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Abstract: Given the high prevalence and detrimental effects of unintentional falls in the elderly, fall
detection has become a pertinent public concern. A Fall Detection System (FDS) gathers information
from sensors to distinguish falls from routine activities in order to provide immediate medical
assistance. Hence, the integrity of collected data becomes imperative. Presence of missing values
in data, caused by unreliable data delivery, lossy sensors, local interference and synchronization
disturbances and so forth, greatly hamper the credibility and usefulness of data making it unfit
for reliable fall detection. This paper presents a noise tolerant FDS performing in presence of
missing values in data. The work focuses on Deep Learning (DL) particularly Recurrent Neural
Networks (RNNs) with an underlying Bidirectional Long Short-Term Memory (BiLSTM) stack to
implement FDS based on wearable sensors. The proposed technique is evaluated on two publicly
available datasets—SisFall and UP-Fall Detection. Our system produces an accuracy of 97.21% and
97.41%, sensitivity of 96.97% and 99.77% and specificity of 93.18% and 91.45% on SisFall and UP-Fall
Detection respectively, thus outperforming the existing state of the art on these benchmark datasets.
The resultant outcomes suggest that the ability of BiLSTM to retain long term dependencies from
past and future make it an appropriate model choice to handle missing values for wearable fall
detection systems.

Keywords: Fall Detection System (FDS); Recurrent Neural Networks (RNNs); Bidirectional Long
Short-Term Memory (BiLSTM); Deep Learning (DL); Activities of daily Life (ADL); SisFall dataset;
UP-Fall Detection dataset

1. Introduction

The Internet of Things (IoT) has established itself as an indispensable part of current
age of user centric connectivity. It is an evolving paradigm that connects the diverse
utilities around us to the Internet by making use of wireless/wired technologies. IoT can
be viewed as an intelligent global network with inter-operable components consisting of
self-configuring capabilities that connect billions of devices via the Internet, making it a
highly heterogeneous ecosystem. According to the 2020 conceptual framework [1], the IoT
can be expressed as a straightforward formula

IoT = Services + Data + Networks + Sensors. (1)

The fundamental principles of interconnection in IoT allow access to remote sensor
data and control of complex physical environment from a distance that inherently permits
efficient decision making, realistic automation, pragmatic productivity, greater wealth
generation and enhanced public safety. The domain of IoT covers a widespread spectrum
of daily life applications such as intelligent transportation, business intelligence and big
data analytics, smart healthcare facilities, intelligent monitoring, positioning and navigation
and smart logistics and so forth. The potential impact of IoT is predicted to bring forward
surplus business opportunities and to expand the economic growth of IoT based services.

Sensors 2021, 21, 2006. https://doi.org/10.3390/s21062006 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9583-5585
https://doi.org/10.3390/s21062006
https://doi.org/10.3390/s21062006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062006
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062006?type=check_update&version=2


Sensors 2021, 21, 2006 2 of 26

According to a report published by McKinsey [2], the annual economic implications of IoT
in 2025 would amount to $3.9 trillion to $11.1 trillion a year. About 41% of this market
share is earned by IoT based healthcare services. In the recent years, the field of medicine
and healthcare have greatly benefited from the evolutionary advancements in sensor
technologies and IoT providing user friendly and efficient services to patients. So much
so that the term “Internet of Medical Things (IoMT)” has been coined. These innovative
developments include Human Activity Recognition (HAR) systems, smart movement
detectors, fitness tracking, indigestible sensors, asset management systems, personalized
emergency response systems, Fall Detection Systems (FDS), diagnostics, development of
robust EHR systems and so forth.

The World Health Organization (WHO) defines a fall as an occurrence of a subject
coming at rest with the ground level or lower. Unintentional falls can occur due to
various reasons like accidental situations, performing high risk strenuous activities, subject
surrounding factors like slippery floors, physical factors like loss of consciousness, tripping,
poor balance, effects of wrong or overdose of medication and so forth. The impact and
detrimental effects caused by a fall are dependent on the severity of the fall, age and
physical well being of the subject experiencing the fall. For example, a standard fall will
have varying effects on elderly patients as compared to younger audience. After road
traffic injuries, unintentional falls related injuries make up for the major cause of death
with an approximation of 650,000 fatal falls occurring each year. Falls are considered as
a fatal threat to morbidity and mortality of elderly people. Around the world, mortality
estimates are highest among elderly population of 60 years and above. Approximately 50%
of injury-related hospital admissions are observed in the elderly of 65 or more. As a result,
an estimated 40% of the injury-related deaths occur due to falls in the senior population [3].

The advancement in micro sensors integrated with microelectromechanical technology
and IoT have paved way for research in mobile healthcare monitoring like FDSs. FDSs
integrate the basics of an IoT network including wide scale streaming data, heterogeneity,
correlation of space and time and highly noisy data management to promptly identify
occurrence of falls and provide timely assistance by issuing alarm notifications to concerned
healthcare providers. A typical FDS relies on information provided by context aware or
wearable systems to distinguish between falls and Activities of Daily Life (ADL) [4]. Vision
based context aware systems utilize computer vision [5], depth images [6], background
separation [7], shape variation [8], 3D silhouette vertical distribution [9] for fall detection.
Fall detection techniques relying on ambience based context aware systems utilize floor
vibration patterns [10], sound height information [11], proximity sensors [12] and thermal
imaging techniques [13]. Wireless wearable sensors play a fundamental part in an IoT
environment to help digitize quantities of the physical world like temperature, pressure,
humidity, acceleration and so forth. An alternative to external sensors such as Passive
Infrared (PIR) sensors, thermographic cameras, proximity sensors and floor vibration
detectors and so forth, body mounted wearable sensors are fastened to the body of subject
of interest. These sensors, collecting important data related to the patient’s body movement
make up for an efficient solution for fall detection with their low costs, weight, small size,
low power usage and convenience in portability. Commonly used wearable sensors include
accelerometer, heart rate sensor, gyroscope and magnetometer. Table 1 summarizes the
strengths and weaknesses of the mentioned fall detection approaches.

A pressing challenge faced in sensor accumulated data is observance of missing values.
Missingness in sensor data can appear due to unreliable data delivery, synchronization
mismatch, local interference and lossy sensor devices and so forth. Presence of missing
values complicate drawing insightful inferences from data, degrading the performance
of FDS leading to inaccurate, faulty outcomes. Dealing with such type of insufficient,
incomplete sensor data based monitoring system can prove fatal for patient health and
safety. Such sensor failures can be overcome by adding analytical redundancies to replace
faulty sensors with estimation methods. In this regard, various fault tolerant systems
have been proposed such as Napolitano et al. [14], that employs a neural network based
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estimators to perform sensor failure detection and identification (SFDI) and sensor failure
accommodation (SFA); ref. [15] presents a similar approach based on fully connected
cascade neural network (FCC NN) architecture which relies on neuron by neuron learning
algorithm for training of the model. Similarly, deep learning based methods such as
specialized denoising auto-encoder have also been proposed [16]. A sequence-to-sequence
missing values imputation (SSIM) novel architecture based on deep learning approaches
is proposed using LSTM in [17]. Association rule mining based approaches have also
been proposed to deal with missing values in sensor data streams [18]. The approaches
mentioned in [19] study the multi-feature combinations for sensor based human activity
recognition.

