ξm

ξm
= −∆d

d
= h ' 10−21. (12)

The resolution of the interferometer is determined by the width of the transmission
line δk.

Two lines are usually considered resolvable when their maxima are separated by a
distance equal to the width of the transmission line:

δk ≤ ∆ξm = ξmh =
2πm

d
h. (13)

It follows that for the distance between mirrors d = 1 m, the width of the transmission
line with the number m = 1 must satisfy the condition δk ≤ 6.28 · 10−23 cm−1.

The main parameters that affect the sensitivity of the interferometer are the amplitude
of the change in the dielectric constant ∆ε, the thickness of the crystal L, and the wavelength
of the radiation λ.

Changing the distance between mirrors affects the intensity correlation function
of intensities

F = 〈I(∆k, ξm, d)|I(∆k, ξm, d + ∆d)〉. (14)

As follows from the calculations, high contrast of the interference pattern can be
obtained by tuning the interferometer to measure the correlation function of radiation
intensities from the two arms of the Mach–Zehnder interferometer corresponding to non-
zero resonance modes with m 6= 0. Note that both the amplitude and intensity correlations
of the interferometer output signal can be used to determine the information about the
small displacement of the mirrors. Here, in contrast to the amplitude correlation function
(interference fringes) for the zero-order mode [14], the correlation function of the intensities
corresponding to non-zero-order resonant modes is considered.

Figure 8 shows the transmission intensities from the resonator with the distance d and
from the resonator with the distance d + ∆d between the mirrors for the resonant modes of
the zero order (Figure 8a) and the first order (Figure 8b).

Figure 8. Cont.
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Figure 8. Transmission coefficient as function of the detuning of the resonator: ∆ε = 1.5 · 10−4,
λ = 630 nm, L = 0.75 cm, d = 1 m, ∆d = 5 · 10−8 cm. (a) m = 0; (b) m = 1, solid curve corresponds to
the distance d = 1 m, dashed curve corresponds to the distance d + ∆d

As follows from the calculations, the transmission lines are resolved when the condi-
tion δk ≤ ∆ξm is met, where ∆ξm is the shift of the non-zero resonant mode caused by the
displacement of the mirror.

The widths of the transmission spectrum lines decrease linearly with the increase of
the distance between the periodic structures. The amplitude of the change in the dielectric
constant ∆ε, the thickness of the crystal L, and the wavelength of the radiation λ affect the
width of the spectral line much more strongly. In Figure 9, the dependences of the spectral
line widths on the radiation wavelength are presented for different values of the thickness
of the periodic structure and the amplitude of the modulation of the dielectric constant.

It can be seen that the width of the transmission spectrum lines decreases sharply with
a decrease in the radiation wavelength and with an increase in the thickness of the periodic
structure and the amplitude of the modulation of the dielectric constant.

Figure 9. Cont.
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Figure 9. The widths of the transmission spectrum lines as function of radiation wavelength.
(a) L = 0.25 cm; (b) L = 0.75 cm; (c) ∆ε = 1.5 · 10−4; (d) ∆ε = 2.1 · 10−4. d = 1 m, λ = 630 nm.
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4. Discussion

The results obtained show that the distance between periodic structures can be reduced
significantly compared to the distance between mirrors in a LIGO installation. The results
demonstrate the possibility of creating an installation for detecting gravitational waves
in the laboratory. The use of conventional interferometers for this purpose is currently
impossible due to technological difficulties in achieving the required values of the mirror
reflection coefficient. Note that the reflectivity of multilayer mirrors used in measurements
of gravitational waves is about (1− R) ∼ 10−6 [7]. It is assumed that technological
capabilities will make it possible to achieve values of the order of (1− R) ∼ 10−8. However,
this is not enough to reduce the distance between mirrors to laboratory values. Efforts
are constantly being made to increase the sensitivity of the detectors by improving the
mechanical properties of the mirror coatings. For LIGO and Virgo installations, a very
uniform coating is required on very large surfaces with a diameter of several tens of
centimeters. The main objectives of the production are to achieve a large uniform coating
while maintaining low optical and mechanical losses. Current mirrors in GW detectors use
a stack of silica material (SiO2) and titanium-doped tantalum (Ti:Ta2O5) deposited on a
large silica substrate [22]. The optical characterization of these materials by spectroscopic
ellipsometry is reported in Reference [23]. Recently, high-reflection dielectric Bragg mirrors
were manufactured for the Virgo installation, consisting of two materials: a layer of silica
with a low refractive index (n = 1.45 at 1064 nm) and titania-doped tantala with a high
refractive index (n = 2.09) [24]. The required technical characteristics of flatness and
roughness are achieved throughout the mirror with a diameter of 300 mm with coatings up
to 38 layers with a thickness of 5.9 microns. Although recent improvements in thin-film
technology allow for the design and manufacture of narrow-band filters, the requirements
for increasing spectral resolution lead to more complex manufacturing. The high stored
power in the interferometer leads to thermo-optical distortions from the absorption of
optical power, so a complex thermal compensation system must be used in the experiment.

