Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition
Abstract
:1. Introduction
2. Materials, Methods, and Simulation Parameters
3. Investigation of the Laguerre–Gauss Mode (1,0) Diffraction by Surface Micro-Defects and Diffractive Axicons
3.1. Focusing by Micro-Defects
3.2. Focusing by a Diffractive Axicons with Different Numerical Aperture
3.3. The Subwavelength Focusing with the Height Change of the Optical Elements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nye, J.F.; Berry, M.V. Dislocations in wave trains. R. Soc. Lond. A Math. Phys. Sci. 1974, 336, 165–190. [Google Scholar] [CrossRef]
- Holbourn, A.H.S. Angular momentum of circularly polarised light. Nature 1936, 137, 31. [Google Scholar] [CrossRef]
- Berry, M.V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 1987, 34, 1401–1407. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Simpson, N.B.; Dholakia, K.; Allen, L.; Padgett, M.J. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt. Lett. 1997, 22, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Molina-Terriza, G.; Torres, J.P.; Torner, L. Twisted photons. Nat. Phys. 2007, 3, 305–310. [Google Scholar] [CrossRef]
- Franke-Arnold, S.; Allen, L.; Padgett, M. Advances in optical angular momentum. Laser Photonics Rev. 2008, 2, 299–313. [Google Scholar] [CrossRef]
- Dennis, M.R.; O’Holleran, K.; Padgett, M.J. Chapter 5 Singular optics: Optical vortices and polarization singularities. Prog. Opt. 2009, 53, 293–363. [Google Scholar] [CrossRef]
- Zhao, Y.; Edgar, J.S.; Jeffries, G.D.M.; McGloin, D.; Chiu, D.T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 2007, 99, 073901. [Google Scholar] [CrossRef] [PubMed]
- Helseth, L.E. Optical vortices in focal regions. Opt. Commun. 2004, 229, 85–91. [Google Scholar] [CrossRef]
- Khonina, S.N.; Savelyev, D.A.; Kazanskiy, N.L. Analysis of polarisation states at sharp focusing. Opt. Int. J. Light Electron Opt. 2016, 127, 3372–3378. [Google Scholar] [CrossRef]
- Khonina, S.N.; Savelyev, D.A.; Kazanskiy, N.L. Vortex phase elements as detectors of polarization state. Opt. Express 2015, 23, 17845–17859. [Google Scholar] [CrossRef] [PubMed]
- Soifer, V.A.; Kotlyar, V.V.; Khonina, S.N. Optical microparticle manipulation: Advances and new possibilities created by diffractive optics. Phys. Part. Nucl. 2004, 35, 733–766. [Google Scholar]
- Wetzel, B.; Xie, C.; Lacourt, P.-A.; Dudley, J.M.; Courvoisier, F. Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams. Appl. Phys. Lett. 2013, 103, 241111. [Google Scholar] [CrossRef] [Green Version]
- Nivas, J.J.; He, S.; Song, Z.; Rubano, A.; Vecchione, A.; Paparo, D.; Marrucci, L.; Bruzzese, R.; Amoruso, S. Femtosecond laser surface structuring of silicon with gaussian and optical vortex beams. Appl. Surf. Sci. 2017, 418, 565–571. [Google Scholar] [CrossRef]
- Busleev, N.I.; Kudryashov, S.I.; Danilov, P.A.; Porfir’ev, A.P.; Saraeva, I.N.; Rudenko, A.A.; Umanskaya, S.F.; Zayarnyi, D.A.; Ionin, A.A.; Khonina, S.N. Symmetric nanostructuring and plasmonic excitation of gold nanostructures by femtosecond Laguerre-Gaussian laser beams. Quantum Electron. 2019, 49, 666–671. [Google Scholar] [CrossRef]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Khonina, S.N.; Golub, I. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. J. Opt. Soc. Am. A 2012, 29, 2242–2246. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Pryamikov, A.; Alagashev, G.; Falkovich, G.; Turitsyn, S. Light transport and vortex-supported wave-guiding in micro-structured optical fibres. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Pan, X.; Ren, Y.; Liu, H.; Yu, S.; Jing, J. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement. Phys. Rev. Lett. 2020, 124, 083605. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Zhang, L.; Wang, G.; Wang, L.; Liu, M.; Zeng, C.; Wang, L.; Sun, Q.; Zhao, W.; et al. Efficient Optical Angular Momentum Manipulation for Compact Multiplexing and Demultiplexing Using a Dielectric Metasurface. Adv. Opt. Mater. 2020, 8, 1901666. [Google Scholar] [CrossRef]