Table 1. Strengths and Weaknesses of Different Fall Detection Approaches.

Approach Used Strengths Weaknesses

Vision based fall detec-
tion

3D posture and scene analysis, inactivity mon-
itoring, shape modeling, spatio-temporal mo-
tion analysis, occlusion sensitivity

Invasion of privacy, interference and noise
in data, burdensome syncing of devices,
difficult set up of devices

Ambience based fall de-
tection

Safeguards privacy, robust occlusion sensitiv-
ity

Expensive equipment, detection depen-
dent on short proximity range

Wearable sensors based
fall detection

low costs, small size, light weight, low power
consumption, portability, ease of use, protec-
tion of privacy, robust occlusion

Intrusive approach, sensors to be worn at
all times

Sensor Fusion based fall
detection

Robust measurements, accurate detection,
high performance

Difficult set-up of equipment, complex
syncing between devices

IoT based fall detection
High success rates for precision, accuracy and
gain, accessibility with real-time patient moni-
toring

Threat of data security, compromise of pri-
vacy, strict global healthcare regulations

In this work, we handle fall detection as a sequence classification problem using deep
learning techniques and propose a noise tolerant, wearable sensor based FDS working in
presence of missing values. The research analyzes different mechanisms of existence of
missing values in data which affect the data authenticity and the quality of quantitative
results drawn from it. Three realistic cases of loss in sensor data are presented with varying
proportions of multivariate missingness generated through Missing Completely at Random
(MCAR) mechanism. The proposed technique uses stacked Bidirectional Long Short-Term
Memory (BiLSTM) blocks in many-to-one configuration, trained on data from multimodal
and unimodal sources, to detect falls. Comparison with deep learning techniques like
Long Short-Term Memory units (LSTM), Gated Recurrent Units (GRU), Convolutional
Neural Networks (CNN), Random Forest, Support Vector Machine (SVM) and K-Nearest-
Neighbours (KNN) demonstrate the ability of the proposed NT-FDS to produce satisfactory
results for fall detection in presence of missing values.

This paper is organized as follows—firstly, Section 2 covers a comprehensive literature
review with existing solutions for fall detection and related works. Section 3 describes
in detail the proposed fall detection mechanism while Section 4 reports the analytical
results and performance evaluation of the proposed solution. Finally, Section 5 concludes
the paper.

2. Related Work

This section presents a brief overview of existing work in the domain of Fall Detection
using Wearable Sensors, Deep Learning based methods for Fall Detection and Methods to
deal with the data loss in Wearable Sensors.
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2.1. Fall Detection Using Wearable Sensors

Wearable sensor technology is unarguably the most employed method for reliable fall
detection. An alternative to external sensors, body mounted wearable sensors are fastened
to the body of subject of interest at different locations. Commonly used wearable sensors
include accelerometer, heart rate sensor, gyroscope, magnetometer and so forth. Tri-axial
accelerometer with X, Y and Z axes are used to determine the location of the body and its
motion by determining the change in velocity. Fall detection relies on the sudden increase
of negative acceleration caused by shift in orientation from upright to lying flat position.
Lai et al. [20] proposed an integrated technique to detect fall incidents in the elderly as
well as the joint sensing of the injured body part in case of fall. A fall is traced when
the acceleration obtained by the tri-axial accelerometer exceeds the normal acceleration
range significantly. The gathered information is wireless transferred to a computer for
further analysis. Wang et al. [21] proposed a threshold reliant fall detection mechanism
by accumulating data from various sensory devices. Combined data from accelerometer,
cardiotachometer and smart sensors are used to approach a high detection accuracy of
97.5%. Casilari et al. [22] assess the effectiveness of machine learning techniques like
Convolutional Neural Network (CNN) when applied to acceleration data for fall detection.
The proposed technique reduces the preprocessing cost by allowing CNN to automatically
extract features from complex sensor data rather than feeding custom-made features to
the model.

Gyroscope sensors measure the angular velocity which is the change in rotational angle
per unit of time. Most research approaches incorporate a combination of multiple sensors
when using gyroscope to track angular velocity while few use gyroscopes exclusively for
fall detection. Bourke et al. [23] proposed a threshold reliant algorithm for detecting fall
events by using information from a bi-axial gyroscope sensor array. The approach sets
thresholds for resultant values of trunk angle, angular velocity and angular acceleration
each. In case of an event surpassing these set thresholds, alarms are triggered, and a fall is
detected. The proposed system attains a robust 100% accuracy of distinguishing falls from
ADL when data analysis is performed using MATLAB.

Approaches such as [24] used multiple sensors to detect falls where gyroscopes and
accelerometer-derived posture information are used to reduce both false positives (e.g., sit-
ting down fast) and false negatives (e.g., falling on stairs) with low computational costs and
fast response to improve fall detection accuracy. Nyan et al. [25] studied body segment kine-
matics to detect falls in a body area network of wearable inertial sensors (3D accelerometers
and 2D gyroscope). Martinez-Villaseñor et al. [26] proposed data accumulation through
multimodal sensors to configure a fall detection system which works on different combina-
tion of sensors to identify falls. The deployed sensors include wearable sensors (tri-axis
accelerometer, gyroscope and light intensity), an electroencephalograph helmet, infrared
sensors, and cameras in lateral and front viewpoints. Machine learning methods including
support vector machines (SVM), random forest (RF), multilayer perceptron (MLP) and
k-nearest neighbors (KNN) are used for classification of falls and ADL.

Multi-sensor fusion is an approach to integrate information from different sensor
sources to formulate a unified picture. In comparison to a single sensor method, multi-
sensor fusion approach is set to produce robust measurements and accurate detection. Li
et al. [27] propose a combination of wearable tri-axial accelerometer and context aware
sensors like a depth camera and a micro-Doppler radar for fusion system-based fall detec-
tion. The fusion of mentioned heterogeneous sensors results in improvement of overall
performance with overall classification accuracy increasing up to 91.3%. Pierleoni et al. [28]
employ accelerometer, gyroscope, barometer and magnetometer to detect fusion based
falls with a quaternion filter extracting acceleration relative to Earth’s frame. Threshold-
ing standards, applied on several features like altitude, angular velocity and acceleration
deliver a 100% sensitivity and a 99% specificity for fall detection.