Despite very high-quality optical properties and uniformity, mirror coatings are the
dominant source of thermal noise of detectors, limiting the sensitivity of the measurements.
While increasing the number of layers will increase the reflectivity of the mirrors, it will also
lead to an increase in thermal noise. We suggest using a bulk mirror material to fabricate
a volume Bragg grating (VBG), which will allow better heat dissipation and increase the
reflectivity of mirrors and resolution of the interferometer. Such VBGs can be recorded by
holographic methods inside photothermorefractive glasses.

The interferometer considered indicates the possibility of creating a laboratory in-
stallation for measuring gravitational waves. The Fabry–Perot resonator with periodic
structures as reflecting mirrors has an ultra-narrow bandwidth of laser radiation. Note that
in contrast to LIGO, in the proposed system, the distributed mirrors work not on reflection,
but on the transmission of the incident light. In addition, the design with photonic crystals
(sinusoidal periodic structures) facilitates the cooling of mirrors.

The resonant transmission of radiation through the periodic structure has a simple
explanation. It is known from quantum mechanics that if a free particle has an energy
that coincides with the energy of the quantum level between the barriers, then the particle
passes through such barriers. The case under consideration is essentially a classical analog
of such resonant tunneling.

Resonant phenomena during wave propagation in inhomogeneous plane-layered
media lead to a steep increase in the transmission of waves with a certain wavelength. In
quantum mechanics, a similar effect is observed for de Broglie waves resonantly passing
through a system of two potential barriers (the Ramsauer effect). Resonant FTIR (frustrated
total internal reflection) filters consisting of layered media are widely known in optics [25].
The bandwidth of such filters based on existing optical materials in the visible wavelength
range is on the order of several nanometers [26].

The considered resonators with periodic structures, in contrast to the conventional
Fabry–Perot interferometer, have an exponentially narrow bandwidth of laser radiation. As
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follows from the calculations, the line widths in the transmission spectrum of the structures
under consideration decrease drastically with an increase in the amplitude of the dielectric
constant modulation ∆ε and an increase in the thickness of the periodic structure L. There-
fore, a significant increase in the resolution can be reached if the modulation amplitude or
the thickness of the periodic structure is increased. Besides, the resolution of the interfer-
ometer increases significantly with a decrease in the wavelength of the laser radiation. The
maximum resolution values are limited by the presence of light absorption in the crystals.
However, high-purity materials with low absorption coefficients are available at present.
For example, the absorption coefficients of glasses in the optical fiber cores are only of the
order of 10−7 cm−1.

To achieve the necessary sensitivity of the interferometer for the detection of gravita-
tional waves, large amplitudes of the dielectric constant modulation are required. Current
technologies allow the production of periodic structures with the parameters considered
above. In acousto-optic crystals, it is possible to create tunable modulation of the refractive
index with the help of ultrasound. Low-loss high-efficiency volume Bragg gratings (VBG)
in glasses can be recorded by holographic methods. In References [27,28], the designed
volume Bragg grating was fabricated inside photothermorefractive (PTR) glasses. The
refractive index modulation (RIM) values inside the VBG recorded in PTR glasses were
∆n = 4.78 · 10−4 (∆ε ' 1.4 · 10−3) and ∆n = 4.37 · 10−4 (∆ε ' 1.3 · 10−3) at wavelengths
632.8 nm and 1064 nm, accordingly [28]. These values of the RIM are sufficient to achieve
the required sensitivity of the interferometer for detecting gravitational waves. A compact
detector for detecting gravitational waves is highly desirable. Recently a compact detector
for space–time metric and curvature was considered [29]. It was shown that quantum
spatial superpositions of mesoscopic objects could be exploited to create such a detector.
Such detectors can be used also for detecting extremely weak signals such as mid-frequency
and low-frequency GWs. This device will not replace but will supplement the existing
installations. The fact is that LIGO and Virgo only accept high-frequency gravitational
waves: from tens to thousands of hertz. At the same time, the new device will be sensitive
to waves in the range from a millionth of a hertz to ten hertz [29]. To register waves of such
frequencies by the usual method (like LIGO and Virgo), detectors hundreds of thousands
of kilometers in size would be required.

In Reference [30], a three-dimensional gravitational wave detector with three Michel-
son interferometers setting in a regular triangular pyramid, which has a more spherically
symmetric antenna pattern, is proposed.

More recently, radio telescopes have been proposed to search for GW in a wide
frequency range [31]. The fact is that gravitational waves are converted into photons and
vice versa in the presence of magnetic fields. The distortion of the cosmic microwave
background caused by this transformation can serve as a detector of gravitational wave
sources from MHz to GHz.

5. Conclusions

Thus, using Fabry–Perot resonators with periodic structures as reflecting mirrors can
significantly reduce the size of the system (the distance between the mirrors can be only
a few meters). The method based on the measurement of the correlation function of the
intensities of non-zero-order resonant modes from the two arms of the Mach–Zehnder
interferometer allows obtaining a resolution sufficient for the registration of gravitational
waves. The resolution of the interferometer of the order of δk ' 10−23 cm−1 at the distance
between the mirrors d = 1 m can be obtained for practically achievable parameters of
the periodic structure. It is shown that a significant increase in the sensitivity and a
decrease in the size of the detector are also possible with a decrease in the wavelength of
the radiation source. The sensitivity of such an interferometer for small movements of
reflecting structures relative to each other exceeds the sensitivity of the LIGO system with
practically achievable parameters of the periodic diffraction structures.
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