- Willner, A.E.; Ren, Y.; Xie, G.; Yan, Y.; Li, L.; Zhao, Z.; Wang, J.; Tur, M.; Molisch, M.; Ashrafi, S. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 375, 20150439. [Google Scholar] [CrossRef] [PubMed]
- Karpeev, S.V.; Podlipnov, V.V.; Ivliev, N.A.; Khonina, S.N. High-speed format 1000BASESX/LX transmission through the at-mosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT. Comput. Opt. 2020, 44, 578–581. [Google Scholar] [CrossRef]
- Khonina, S.N.; Savelyev, D.A. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. J. Exp. Theor. Phys. 2013, 117, 623–630. [Google Scholar] [CrossRef]
- Khonina, S.N.; Alferov, S.V.; Karpeev, S.V. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Opt. Lett. 2013, 38, 3223–3226. [Google Scholar] [CrossRef]
- Khonina, S.N.; Golub, I. Optimization of focusing of linearly polarized light. Opt. Lett. 2011, 36, 352–354. [Google Scholar] [CrossRef]
- Savelyev, D.A.; Khonina, S.N. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Comput. Opt. 2015, 39, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Karpeev, S.V.; Alferov, S.V.; Savelyev, D.A.; Laukkanen, J.; Turunen, J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J. Opt. 2013, 15, 085704. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Coerwinkel, R.C.; Kristensen, M.; Woerdman, J.P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 1994, 112, 321–327. [Google Scholar] [CrossRef]
- Moh, K.J.; Yuan, X.C.; Cheong, W.C.; Zhang, L.P.S.; Lin, J.; Ahluwalia, B.S.; Wang, H. High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate. Appl. Opt. 2006, 45, 1153–1161. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Skidanov, R.V.; Khonina, S.N.; Moiseev, O.Y.; Soifer, V.A. Simple optical vortices formed by a spiral phase plate. J. Opt. Technol. 2007, 74, 686–693. [Google Scholar] [CrossRef]
- Khonina, S.N.; Podlipnov, V.V.; Karpeev, S.V.; Ustinov, A.V.; Volotovsky, S.G.; Ganchevskaya, S.V. Spectral control of the orbital angular momentum of a laser beam based on 3D properties of spiral phase plates fabricated for an infrared wavelength. Opt. Express 2020, 28, 18407–18417. [Google Scholar] [CrossRef] [PubMed]
- Dyson, J. Circular and spiral diffraction gratings. Proc. R. Soc. A 1958, 248, 93–106. [Google Scholar] [CrossRef]
- Degtyarev, S.A.; Porfirev, A.P.; Khonina, S.N. Photonic nanohelix generated by a binary spiral axicon. Appl. Opt. 2016, 55, B44–B48. [Google Scholar] [CrossRef] [PubMed]
- Supp, S.; Jahns, J. Coaxial superposition of Bessel beams by discretized spiral axicons. Supp Jahns J. Eur. Opt. Soc. Rapid Publ. 2018, 14, 18. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Krasnov, S.V.; Ustinov, A.V.; Degtyarev, S.A.; Porfirev, A.P.; Kuchmizhak, A.; Kudryashov, S.I. Refractive twisted microaxicons. Opt. Lett. 2020, 45, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Kazanskiy, N.L.; Khonina, S.N.; Karpeev, S.V.; Porfirev, A.P. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron. 2020, 50, 629–635. [Google Scholar] [CrossRef]
- Davis, J.A.; Cottrell, D.M.; McCormick, K.R.; Albero, J.; Moreno, I. Arithmetic of focused vortex beams in three-dimensional optical lattice arrays. Appl. Opt. 2014, 53, 2040–2050. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, M.; Zhu, M.; Chen, J.; Gao, X.; Ma, W.; Zhang, D. Three-dimensional shape-controllable focal spot array created by focusing vortex beams modulated by multi-value pure-phase grating. Opt. Express 2014, 22, 21354–21367. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Wang, T.; Gao, C. Perfect optical vortex array with controllable diffraction order and topological charge. J. Opt. Soc. Am. A 2016, 33, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Ustinov, A.V. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl. Opt. 2019, 58, 8227–8236. [Google Scholar] [CrossRef]