Embedded sensors in the smartphones are recently used for fall detection instead
of carrying additional body worn sensors. He et al. [29] discussed the challenges faced by
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conventional body worn sensors when detecting falls and propose a fall detecting mechanism
by integrating Fisher’s discriminant ratio criterion and J3 criterion to create an algorithm for
feature selection. The method utilizes built-in kinematic sensors for data accumulation. A
hierarchical classifier used to classify human activities reaches an accuracy of 95.03%, proving
the practicality of utilizing embedded smartphone sensors for fall detection.

2.2. Deep Learning Techniques for Wearable Sensors Based Fall Detection

Recently applications of Deep Learning, with their ability to deliver remarkable
results in comparison to extracting features manually, are commonly used for HAR and fall
detection. DL approaches can compute adequate features without systematic analysis and
expert knowledge of the feature space. Such techniques allow stacking of hidden layers to
extract highly abstract features and make better re-use of learned features.

Mauldin et al. [30] proposed an Android application called SmartFall which utilizes
accelerometer data gathered from a smartwatch to identify incidents of fall. The proposed
DL model based on RNN and CNN outperforms SVM and Naïve Bayes by spontaneously
learning subtle features from unprocessed data. Musci et al. [31] proposed an online
FDS based on the publicly available SisFall dataset using RNN. Preprocessed raw data
is fed to stacked LSTM layers followed by a fully connected layer. Additional batch
normalization and dropout layers configured with a weighted cross entropy loss function
are inserted in the neural network. The model attains 97.16% and 94.14% accuracy for
falls and ADLs respectively. Perejón et al. [32] proposed a real time fall detection using
wearable accelerometers. Four different architectures using RNNs with underlying LSTM
and Gated Recurrent Units (GRU) blocks were analyzed using the SisFall dataset at different
frequencies. Torti et al. [33] propose an RNN based remote monitoring system suitable
for an embedded implementation on a micro-controller unit. General formulas for power
consumption, power computation and memory determination are presented and validated
through implementation on a sensor development kit. Wang et al. [34] analyze various
lightweight and shallow neural networks that require lesser storage and computational
resources. The research concludes with a lightweight supervised convolutional neural
network achieving 99.9% detection accuracy for resource constraint wearable sensors.
Table 2 summarizes the recent works applying deep learning techniques on wearable
sensor based fall detection.

Table 2. Summary of most recent techniques for wearable fall detection using deep learning.

Ref. Dataset DL Algorithm Used Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

[30]
Smartwatch [35]

Notch [36]
Farseeing [37]

RNN (GRU)
85
99
99

100
80
55

70
99
99

77
79
37

[31] SisFall [38]
CNN
CAE
CAE

99.94
99.91
99.81

98.71
99.2
99.07

99.96
99.93
99.83

NS

[30] URFD [39] CNN 99.86 99.72 100 100

[22] UP-Fall [40] CNN 75.89 96.08 59.02 NS

2.3. Methods to Deal with Loss of Sensor Data

Napolitano et al. [14] proposed a fault tolerant system to cater for two specific require-
ments: sensor failure detection and identification (SFDI) and sensor failure accommodation
(SFA) by employing online learning neural networks estimators. A decentralized neural
network accommodates a sensor failure by supplying an estimate for the failed sensor. The
authors in [15] use a similar approach based on fully connected cascade neural network (FCC
NN) architecture which relies on neuron by neuron learning algorithm for training of the
model. The proposed sensor failure detection, identification and accommodation (SFDIA)
scheme achieves a 99% detection accuracy for failures in pitch, roll, and yaw rate gyro sensors
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of an airplane. Basic statistical investigation techniques like expectation maximization, max-
imum likelihood, mean/mode/median substitutions, multiple imputations, pairwise and
list-wise deletions seem unfit for sensor data environments based on accounts of inefficiency
and inconsideration of temporal factors. Recent approaches to deal with missing values in
sensor data streams include estimation using freshness association rule mining (FARM) to
relate intrinsic characteristics between sensors when imputing missing values [18].

Jaques et al. [16] proposed a deep learning technique using a specialized denoising
autoencoder to cater for missing values observed in multimodal data. Comparison with
techniques like principal components analysis (PCA) demonstrate the ability of multimodal
autoencoder (MMAE) to predict the feature values from multiple missing modalities
effectively. Zhang et al. [17] proposed a sequence-to-sequence missing values imputation
(SSIM) novel architecture based on deep learning approaches. Their technique utilizes
LSTM with a a variable-length sliding window algorithm, allowing SSIM to be used on
smaller datasets as well. Hossein et al. [19] explored different feature combinations when
working with missing values in sensor-based human activity recognition. The proposed
feature-based approach uses mean, variance, skewness and kurtosis as statistical features
along with Naïve Bayes and RF classifiers on the HASC benchmark dataset to produce
satisfactory recognition results.

3. Proposed Framework: NT-FDS a Noise Tolerant Fault Detection System

The aim of this research is to propose an accurate and precise fall detection mechanism
while handling the disturbances caused by missing values observed in wearable sensor
data. The adopted method relies on a DL approach, treating fall detection as a sequence
classification problem in time series data. The proposed methodology is shown in Figure 1.

Figure 1. Proposed Framework: Noise Tolerant Fall Detection System (NT-DFS) A Noise Tolerant
Fault Detection System.
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3.1. Datasets

The presented research is performed on wearable sensor datasets that have following
characteristics—public availability of raw data, detailed documentation of performed
activities and incorporation of both ADLs and falls in the activities performed. The datasets
mentioned in the Table 3 meet the mentioned premises. For the purpose of this research,
datasets acquired through inbuilt smartphone sensors were neglected. An underlying
drawback of using smartphones for detecting falls could be the loose connection between
the device and the subject’s body depending upon the placement of the smartphone.
This could lead to the invalidity of produced results. Among the mentioned datasets in
Table 3, two have been selected as the most appropriate choice: SisFall dataset and UP-Fall
Detection dataset.

Table 3. List of publicly available datasets considered for Fall Detection System.

Dataset No. of Subjects Type of ADLs Type of Falls Sensing Device

MobiFall [41] 24 (22 to 42 years old) 9 4 Smartphone

tFall [42] 10 (20 to 42 years old) 7 8 Smartphone

Project gravity [43] 3 (ages 22, 26, and 32) 7 12 Smartphone

DLR [44] 16 (23 to 50 years old) 6 1 Wearable sensors

UMAfall [45] 17 (18 to 55 years old) 8 3 Wearable sensors

SisFall 23 (19 to 75 years old) 19 15 Wearable sensors

UP-Fall 17 (18 to 24 years old) 6 5
Multi-modal sensors

(wearable, ambient and vision)

SisFall dataset is chosen since it contains the largest amount of data and heterogeneity
in ADLs and subjects. The other datasets exclude the elderly population and have limited
diversity in context of performed activities and number of subjects. This dataset is created
by conducting a survey on 15 adults of 60 years of age and above for the psycho-physic
program of the Universidad de Antioquia, and 17 retirement homes. 38 volunteers divided
into two groups of young and elderly collaborated for the dataset. Details of each group are
given in Table 4. Detailed descriptions of performed activities and snapshots of activities
video shown in Table 5 and Figure 2 respectively. All these subjects performed 19 different
ADLs and 15 categories of falls carried out over multiple trials.

