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Abstract: Bearing-only target motion analysis (BO-TMA) by batch processing remains a challenge
due to the lack of information on underwater target maneuvering and the nonlinearity of sensor
measurements. Traditional batch estimation for BO-TMA is mainly performed based on deterministic
algorithms, and studies performed with heuristic algorithms have recently been reported. However,
since the two algorithms have their own advantages and disadvantages, interest in a hybrid method
that complements the disadvantages and combines the advantages of the two algorithms is increasing.
In this study, we proposed Newton–Raphson particle swarm optimization (NRPSO): a hybrid method
that combines the Newton–Raphson method and the particle swarm optimization method, which are
representative methods that utilize deterministic and heuristic algorithms, respectively. The BO-TMA
performance obtained using the proposed NRPSO was tested by varying the measurement noise and
number of measurements for three targets with different maneuvers. The results showed that the
advantages of both methods were well combined, which improved the performance.

Keywords: bearing-only target motion analysis; batch estimation; hybrid optimization

1. Introduction

Sonar systems used to detect and track underwater targets can be divided into active
sonar or passive sonar, depending on the sensor operating mode. Active sonar transmits
sound waves and receives reflected or scattered signals from the target to find the target
direction and measure the echo time in order to infer the range of the target. Passive
sonar receives the signal generated by the target, but can only measure the target direction
excluding the echo time [1]. As a result of the lack of information on target maneuvering
and the nonlinearity of sensor measurements, the design of a reliable algorithm for bearing-
only target motion analysis (BO-TMA) remains a challenge.

The bearing of the target measured from passive sonar is the basic information used
for performing target motion analysis (TMA), and TMA performed with the maneuvering
information of the observer and the target bearing information gathered from passive sonar
is divided into two types: batch estimation and sequential estimation. Sequential estimation
can analyze the target state for real-time usage by utilizing the target bearing acquired at
each time. However, for good estimation convergence, batch estimation that can estimate
an accurate target initial state value is necessary [2]. For sequential estimation for BO-TMA,
it is common to extend the Bayesian filter to a nonlinear system by using an extended
Kalman filter (EKF) [3,4]. In addition, various sequential estimation algorithms utilizing a
particle filter (PF) [5] and the interacting multiple model (IMM) [6] have been proposed
to obtain effective sub-optimal solutions for sequential BO-TMA. For batch estimation,
a maximum likelihood estimator (MLE) utilizing the Newton–Raphson method (NRM)
is widely used for BO-TMA. This utilizes a batch of accumulated bearing information to
form a quadratic cost function that can be minimized by utilizing the weighted squares
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of errors [7–9]. The MLE generates a solution using an iterative method; therefore, it is
computationally more demanding. Subsequently, a pseudo-linear estimator (PLE) based on
reconstructing the original nonlinear bearing measurement into a linear measurement form
of the unknown target state has been proposed [10,11]. This estimator does not rely on
iterative processing and it is not time consuming; however, it is known to produce biased
estimates. The performance of both sequential and batch estimations can be sensitive
to their initialization. Traditional batch estimation for BO-TMA is mainly based on a
deterministic algorithm, but such methods have often failed to find the target state due
to an inaccurate initialization method. Recently, studies on heuristic algorithms that are
relatively free from initialization problems have been introduced. Genetic algorithm (GA),
a heuristic algorithm, was used in the batch estimation to solve the BO-TMA problem [12].
The performance of the modified EKF (MEKF) was improved compared to that of the
traditional EKF when using heuristic algorithms (i.e., particle swarm optimization, genetic
algorithm, cuckoo search) for batch estimation [13]. Oh et al. [2] used the particle swarm
optimization (PSO) method to estimate the optimal initial target state vector from the
bearing lines produced by correcting the bearing errors caused by the multipath of the
underwater target. In general, heuristic algorithms can be performed for a large range of
target state variations, regardless of the initial target state covariance matrix, and they can
be applied to problems where differentiation is not possible.