- Leach, J.; Courtial, J.; Skeldon, K.; Barnett, S.M.; Franke-Arnold, S.; Padgett, M.J. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett. 2004, 92, 013601. [Google Scholar] [CrossRef]
- Moreno, I.; Davis, J.A.; Ruiz, I.; Cottrell, D.M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt. Express 2010, 18, 7173–7183. [Google Scholar] [CrossRef]
- Khonina, S.N.; Savelyev, D.A.; Kazanskiy, N.L.; Soifer, V.A. Singular phase elements as detectors for different polarizations. Proc. SPIE 2013, 9066, 90660A. [Google Scholar] [CrossRef]
- Khonina, S.N.; Porfirev, A.P.; Karpeev, S.V. Recognition of polarization and phase states of light based on the interaction of nonuniformly polarized laser beams with singular phase structures. Opt. Express 2019, 27, 18484–18492. [Google Scholar] [CrossRef]
- Darafsheh, A.; Bollinger, D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Opt. Commun. 2017, 402, 270–275. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Li, L.; Chen, W.; Chen, Y.; Huang, Y.; Xie, Z. Characteristics of photonic nanojets from two-layer dielectric hemisphere. Chin. Phys. B 2017, 26, 114201. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Taflove, A.; Backman, V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express 2005, 13, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Wei, P.-K.; Chang, W.-L.; Lee, K.-L.; Lin, E.-H. Focusing subwavelength light by using nanoholes in a transparent thin film. Opt. Lett. 2009, 34, 1867–1869. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-L.; Chang, Y.-J.; Wei, P.-K.; Tsao, P.H. Fabricating subwavelength array structures using a near-field photolithographic method. Appl. Phys. Lett. 2006, 88, 101109. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Stafeev, S.S.; Feldman, A.Y. Photonic nanojets formed by square. Comput. Optics 2014, 38, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-Y.; Yen, T.-P.; Minin, O.V.; Minin, I.V. Engineering pho-tonic nanojet by a graded-index micro-cuboid. Phys. E Low Dimens. Syst. Nanostruct. 2018, 98, 105–110. [Google Scholar] [CrossRef]
- Khonina, S.N.; Savelyev, D.A.; Ustinov, A.V. Diffraction of laser beam on a two-zone cylindrical microelement. Comput. Optics 2013, 37, 160–169. [Google Scholar] [CrossRef]
- Savelyev, D.A.; Khonina, S.N. Numerical analysis of subwavelength focusing using a silicon cylinder. Comput. Optics 2014, 38, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Khonina, S.; Savelyev, D. Optimization of the Optical Microelements Using High-Performance Computer Systems. Radiophys. Quantum Electron. 2015, 57, 650–658. [Google Scholar] [CrossRef]
- Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B.A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91, 233117. [Google Scholar] [CrossRef] [Green Version]
- Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.-W.; Tao, H.; Kim, D.-H.; Cheng, H.; Song, J.-K.; Rill, E.; Brenckle, M.A.; Panilaitis, B.; Won, S.M.; Kim, Y.-S.; et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644. [Google Scholar] [CrossRef] [Green Version]
- Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 2018, 1, 30–39. [Google Scholar] [CrossRef]
- O’Farrell, N.; Houlton, A.; Horrocks, B.R. Silicon nanoparticles: Applications in cell biology and medicine. Int. J. Nanomed. 2006, 1, 451–472. [Google Scholar] [CrossRef]
- Levenson, M.D. Using destructive optical interference in semiconductor lithography. Opt. Photonics News 2006, 17, 30–35. [Google Scholar] [CrossRef]