Table 4. Age, height, weight of the participating subjects in SisFall dataset.

Age Gender No. of Subjects Weight (kg) Height (m)

Young Subjects 19–30 M 11 59–82 1.65–1.84

19–30 F 12 41–64 1.50–1.69

Senior Subjects 60–71 M 8 56–103 1.63–1.71

62–75 F 7 50–71 1.49–1.69
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Table 5. List of activities (Falls and Activities of Daily Life (ADL)) performed in the SisFall dataset.

Activity Description Act Code Trial Period Trials

Walking slowly D01 100 s 1

Walking quickly D02 100 s 1

Jogging slowly D03 100 s 1

Jogging quickly D04 100 s 1

Walking upstairs and downstairs slowly D05 25 s 5

Walking upstairs and downstairs quickly D06 25 s 5

Slowly sit in a half height chair, wait a moment, and up slowly D07 12 s 5

Quickly sit in a half height chair, wait a moment, and up quickly D08 12 s 5

Slowly sit in a low height chair, wait a moment, and up slowly D09 12 s 5

Quickly sit in a low height chair, wait a moment, and up quickly D10 12 s 5

Sitting a moment, trying to get up, and collapse into a chair D11 12 s 5

Sitting a moment, lying slowly, wait a moment, and sit again D12 12 s 5

Sitting a moment, lying quickly, wait a moment, and sit again D13 12 s 5

Being on one’s back change to lateral position, wait a moment, and change to one’s back D14 12 s 5

Standing, slowly bending at knees, and getting up D15 12 s 5

Standing, slowly bending without bending knees, and getting up D16 12 s 5

Standing, get into a car, remain seated and get out of the car D17 12 s 5

Stumble while walking D18 12 s 5

Gently jump without falling (trying to reach a high object) D19 12 s 5

Falling forward when walking triggered by a slip F01 15 s 5

Falling backwards when walking triggered by a slip F02 15 s 5

Falling laterally when walking triggered by a slip F03 15 s 5

Falling forward when walking triggered by a trip F04 15 s 5

Falling forward when jogging triggered by a trip F05 15 s 5

Falling Vertically when walking caused by fainting F06 15 s 5

Falling when walking, with use of hands in a table to dampen fall, caused by fainting F07 15 s 5

Falling forward while trying to get up F08 15 s 5

Falling laterally while trying to get up F09 15 s 5

Falling forward while sitting down F10 15 s 5

Falling backwards while sitting down F11 15 s 5

Falling laterally while sitting down F12 15 s 5

Falling forward when sitting, triggered by fainting or falling asleep F13 15 s 5

Falling backwards when sitting, triggered by fainting or falling asleep F14 15 s 5

Falling laterally when sitting, triggered by fainting or falling asleep F15 15 s 5
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(a) Forward fall when walking

(b) Walking slowly
Figure 2. Snapshots from video footage of performed activities.

The UP-Fall Detection dataset contains data from various sources: wearable sensors
(tri-axial accelerometer and gyroscope, electroencephalograph headset), ambient luminosity
sensors and context-aware infrared sensors. For the purpose of this research, we have
chosen a subset of UP-Fall Detection dataset containing wearable tri-axial accelerometer
and tri-axial gyroscope sensory values. The dataset includes standard sensor placement
positions like waist, chest and foot as well as left wrist and thigh(pocket) simulating
wearing a smart watch and placing a smart phone inn pocket, respectively. The subjects
were made to perform 11 (5 falls and 6 ADL) different activities. Statistical summary
of the subjects is given in Table 6. Each activity was performed for three trials by all the
volunteered subjects. Falls were performed for a duration of 10 s whereas ADL had variable
duration. The details of the performed activities are given in Table 7.
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Table 6. Age, height, weight of the participating subjects in UP-Fall dataset.

Age Gender No. of Subjects Weight (kg) Height (m)

18–24 M 9 54–99 1.62–1.75

18–24 F 8 53–71 1.57–1.70

Table 7. List of activities (Falls and ADL) performed in the UP-Fall Detection dataset.

Activity Description Act Code Trial Period Trials

Falling forward using hands 01 10 s 3

Falling forward using knees 02 10 s 3

Falling backwards 03 10 s 3

Falling sideward 04 10 s 3

Falling sitting in empty chair 05 10 s 3

Walking 06 60 s 3

Standing 07 60 s 3

Sitting 08 60 s 3

Picking up an object 09 10 s 3

Jumping 10 30 s 3

Laying 11 60 s 3

3.2. Preprocessing

Data preprocessing is a key step that reshapes data into desired clean formats that
can be feasible for analysis later. The two datasets contain in-equal number of performed
ADL and falls along with variable duration and number of trials per activity. This non-
uniformity in the data can lead to biased learning during the training and validation phases
resulting in inaccurate picture for identifying falls. In order to balance the collected data
generated from each source, duration of execution for all the activities are analyzed. In
case of SisFall dataset the minimum duration for an activity that is, (12 s) is chosen as the
standard window size. For UP-Fall Detection dataset minimum duration of 10 seconds is
used as the standard.

The next task carried out for the preprocessing of data is data annotation. The original
SisFall dataset files contain tri-axial data from 3 sensors while the UP-Fall Detection dataset
consists of tri-axial data from 5 sensors. The annotated versions of the datasets created for
the selected subjects include the addition of activity and user ID labels in order to facilitate
data analysis later. The classes include:

• Fall : this class characterizes the activity intervals when the subject suffers a dangerous
state transition leading to a harmful shift of state, that is, a fall. All 15 types of falls
performed by the participants are subsumed under the umbrella of this class label.

• ADL: this class characterizes the activity intervals when the subject maintains control
of its state and performs tasks without abrupt state transitions which may lead to falls.
All 19 types of ADLs performed by the participants are subsumed under the umbrella
of this class label.

3.3. Missing Values

Missingness in data is defined as an absence of response from sensors or data collection
sources where a response is expected. Missing values distort the meaningfulness of
data and leads to data corruption. Hence, missingness in data is interpreted as noise
in data. Missing values are characterized by their proportion, patterns of observance
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and mechanisms of existence in data. For understanding the concept of missing data
mechanisms, the data matrix X is partitioned into incomplete subset with missing values
as (Xmissing) and observed subset with complete responses as (Xobserved). Hence the dataset
can be represented as:

X = (Xmissing, Xobserved) (2)

Let M be the matrix of missingness with the same dimensions as X. Matrix M consists
of 1s and 0s only, with 1 corresponding to a value being observed and 0 to a value being
missed. Let the distribution of M be given as P(M|Y, ξ), where

ξ = parameter of missingness.