Currently, hybrid methods combining different types of methods are being studied
in various fields. In order to accurately predict the relative humidity in the atmosphere
in a specific geographical location, a hybrid model combining the physics-based numeri-
cal weather prediction (NWP) model and the data-driven Gaussian process (GP) model
has been proposed [14]. In addition, a study was conducted to find a combination of
usual industrial radioactive sources that achieves the highest precision in dual-energy
radiation-based three-phase flow meters, in which a hybrid model, an adaptive neural
fuzzy reasoning system (ANFIS) trained through gray wolf optimization (GWO), was
used [15]. In the field of electrical impedance tomography, the quality of the reconstructed
image was improved by optimizing the radial basis function neural network (RBFNN)
with the hybrid particle swarm optimization (HPSO) algorithm [16]. A multimodel deep
learning (MMDL) framework has been proposed that takes into account the strengths of a
deep autoencoder neural network (DeepAEC) and one-dimensional conventional neural
network (1D-CNN) to effectively enhance the performance of the recommender system
(RS) [17]. However, BO-TMA that uses a hybrid method combining deterministic and
heuristic methods has not yet been reported.

The goal of this paper is to obtain a reliable initial target position and velocity using
the proposed batch estimation algorithm from the noise-corrupted bearing measurements.
For this purpose, we proposed a hybrid method that combines a deterministic method and
a heuristic method. In this paper, Section 2 defines several BO-TMA scenarios to check the
performance of batch estimation. In Section 3, NRM and PSO are briefly introduced; these
are representative methods that utilize deterministic and heuristic algorithms. A hybrid
method that combines these two algorithms is also introduced. The BO-TMA performances
of these three algorithms are compared under various conditions in Section 4. Finally, a
summary and conclusion are given in Section 5.

2. Problem Formulation

BO-TMA is a method to estimate the target state, including the target position and
speed, using a batch of bearing measurements obtained from a passive sonar system
(e.g., a horizontal line array sonar system). It is possible to estimate the trajectory of the
target by assuming rectilinear and uniform motion of the target in Cartesian coordinates
from a batch of measurements contaminated by random noise. The mathematical model
for calculating the target bearing requires the positions of the target and the sensor at
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each discrete measuring time. The target position can be calculated by the following
state equation:

Xs(k + 1) = FXs(k) + GUs(k), (1)

where the target state vector at the discrete time instance k, Xs(k), consists of a two-
dimensional position and velocity components

[
pxs(k), pys(k), vxs(k), vys(k)

]T , and the

control input, Us(k), is a two-dimensional target acceleration
[
uxs(k), uys(k)

]T . The sub-
script s indicates the target. The observer state can also be described by the same form as in
Equation (1) with the subscript o instead of the subscript s. F and G are the state transition
matrix and the input coefficient matrix, respectively [2], as follows:

F =

[
I2 ∆tI2
02 I2

]
, G =

[
∆t2

2 I2
∆tI2

]
, (2)

where I2 is the two-dimensional identity matrix, 02 is the 2 × 2 zero matrix, and ∆t is the
time interval. In general, Us(k) for every time instance k, 1 ≤ k ≤ K, is zero due to the
assumption of rectilinear and uniform motion of the target, which represents a constant
velocity (CV) model. The Uo(k) of the observer has a specific value to ensure system
observability [3].

The true target bearing at time k can be defined by the following nonlinear equation:

θ(k) = h(Xs(k)) = atan2
(

pxs(k)− pxo(k), pys(k)− pyo(k)
)
, (3)

where atan2(x, y) denotes a four-quadrant arctangent function that describes the angle
from the observer to the target measured in the clockwise positive direction from the
north axis (y-axis). The bearing of the target is typically modeled as being corrupted
by the random measurement noise γ(k), which is modeled by independent zero mean
Gaussian noise with standard deviation σ. The bearing measurement is modeled by the
following equation:

z(k) = θ(k) + γ(k). (4)

If there is no measurement noise, the measurement becomes the target true bear-
ing, and the initial state vector of the target can be estimated through the accumulated
measurements along the time instance with the own-ship maneuver to enhance system
observability. However, if the random measurement noise is considered, the bearing error
due to the measurement noise is reflected as an estimation error of the target initial state
vector. Therefore, the BO-TMA with the measurement noise is considered a problem of
estimating the initial state vector of the target with the minimum error. For the random
measurement noise simulated with a Gaussian distribution, in general, the larger the
standard deviation, the greater the estimation error. Moreover, since the mean value of
the measurement noise is zero, the greater the number of measurements, the smaller the
estimation error.