- Arlt, J.; Padgett, M.J. Generation of a beam with a dark focus surrounded by regions of higher intensity: The optical bottle beam. Opt. Lett. 2000, 25, 191–193. [Google Scholar] [CrossRef]
- Khonina, S.N.; Balalayev, S.A.; Skidanov, R.V.; Kotlyar, V.V.; Paivanranta, B.; Turunen, J. Encoded binary diffractive element to form hyper-geometric laser beams. J. Opt. A Pure Appl. Opt. 2009, 11, 065702–065709. [Google Scholar] [CrossRef]
- Allier, C.P.; Hiernard, G.; Poher, V.; Dinten, J.M. Bacteria detection with thin wetting film lensless imaging. Biomed. Opt. Express 2010, 1, 762–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossowski, P.; Wojtkowski, M.; Munro, P.R. Classification of biological micro-objects using optical coherence tomography: In silico study. Biomed. Opt. Express 2017, 8, 3606–3626. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K.; Miyazaki, N.; Song, C.; Maia, F.R.; Reddy, H.K.; Abergel, C.; Claverie, J.-M.; Hajdu, J.; Svenda, M.; Murata, K. Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Polarization | r = 1.0λ | r = 2.0λ | ||
---|---|---|---|---|
Circular Protrusion | Circular Protrusion | Square Protrusion | Circular Deepening | |
x-linear | ||||
z-linear | ||||
“−” circular | ||||
“+” circular | ||||
radial | ||||
azimuthal |
Polarization | r = 1.0λ | r = 2.0λ | ||
---|---|---|---|---|
Circular Protrusion | Circular Protrusion | Square Protrusion | Circular Deepening | |
x-linear | FWHM(|) = 1.62λ FWHM(–) = 1.25λ | FWHM(|) = 0.34λ FWHM(–) = 0.91λ | | FWHM(|) = 3.7λ FWHM(–) = 3.3λ |
y-linear | FWHM(|) = 1.28λ FWHM(–) = 1.5λ | FWHM(|) = 0.78λ FWHM(–) = 0.42λ | | FWHM(|) = 3.4λ FWHM(–) = 2.4λ |
“−” circular | FWHM = 1.13λ | FWHM = 0.45λ | | FWHM = 0.76λ |
“+” circular | ||||
radial | ||||
azimuthal | FWHM = 0.78λ | FWHM = 0.47λ | | FWHM = 0.5λ |
Polarization | NA = 0.25 | NA = 0.95 | ||
---|---|---|---|---|
Plane xz | Plane xy, z1 = 0.5λ | Plane xz | Plane xy, z1 = 0.5λ | |
x-linear | | FWHM(|) = 1.65λ FWHM(–) = 1.28λ | | FWHM(|) = 0.43λ FWHM(–) = 0.85λ |
y-linear | | FWHM(|) = 1.34λ FWHM(–) = 1.54λ | | FWHM(|) = 0.78λ FWHM(–) = 0.45λ |
“−”circular | | FWHM = 1.27λ | | FWHM = 0.48λ |
“+” circular | ||||
radial | ||||
azimuthal | | FWHM = 1.8λ | | FWHM = 0.47λ |
Element Height | r = 1.0λ | r = 2.0λ | ||
---|---|---|---|---|
Circular Protrusion | Circular Protrusion | Square Protrusion | Circular Deepening | |
h = 0.2λ | FWHM = 0.56λ | FWHM = 0.35λ | | FWHM = 0.64λ |
h = 0.4λ | FWHM = 0.28λ | FWHM = 0.45λ | | |
h = 0.5λ | FWHM = 1.54λ | FWHM = 0.44λ | | FWHM = 0.62λ |
h = 1.0λ | FWHM = 0.29λ | FWHM = 0.41λ | | |
h = 1.5λ | FWHM = 0.46λ | FWHM = 0.33λ | | |
h = 2.0λ | FWHM = 0.89λ | FWHM = 0.39λ | | |
Polarization | Circular Protrusion, r = 2.0λ | Diffractive Axicon, NA = 0.25 | ||
---|---|---|---|---|
Plane xz | Plane xy, z1 = 0.5λ | Plane xz | Plane xy, z1 = 0.2λ | |
x-linear | | FWHM(|) = 0.31λ FWHM(–) = 0.74λ | | FWHM(|) = 0.45λ FWHM(–) = 1.09λ |
y-linear | | FWHM(|) = 0.71λ FWHM(–) = 0.32λ | | FWHM(|) = 0.98λ FWHM(–) = 0.43λ |
“−” circular | | FWHM = 0.37λ | | FWHM = 0.48λ |
“+” circular | ||||
radial | ||||
azimuthal | | FWHM = 0.37λ | | FWHM = 0.98λ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savelyev, D.; Kazanskiy, N. Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition. Sensors 2021, 21, 1973. https://doi.org/10.3390/s21061973
Savelyev D, Kazanskiy N. Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition. Sensors. 2021; 21(6):1973. https://doi.org/10.3390/s21061973
Chicago/Turabian StyleSavelyev, Dmitry, and Nikolay Kazanskiy. 2021. "Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition" Sensors 21, no. 6: 1973. https://doi.org/10.3390/s21061973
APA StyleSavelyev, D., & Kazanskiy, N. (2021). Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition. Sensors, 21(6), 1973. https://doi.org/10.3390/s21061973