The Missing Completely at Random (MCAR) mechanism in data is observed when the
probability of existence of missing values in data does not rely on the observed responses
(Xobserved) or on the missing values that are expected to be obtained (Xmissing) [46]. It is
an ideal but unreasonable assumption which exists in cases like failure of equipment,
technical unsatisfaction, loss of data in transferring and so forth. The distribution of M can
be modeled as:

P(M|X, ξ) = P(M|Xobserved, Xmissing, ξ) = P(M|ξ). (3)

For the purpose of this research, MCAR missing data mechanism was considered with
various proportions of missingness in the data. Experimental analysis is carried out by
adding three different percentages; 20%, 30% and 40% of MCAR missingness in data.

3.4. Deep Learning Model

We treat fall detection as a sequence classification problem, classifying each incoming
input sample into fall/ADL category. The choice of DL techniques takes into account the
resource constraint limitations of the relatively cheap embedded sensor device especially
in inference model. RNN with underlying stack of bidirectional LSTMs are the core of
the propose model. Treatment of missing values like replacement with mean, median and
so forth, imputation and prediction exhaust computational resources which are already
limited for the sensing devices. Hence, treatment of missing values is out of scope of this
research. We propose a method of detecting falls in the presence of missing values.

RNN is a class of artificial neural network derived from the feed forward networks [47].
However, the distinguishing feature between recurrent and feed-forward networks is
presence of at least one feedback connection in the recurrent networks. This connection
feeds a part of the produced output back to the input. Thus, the activations pass around in
a loop enabling the network to learn sequences and perform temporal processing. Hidden
state which serves as a memory, retaining sequential information that the network has
witnessed so far from the preceding timestep, is the most noteworthy feature of RNN.
The same function is applied to all the inputs (operating with the same set of parameters)
and hidden layers to generate the output. This reduces the complexity of parameters,
unlike other neural networks. The weight matrices act as filters deciding the significance
assigned to the current and previous hidden states. The feedback loop very exists at
every timestep and adds traces of past hidden states. Basic RNN architecture is shown in
Figure 3. The RNNs do not suffer from the limitation of accepting fixed dimensions for
inputs and outputs and are flexible to variable sized inputs and corresponding outputs.
RNNs rely on an application of back-propagation when applied to sequence problems
like that of time series data called back-propagation through time (BPTT). The BPTT
algorithm provides sequential sets of input/output timesteps to the network. It unfolds the
network and calculates inaccuracies across each timestep. Finally, the algorithm rolls up
the network and updates weights across the network. This entire process is repetitive. The
computational cost of BPTT has a direct relation with the number of timesteps. When the
number of timesteps is higher, weight updates become an exhausting process depending
upon calculations of derivatives. The weights eventually vanish or explode resulting in
noisy model performance and poor learning. A gradient explains the change in all weights
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with regard to the change in error. Hence, the problem is identified as the vanishing or
exploding gradient problem in RNNs [48].

Figure 3. An uncoiled recurrent neural network (RNN).

Long Short-Term Memory networks or LSTMs are a special category of RNNs having
the ability to learn long-term dependencies [49]. LSTMs are precisely conceived to cater the
long-term dependency issue or the exploding/vanishing gradient problem resulting from
BPTT. All RNNs contain repetitive modules of neural network. The chain like repeating
structure in LSTMs is slightly different, consisting of four interactive neural network layers
instead of one. The four gates include forget gate, input gate, output gate, and internal
hidden state gate represented by f, i, o, g respectively. These four gates are utilized by
LSTMs to perform a specific function of defining a cell state at each timestep. Details are
appended or withdrawn from the cell state after careful regulation from these gates. The
gates comprise a sigmoid neural net layer and a point-wise multiplication operation which
output a zero or a one defining how much information to allow pass. Firstly, the forget gate
regulates what to remove or forget in the cell state from the previous hidden state (ht−1)
information. Next, the information to be updated in the cell state is decided by the input
gate layer. It is a two step procedure with a tanh layer creating a vector of new candidate
values (C′t), leading to the update of current cell state. Finally, a sigmoid layer filters out
the required segment of the cell state to output. A succeeding tanh layer scales the output.
The final output is yt. A vector set of equations describing the working of a typical LSTM
are given as:

ft = σ(W f .[ht−1, xt] + b f ) (4)

it = σ(Wi.[ht−1, xt] + bi) (5)

C
′
t = tanh(Wc.[ht−1, xt] + bc) (6)

Ct = ( ft ∗ Ct−1) + (it ∗ C
′
t) (7)

ot = σ(Wo.[ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

yt = Wy ḣt. (10)

In order to cater to the corruption and ambiguities caused by the missing data problem,
we propose to utilize Bidirectional Long Short-Term Memory (BiLSTM) [50] blocks stacked
on top of each other. BiLSTMs are a widely applied improvement of LSTMs which work
better with sequence classification problems. Conventional LSTMs are only able to make
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use of the previous context but BiLSTMs process the data in both directions with two
separate hidden layers. It’s like training two separate LSTMs on the input sequence given
all the timesteps, one that is trained on the input sequence as is and the other on the
reversed copy of the input sequence. The input is executed in two ways, one from past
to future and the other from future to past.The outcomes of the two hidden layers are
then fed forwards to the same output layer. This basic concept enables BiLSTMs to access
long-range context in both input directions. BiLSTMs utilize both the previous and future
context however, the forward pass and backward pass are completely independent of each
other. The basic difference from a unidirectional LSTM is the ability of LSTM training in
backwards direction to preserve information from the future as well. At any timestep the
combined hidden layers preserve information from past and future. A typical BiLSTM
model architecture is shown in Figure 4.

Figure 4. Bidirectional Long Short-Term Memory (LSTM) architecture.

The overall proposed system design is shown in Figure 5. Two BiLSTM stacked on top
of each other with additional dropout and fully connected layers are used. The dropout
layers are only activated during the training phase and eliminated during the inference
stage. 3D Data reshaping is done to make the dimensions of data in accordance with the
LSTM parameter requirements. The three dimensions of input to each LSTM layer include
samples, timesteps and features. The output dimensions are dependent upon the number
of classes.