In this paper, it was assumed that the right/left ambiguity that may arise in a horizon-
tal line array sonar system was resolved through an observer maneuver. In addition, the
underwater target signal could be received by a multipath with multiple elevation angles;
however, for simplicity, a direct path with a horizontal bearing angle only was considered
for measurements [2]. The target bearing obtained as a result of signal processing was used
as target information in the BO-TMA, and it was assumed that the targets were all detected
in the simulated time instance. The performance of BO-TMA may vary depending on the
signal processing method, signal to noise ratio, and the positional error of the observer;
however, these problems are beyond the scope of this study, and thus only the performance
of BO-TMA due to measurement noise was considered in this paper.

BO-TMA is performed with variations of the bearing measurements over time, and
the variations of the bearing depend on the relative position between the observer and
the target. Therefore, in this paper, in order to verify the performance of BO-TMA in
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various situations, three targets with different histories of bearings, headings, and speeds
were designed. Assuming that each target did not appear at the same time, the BO-TMA
problems of the three scenarios are independent. The horizontal plane trajectories of the
targets and the observer are shown in Figure 1, and the detailed information is shown
in Table 1. The total simulation time was 600 s with various sampling periods for the
different number of measurements. The initial state vector of the observer, Xo(1), was
[0 km, 0 km, 0 m/s, 3 m/s]. To ensure system observability, the course of the observer
was changed once from 0◦ to 60◦ via lateral acceleration starting at 200 s. The bearing
change rate was 0.6◦/s. The initial state vectors of Target 1, Target 2, and Target 3 with zero
acceleration over the simulation time were [2 km, 8 km, −8 m/s, 0 m/s], [−8 km, 2 km,
0 m/s, −3 m/s], and [8 km, 0 km, −5 m/s, −8.7 m/s], respectively.
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Table 1. Observer and target information.

Parameter Observer Target 1 Target 2 Target 3

Initial position (px, py) 0 km, 0 km 2 km, 8 km −8 km, 2 km 8 km, 0 km
Initial speed 3 m/s 8 m/s 3 m/s 10 m/s

Initial heading (second heading) 0◦ (60◦) 270◦ 180◦ 210◦

Target range variation - 7.2–8.2 km 8.0–9.0 km 7.2–8.0 km
Target bearing variation - −29–14◦ −97–−76◦ 90–148◦

3. Methodology
3.1. Cost Function

For BO-TMA by batch estimation, the maximum likelihood estimator (MLE) can be
used to estimate target state variables given the history of measured bearings
Z = [z(1), · · · , z(K)]T . Since the random measurement noise is zero mean Gaussian
noise, the least squares cost function to be minimized through an iterative manner is
formed with the measured bearings Z, the bearings of each time instance calculated from
the assumed target initial state, and the known observer states. For the BO-TMA problem
in this paper, the quadratic cost function is defined as [7]

J(X̂) = ∑K
k=1

[{
z(k)− h

(
X̂(k)

)}TW−1{z(k)− h
(
X̂(k)

)}]
, (5)
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where X̂ is an estimated state that is expected to be the initial target state at k = 1 and W is
the covariance of the bearing measurement noise. In general, in batch processing techniques,
the difference between the measurements and the estimated bearings is normalized with
the standard deviation of measurement error, and the square sum of this value is used as
the cost function [7,9,10,12].