There are two approaches used in this research based on the number and kind of
sensors used to accumulate the data. A multi-sensor fusion approach which uses the
combination of sensors to gather data coming from different sources. This approach uses
data from all three sensors of the customized embedded device (in case of SisFall dataset)
and all five body worn sensors (in case of UP-Fall Detection dataset) to detect falls. While
the single sensor approach chooses one sensor at a time to detect falls. This is done in
order to understand the behavior of individual sensor data and how it contributes towards
fall detection. The sensors considered for this approach are the ITG3200 gyroscope and
the MMA8451Q accelerometer from the SisFall dataset and the wearable waist mounted
IMU sensor from the UP-Fall dataset. All three percentages of missingness have been
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considered for the individual sensor case. The overall methodology, illustrated in Figure 5,
is summarized in the form of algorithm in Algorithm 1.

Figure 5. Overall design for the proposed DL based fall detection system.
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Algorithm 1: Algorithm for Deep Learning based Missing Data Imputation and
Fall Detection.

(1) Data Preprocessing:
• Adjustment of activities duration, re-sampling and data selection.
• Data annotation into classes: FALL / ADL.
(2) Missing Data Pattern Generation:

• Creation of MCAR pattern of missingness.
• Creation of noisy datasets with different percentages of MCAR missingness:

20%, 30%, 40%.

(3) Train/Test Split:

• Division of datasets for training, testing and validation stages.

(4) 3D Data Reshaping:
• Transformation of training data from 2D (samples, timesteps) to 3D (samples,

timesteps, features) datasets.
(5) Deep Learning Based Fall Detection:

• Creation of neural network based on stacked BiLSTMs, dropout layers,
activation and fully connected layers.

(6) BiLSTM Network Training:

• Hyper-parameters Optimization: choice of loss function, optimizer, hidden
units, hidden layers, output layer with activations.

• Training of Network: Choice of batch size, early stopping percentage and epochs.

(7) BiLSTM Prediction:

• Sequence Classification: Use of trained data to predict classes (FALL/ADL)
during testing.

(8) Performance Evaluation:

• Model loss and classification accuracy analysis.
• Confusion matrix creation.
• Effectiveness analysis: calculation of precision, sensitivity and specificity.

3.5. Experimental Setup

The proposed fall detection mechanism has been implemented using the Keras frame-
work, a high-level framework for deep learning for Python programming language. All
training procedures have been performed on LENOVO 80MK workstation, equipped
with an Intel® Core™ i7-6500U CPU. The fall detection problem is treated as a sequence
classification problem with fixed length sequence input using two BiLSTMs stacked on
top of each other. Each BiLSTM layer contains 32 hidden neurons. Batch size is 2048 and
dropout probability used in both layers is 0.2. Categorical cross entropy is chosen as the loss
function. A softmax activation function is applied at the output for each input sequence.
All BiLSTMs are trained using early stopping. A 90%/10% train/test split is used.

4. Performance Evaluation

Using classification accuracy alone as a performance measure can be confusing if
there is an unequal number of observations in each class or if there are more than two
classes in the dataset. Computing a confusion matrix gives better understanding of what
the classification model is predicting correctly and the types of errors it is making. Most
evaluation metrics are computed from the confusion matrix. It summarizes the number of
correct and incorrect predictions with count values and divides them into each class. The
rows depict actual classes while the columns represent the predicted class outcomes by the
classifier. Some terms used to define a confusion matrix include:
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• Positive (P) : Observation is positive.
• Negative (N) : Observation is not positive.
• True Positive (TP) : Observation is positive. The prediction is positive.
• False Negative (FN) : Observation is positive, but the prediction is negative.
• True Negative (TN) : Observation is negative. The prediction is negative.
• False Positive (FP) : Observation is negative, the prediction is positive.

A basic confusion matrix layout is shown in Figure 6. Details of evaluation metrics
derived from the computed confusion matrix are given as follows.

Figure 6. Confusion Matrix.

Classification rate or accuracy is the ratio of error-free predictions made to the total
number of predictions made by the classification model. However, this accuracy can be
problematic since it includes both kinds of errors.

Accuracy = (TP + TN)/(TP + TN + FP + FN). (11)

Error rate is the ratio of all incorrect predictions to the total number of predictions
made by the classification model.

ErrorRate = (FP + FN)/(TP + TN + FP + FN). (12)

Another informative measure is sensitivity or recall. Sensitivity is the ratio of number
of correct positive predictions to the total number of positives.

Sensitivity = TP/(TP + FN). (13)

Specificity is the ratio of the number of correct negative predictions to the total number
of negatives.

Speci f icity = TN/(TN + FP). (14)

Precision is the ratio of the number of error-free positive predictions to the total
number of positive predictions. It is also called positive predictive value.

Precision = TP/(TP + FP). (15)

Table 8 describes the distribution of the two activities (ADL and falls) in training and
testing datasets for the SisFall dataset.

Table 8. Distribution of ADL and Falls in SisFall dataset.

Train Test

ADLs 362 33

Falls 331 44

Total 693 77

Table 9 summarizes the distribution of activities for training and testing datasets for
the UP-Fall Detection dataset.
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Table 9. Distribution of ADL and Falls in UP-Fall dataset.

Train Test

ADLs 4091 439

Falls 3334 386

Total 7425 825

4.1. Multisensor Fusion Approach

This section describes the experimental results of using a combination of sensors to
detect falls. For experiments using the SisFall dataset, three tri-axial sensors (2 accelerome-
ters and 1 gyroscope) working at a sampling frequency of 200 Hz are chosen to provide
collected data from subjects executing 15 categories of falls and 19 different ADLs. For
experiments using the UP-Fall dataset, five tri-axial sensors (each sensor consisting of an
accelerometer and a gyroscope) working at the sampling frequency of 100 Hz are used to
accumulate data for fall detection.

The experiment is performed on 4 different case scenarios: dataset with complete
records and no observed missing values, incomplete dataset consisting of 80% of original
data and 20% of the data observed as missing values through MCAR mechanism, , incom-
plete dataset consisting of 70% of original data and 30% of the data observed as missing
values through MCAR mechanism and incomplete dataset consisting of 60% of original
data and 40% of the data observed as missing values through MCAR mechanism. Exten-
sive hyper-parameters tuning and optimization were performed on a Keras framework
using the Python programming language. Results obtained during training and testing are
mentioned in Tables 10 and 11 for the SisFall and UP-Fall datasets, respectively.

Table 10. Results for Multi-sensor Fusion Approach using SisFall: Accuracy and Loss during training and testing phases.

Original Data MCAR Missing Values Training Accuracy Testing Accuracy Training Testing
Observed Observed (%) (%) Loss Loss

100 0 98.01 97.4 0.0749 0.1198

80 20 96.39 94.81 0.1002 0.107

70 30 95.85 93.5 0.1205 0.2259

60 40 88.81 88.31 0.2694 0.282

Table 11. Results for Multi-sensor Fusion Approach using UP-Fall: Accuracy and Loss during training and testing phases.

Original Data MCAR Missing Values Training Accuracy Testing Accuracy Training Testing
Observed Observed (%) (%) Loss Loss

100 0 89.51 88 0.2488 0.2899

80 20 86.70 85.58 0.2917 0.3179

70 30 85.10 84.85 0.2935 0.3321

60 40 83.6 82.55 0.3001 0.358

Figure 7 shows the confusion matrices for the four experimental case scenarios on
the SisFall dataset, giving insights for the performance of the proposed deep learning
based classification model. The confusion matrix for the ideal scenario of continuous
streams of data with no interruptions and noisy missing values demonstrates error-free
predictions for the case of ADL and only two misclassifications for FALL during testing,
yielding a low error rate and perfect sensitivity. A trend in reduced performance and
effectiveness analysis is observed as the percentage of missing values is increased in the
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data for the multi-sensor fusion approach. The analytical outcomes deduced from the
confusion matrices are presented in the form of effectiveness analysis in Table 12.

Figure 7. Confusion matrix resulting from testing the Multi-sensor Fusion approach using the SisFall dataset.

Table 12. Effectiveness Analysis for Multi-sensor Fusion Approach using SisFall dataset: Error rate, Sensitivity, Specificity &
Precision during testing.

Original Data MCAR Missing Values Error Sensitivity Specificity Precision
Observed Observed Rate (%) (%) (%)

100 0 0.0259 100 95.45 94.28

80 20 0.0519 96.97 93.18 91.43

70 30 0.0649 93.93 93.18 91.17

60 40 0.1168 81.81 93.18 90
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The breakdown of true classification vs. predicted classification for the proposed
multi-sensor fusion technique using UP-Fall Detection dataset is given in Figure 8. The
confusion matrices for the four cases of missingness in data depict an indirect relation
between the percentage of missing values in data and the correctly predicted classification.
Increase in percentage of missingness in data led to decrease in correct predictions. For
example, in the worst case scenario with 40% MCAR missingness in data 23.31% of actual
falls are misidentified as ADL and 12.3% of true ADL are interpreted as falls. The analytical
outcomes deduced from the confusion matrices are presented in the form of effectiveness
analysis in Table 13.

Figure 8. Confusion matrix resulting from testing the Multi-sensor Fusion approach using the UP-Fall dataset.
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Table 13. Effectiveness Analysis for Multi-sensor Fusion Approach using UP-Fall dataset: Error rate, Sensitivity, Specificity
& Precision during testing.

Original Data MCAR Missing Values Error Sensitivity Specificity Precision
Observed Observed Rate (%) (%) (%)

100 0 0.12 90.88 84.71 87.11

80 20 0.1442 88.38 82.38 85.08

70 30 0.1515 87.70 81.60 84.42

60 40 0.1745 87.70 76.68 81.05

4.2. The Single Sensor Approach

This section describes the experimental results of using individual sensors to detect
falls. The single sensor approach chooses one sensor at a time to detect falls. This is
done to analyze the behavior of individual sensor data and how it contributes towards
fall detection.

For the SisFall dataset, the ITG3200 gyroscope and the MMA8451Q accelerometer are
considered. Similarly, data from waist mounted tri-axial accelerometer and waist mounted
tri-axial gyroscope is selected when using the UP-Fall dataset. All three percentages
of missingness have been considered for the individual sensor case. The same hyper-
parameters optimized for the combined sensor approach are applied when using the
individual sensors. The resulting accuracy and loss for the single sensor approach using
the accelerometer are given in Tables 14 and 15 for SisFall and UP-Fall datasets respectively.
Effectiveness analyses summarizing percentages of sensitivity, specificity, precision and
error rate for the two datasets are given in Tables 16 and 17.

Table 14. Results for Single Sensors Approach using Accelerometer for SisFall dataset: Accuracy and Loss during training
and testing phases.

Original Data MCAR Missing Values Training Accuracy Testing Accuracy Training Testing
Observed Observed (%) (%) Loss Loss

100 0 97.65 96.1 0.084 0.1224

80 20 94.4 93.51 0.1571 0.196

70 30 87.73 87.01 0.3569 0.3765

60 40 82.67 81.82 0.4084 0.3827

Table 15. Results for Single Sensors Approach using Accelerometer for UP-Fall dataset: Accuracy and Loss during training
and testing phases.

Original Data MCAR Missing Values Training Accuracy Testing Accuracy Training Testing
Observed Observed (%) (%) Loss Loss

100 0 95.3 97.21 0.1272 0.0841

80 20 94.11 95.88 0.1445 0.1026

70 30 90.79 93.82 0.2317 0.1521

60 40 88.32 91.39 0.282 0.2004

The use of accelerometers for monitoring acceleration changes in three orthogonal
directions for fall detection produces accurate results following the trends of the multi-
sensor fusion approach. The technique on UP-Fall dataset produces more accurate results
than on SisFall dataset. It also performs better than the multi-sensor fusion technique
applied on the same dataset.
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Table 16. Effectiveness Analysis for Single Sensor Approach using accelerometer on SisFall dataset.

Original Data MCAR Missing Values Error Sensitivity Specificity Precision
Observed Observed Rate (%) (%) (%)

100 0 0.039 100 93.18 91.67

80 20 0.065 96.97 90.90 88.89

70 30 0.13 87.87 86.36 82.85

60 40 0.181 84.84 79.54 75.67

Table 17. Effectiveness Analysis for Single Sensor Approach using accelerometer on UP-Fall dataset.

Original Data MCAR Missing Values Error Sensitivity Specificity Precision
Observed Observed Rate (%) (%) (%)

100 0 0.0278 99.54 94.56 95.41

80 20 0.0412 99.77 91.45 92.99

70 30 0.0618 98.86 88. 08 90.41

60 40 0.0860 99.77 81.86 86.22

While accelerometers only have the capability of measuring linear motion, gyroscopes
have the ability to measure the tilt and lateral orientation of an object. The accuracy results
of using the ITG3200 gyroscope from the SisFall dataset and the waist mounted gyroscope
from the UP-Fall dataset are given in Tables 18 and 19 respectively. Effectiveness analyses
for the two datasets are represented in Tables 20 and 21.

Table 18. Results for Single Sensors Approach using Gyroscope on SisFall dataset: Accuracy and Loss during training and
testing phases.

Original Data MCAR Missing Values Training Accuracy Testing Accuracy Training Testing
Observed Observed (%) (%) Loss Loss

100 0 77.62 74.03 0.4548 0.4754

80 20 70.04 66.23 0.5252 0.6135

70 30 64.80 62.34 0.6276 0.6207

60 40 57.76 46.75 0.6985 0.7331

Table 19. Results for Single Sensors Approach using Gyroscope on UP-Fall dataset: Accuracy and Loss during training and
testing phases.