Optimization methods are divided into deterministic and heuristic methods. In this
paper, the performances of NRM (a deterministic method) and PSO (a heuristic method)
were analyzed to find a robust solution that provides the minimum cost function for a
given scenario. A hybrid method that combined the advantages of the two algorithms was
also proposed.

3.2. Newton–Raphson Method

Deterministic methods like NRM aim to implement an iterative algorithm that utilizes
gradients of the cost function to induce the minimum of the cost function after a certain
number of iterations. The iterative algorithm used in this method is presented below [18,19]:

X̂l+1 = X̂l −
[(

∂M
∂X̂l

)−1
M

]
, (6)

M =
∂J
(

X̂l
)

∂X̂l
= ∑K

k=1


−

∂h
(

X̂l(k)
)

∂X̂l


T

W−1
{

z(k)− h
(

X̂l(k)
)}, (7)

where X̂l is the l-th iterative estimated initial target state at k = 1. While the steepest
descent and conjugate gradient methods use the first derivative of the cost function for
iteration, NRM uses the second derivative (known as the Hessian matrix) to achieve faster
convergence. However, it requires the inverse of the Hessian matrix, which makes the
method even more computationally expensive, and it may diverge for cases with large
initialization errors, an insufficient number of measurements, or poor geometry between
the observer and the targets.

For effective NRM implementation, appropriate initialization of the iterative algorithm
is required. Therefore, to find the appropriate initial state of the target at l = 1, it is necessary
to restrict the possible range of the state value, as shown in Table 2. In this paper, to find
the accurate initial state of the iterative search, the best state that produced the minimum
cost value was selected among 10,000 random candidates within a limited search area.

Table 2. Search range of the state variables.

Parameter Value

Euclidean distance 0–15 km
Speed 0–15 m/s

Heading −180–180◦

Bearing z(1)± 3σ

3.3. Particle Swarm Optimization

Particle swarm optimization (PSO) is a metaheuristic optimization algorithm that was
proposed by Kennedy and Eberhart [20]. PSO aims to imitate the social interactions of
animals moving in flocks, rather than individual cognitive abilities. This approach has been
used in a variety of fields because it is easily applicable, even to complex multidimensional
problems that cannot be solved using traditional deterministic algorithms [21–23]. For BO-
TMA by batch estimation, the application of a deterministic method is common, although
batch estimation with a heuristic method has been recently proposed. The process is
expressed as [2]

X̂l+1
i = X̂l

i + vl+1
i , (8)
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vl+1
i = αvl

i + cl R
(

Lbestl
i − X̂l

i

)
+ cgR

(
Gbestl − X̂l

i

)
, (9)

where X̂l
i and vl

i represent the estimated initial target state and the state change rate of the
i-th particle for the l-th iteration at k = 1, respectively. The total number of particles and
the total number of iterations are 400 and 50, respectively. The local state vector Lbestl

i is
the best state vector of the i-th particle obtained from the first iteration to the l-th iteration,
and the social state vector Gbestl is the best state vector of the particle with the smallest
cost value J of all particles up to the l-th iteration. R indicates a 4 × 4 diagonal matrix with
random numbers between 0 and 1 as its elements. The acceleration constants α, cl , and cg
are the inertial weight, cognitive coefficient, and social coefficient, respectively.

The performance of the PSO algorithm is heavily influenced by the three acceleration
constants α, cl , and cg. The basic role of α is to determine the global and local search
capabilities. A large α facilitates a global search, while a small α facilitates a local search.
cl and cg represent the extent to which particles are directed to the individual and global
best states, respectively. A small acceleration constant restricts the movement of particles,
while a large acceleration constant can cause the divergence of the swarm. Therefore,
it is necessary to appropriately determine each acceleration constant according to the
characteristics of the problem to be solved in the search space.