Original Data MCAR Missing Values Training Accuracy Testing Accuracy Training Testing
Observed Observed (%) (%) Loss Loss

100 0 79.93 78.55 0.4374 0.489

80 20 78.74 77.58 0.4508 0.49

70 30 75.88 74.79 0.4938 0.5226

60 40 72.73 72 0.54 0.552

In case of single sensor approach using gyroscope applied on SisFall dataset, the results
for class predictions show reduced performance in terms of accuracy and effectiveness
analysis. Out of 33 ADL during testing, only 25 are correctly identified, the remaining are
misinterpreted as FALL for the ideal scenario with no missing values. Similarly 12 out
of 44 FALL cases are misclassified and predicted as ADL. The worst case scenario with
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40% MCAR missingness added to the data results in 32 out of 44 incorrect predictions
for the class FALL and only 12 true class predictions during testing. The findings from
the confusion matrices lead to escalated error rates and bleak percentage outcomes for
sensitivity, precision and specificity.

Table 20. Effectiveness Analysis for Single Sensor Approach using gyroscope on SisFall dataset.

Original Data MCAR Missing Values Error Sensitivity Specificity Precision
Observed Observed Rate (%) (%) (%)

100 0 0.26 75.75 72.72 67.55

80 20 0.338 81.81 54.54 57.44

70 30 0.377 54.54 68.18 56.25

60 40 0.532 72.72 27.27 42.85

Table 21. Effectiveness Analysis for Single Sensor Approach using gyroscope on UP-Fall dataset.

Original Data MCAR Missing Values Error Sensitivity Specificity Precision
Observed Observed Rate (%) (%) (%)

100 0 0.2193 84.28 70.98 76.76

80 20 0.2242 82.68 71.76 76.90

70 30 0.2521 82.68 65.80 73.33

60 40 0.28 81.32 61.4 70.55

The comparison between the combined sensors approach and single sensor approach
when applied on SisFall dataset, indicates the superiority of the former where the combined
sensor approach generates 97.4% accuracy when classifying falls and ADL for the complete
dataset, 94.81% for the best-case scenario of missingness (i.e., 20%) and 88.31% for the
worst (i.e., 40%). The effectiveness analysis supports the conclusion with 100%, 96.97% and
81.81% sensitivity for the three cases respectively. This could be justified as the multi-sensor
fusion approach collects data from various sources which is favorable to overcome the
limitations observed in one or more sensors.

In case of the proposed fall detection technique applied on the UP-Fall dataset, multi-
sensor fusion approach produces acceptable results with 88% and 82.55% accuracy for
the best-case and worst-case scenarios respectively. However, the best results in terms of
accuracy and effectiveness analysis are achieved with the single sensor approach using
accelerometer with a maximum accuracy of 97.21% and 99.77% sensitivity. This out-
performance of the single sensor approach using accelerometer over the multi-sensor fusion
approach could be justified by the variance of influential factors which contribute towards
sensor data generation. Some of the contributing factors include but are not limited to:
configurations of the sensing device (sampling rate, memory, range, power consumption
and battery), categorisation and patterns of performed activities, characteristics of the
volunteering subjects, experimental conditions for activity simulation and so forth. When
comparing the performances of individual sensors in the single sensor approach, use of
accelerometer outperforms that of gyroscope for both datasets. Results from generated
losses and accuracies as well as the effectiveness analyses indicate the superiority of tri-axial
accelerometers over gyroscopes to monitor inertial navigation for detecting falls.

4.3. Comparison with Existing State of the Art

Effectiveness comparison of proposed technique with recent fall detection methods
are presented in Tables 22 and 23. None of the mentioned literature cater to the problem
of observing missing values in data for the used datasets. For the sake of comparison,
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we have used the best case scenarios with no missing values for the proposed fall detec-
tion technique.

Table 22. Comparison of the the proposed NT-FDS on SisFall Dataset with State-of-the-art.

Ref Dataset Used DL Algorithm Used Accuracy Sensitivity (%) Specificity (%) Precision (%)

[31] SisFall RNN (LSTM) 97.16 (Falls)
94.14 (ADLs) NS NS NS

[32] SisFall RNN (LSTM) 95.51 92.7 94.1 NS

[33] SisFall

One Layer GRU
Two Layer GRU
One Layer LSTM
Two Layer LSTM

96.4
96.7
96.3
96.1

88.2
87.5
88.2
90.2

96.3
96.8
96.4
97.1

68.2
68.1
69.5
68.3

Proposed NT-FDS SisFall BiLSTM 97.41 100 95.45 94.28

Table 23. Comparison of the the proposed NT-FDS on UP-Fall dataset with recent techniques.

Ref. Dataset Used DL Algorithm Used Accuracy Sensitivity (%) Specificity (%) Precision (%)

[51] UP-Fall 2D CNN
(vision based approach) 95.64 NS NS NS

[26] UP-Fall

RF
SVM
MLP
KNN

95.76
93.32
95.48
94.90

66.91
58.82
69.39
64.28

99.59
99.32
99.56
99.5

70.78
66.16
73.04
69.05

[22] UP-Fall CNN 75.89 96.08 59.02 NS

Proposed NT-FDS UP-Fall BiLSTM 97.21 99.54 94.56 95.41

5. Conclusions

Fall detection is a relevant public concern specially for the elderly and physically
impaired. Recent years have witnessed considerable research on accurate fall detection
based on wearable sensor technology. However, not many techniques focus on dealing with
realistic, noisy, faulty or missing sensor data streams. The focus of this research is to apply
DL techniques for wearable sensors based fall detection when faced with the predicament
of observing missing values in data. Data acquisition from various multimodal and uni-
modal sources is done to simulate real-life activities. The proposed technique applies RNN
with an underlying stack of BiLSTM blocks on two publicly available datasets—SisFall
and UP-Fall. Various proportions of MCAR missingness is generated and added to data
to evaluate the performance of the proposed model under unfavourable, realistic and
noisy conditions.

Fall detection is treated as a sequence classification problem by using a DL architecture.
The ability of DL techniques to automatically extract features from complex training data
make it an efficient application for real-life fall detection. BiLSTMs with their inherent
ability to retain long-term dependencies from past and future, easily access the access the
long-range context when a value in sensor data goes missing. This justification makes BiL-
STM as an appropriate choice for our noise tolerant fall detection architecture on sequential
sensor data. Two different approaches based on the number and kind of sensing device
used to accumulate data are proposed. Multi-sensor fusion technique generally performs
better for both datasets based on the ability of the proposed technique to overcome the
limitations of one or more sensor source by relying on others. The comparison between
individual sensors in the single sensor approach, promotes the performance of tri-axial
accelerometer over gyroscope to navigate inertial changes causing falls. The results pre-
sented in this research conform to the effectiveness of using BiLSTM with its ability to learn
two-way long-term dependencies in presence of missing values in data.
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