Since PSO was initially proposed, many studies have been conducted to determine the
values of the three acceleration constants [20–22]. However, since no investigation has been
conducted on the optimal acceleration constants for BO-TMA, an analysis was performed
here to determine the optimal acceleration constant values. For this, BO-TMA using the
PSO method for Target 1 was performed with random measurement noise corresponding
to σ = 0.1◦ for each discrete set of acceleration constants within two search spaces of α,
cl , and cg. The initial search spaces between 0.05 and 2.00 for α and between 0.05 and
4.05 for cl and cg were first examined at an interval of 0.05 for α and intervals of 0.2 for
cl and cg. On the basis of the results of this first stage of analysis, narrow final search
spaces for the three acceleration constants were established. These were 0.05 ≤ α ≤ 0.50,
0.05 ≤ cl ≤ 4.05, and 0.05 ≤ cg ≤ 0.60 at intervals of 0.05, 0.1, and 0.1, respectively. For
each set of acceleration constants, 500 random noises were generated within a range of the
measurement noise of σ = 0.1◦, and the cost function for 500 random noises was calculated
and averaged to obtain a mean cost function. Finally, the acceleration constant set that
produced the minimum mean cost function was selected. Figure 2 shows the simulation
results with various acceleration constant values. The values that produced the minimum
cost function were α = 0.25, cl = 1.55, and cg = 0.15. The small α and cg values and large
cl values in the simulation results indicate that even if particles converge slowly within the
search range, they tend to allow for a precise search by properly weighting each particle’s
individual experience. However, three acceleration constants may be analyzed differently
as the other PSO parameters, i.e., total number of particles and number of iterations, are
changed. As the total number of particles increases, more particles contribute to search
within the search range, resulting in more precise analysis. Therefore, depending on the
total number of particles, the weights of global and local searches may be changed.
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3.4. Newton–Raphson Particle Swarm Optimization

NRM, a deterministic method considered in the BO-TMA problem, has the advantage
of being able to derive accurate estimates in a short time by reacting sensitively to the given
batch of measurements. However, because it is too sensitive to the quality of measurements,
the error in the estimate can increase significantly as the measurement noise increases. In
addition, even if the initialization is set within the possible range of the state vector of the
target, the estimated state vector may exceed the possible range due to divergence. Since
NRM is not a global search algorithm, there is the problem that it may converge to a local
solution, depending on the initialization. PSO is considered to be a heuristic method that
has the ability to search the entire area within the allowable range of variations; it can also
be utilized for BO-TMA. This method generates a solution with convergence based on the
experience of each particle. Even if the measurement noise is large, the target state vector
can be estimated within the allowable range. However, it is not guaranteed to produce
optimal results.

The hybrid optimization algorithm proposed in this paper, i.e., Newton–Raphson
particle swarm optimization (NRPSO), combines the advantages of NRM and PSO in BO-
TMA. Interest in hybrid optimization methods has increased over the past few decades [14–
17,22–24]. Early hybridization was mainly done between several metaheuristic algorithms.
In recent years, research on systems of cooperation between metaheuristic and deterministic
methods has increased. Hybrid optimization algorithms typically use heuristic methods
to generate good candidates for the optimal solution, and then automatically switch
to deterministic methods to converge to the optimal solution. However, deterministic
methods performed on noisy measurements still have the potential to diverge. Therefore,
NRPSO is conducted in a parallel manner for NRM and PSO algorithms. The process
of performing the NRPSO method is similar to the conventional PSO method, but the
difference is that the weighting factor by the NRM method is added to the state change
rate when determining the particles of the next generation in the PSO method. The process
of NRPSO, in which Equation (6) for NRM and Equation (9) for PSO are synthesized, is
expressed as follows:
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X̂l+1
i = X̂l

i + nrpso_vl+1
i , (10)

nrpso_vl+1
i = vl+1

i + cnR
(

NRMl+1
i

)
, (11)

NRMl+1
i =

( ∂M
∂X̂l

i

)−1

M

, (12)

where NRMl+1
i denotes the calculated amount of change of the state vector using NRM at

the i-th particle X̂l
i for the l-th iteration, and M is defined in Equation (7). The acceleration

constant cn is an NRM coefficient and was set to 0.1, which is smaller than the social
coefficient to ensure convergence of particles. As can be seen from the equation, NRPSO
works by adding the direction of descent, which is based on the local curvature of the cost
function, to the search for the individual cognitive and social coefficients at each iteration.

The proposed NRPSO solves the problem based on the experience of all particles as
the number of iterations increases, similar to PSO. At the same time, each particle utilizes
the local curvature of the cost function for convergence, as shown in the case of NRM.
However, NRPSO reveals divergence in estimating the target state sometimes, unlike PSO.
This divergence is due to the role of NRM in NRPSO, which involves the calculation of the
second derivative of the cost function. Therefore, NRPSO requires an adjustment between
NRM and PSO by utilizing the determinant of the Hessian matrix. In the NRM method,
when the value of this determinant is close to zero, it is difficult to find an optimal solution,
and the case is designated to be “ill-conditioned” [25]. That is, for the “ill-conditioned”
case where the result of NRM may be unstable, only PSO is performed. Alternatively, for
the “well-conditioned” case, PSO and NRM are performed together, and stable results
are expected. Therefore, Equation (11) of the NRPSO algorithm is changed as follows to
coordinate the two methods.

nrpso_vl+1
i =


vl+1

i + cnR
(

NRMl+1
i

)
, i f

∣∣∣∣ ∂M
∂X̂l

i

∣∣∣∣ ≥ Nthr

vl+1
i , i f

∣∣∣∣ ∂M
∂X̂l

i

∣∣∣∣ < Nthr

, (13)

where Nthr represents the constant threshold for determining the “ill-conditioned” case.
The result of NRPSO becomes similar to that of PSO as Nthr increases, and becomes similar
to that of NRM as Nthr decreases. The value of Nthr can be determined according to
the problem to be solved. For the BO-TMA problem in this paper, the value of 10−4

was assigned empirically through many trial runs. In order to compare the estimation
performance of the hybrid model with the models performed individually, the other
parameters of NRPSO were set to be equal to those of NRM and PSO. The BO-TMA result
obtained by NRPSO with the selected Nthr value is presented in Section 4, and it can be
confirmed that the advantages of the NRM method and the PSO method are well combined.

4. Simulation Results

In this section, we compare the performance of NRM, PSO, and the proposed NRPSO
for the aforementioned scenario. The bearing measurements in Section 2 and the three
batch estimation algorithms for performing BO-TMA were simulated using the MATLAB
code. The initial states of the three targets were selected within the allowable range of
the values, as shown in Table 2. The BO-TMA results relative to the measurement noise
and the number of measurements were derived for each target. The standard deviation of
the measurement noise considered here was selected from 0.1◦ to 1.9◦ with increments of
0.2◦, and the number of measurements was selected from 100 to 600 with increments of
100. Finally, all results for the three targets were assessed as BO-TMA performance over



Sensors 2021, 21, 2033 9 of 14

1000 Monte Carlo simulation runs. Equations for evaluating the BO-TMA performance are
defined as follows:

Position RMSE =

√√√√∑
{
(pxs − p̂xs)

2 +
(

pys − p̂ys
)2
}

N
, (14)

Velocity RMSE =

√√√√∑
{
(vxs − v̂xs)

2 +
(
vys − v̂ys

)2
}

N
, (15)

Percent o f divergence =
number o f divergence

Total number o f Monte Carlo simulation runs
× 100, (16)

where
[
p̂xs, p̂ys, v̂xs, v̂ys

]
is the estimated initial state vector of BO-TMA, and N is the

number of Monte Carlo simulation runs that did not diverge. The BO-TMA performance
using the three methods was evaluated by the root mean square error (RMSE) values of
the position and velocity between the true target state and the estimated state. Divergence
occurred when the estimated position was more than 20 km away from the observer.

In BO-TMA, even if the target bearings of the scenario are the same, the error of the
initial state vector between the estimated target and the true target may be small or large
as a result of the included random measurement noise. Evaluating the performance of
the BO-TMA from a single run result is not suitable because the error of the initial state
vector fluctuates significantly as the standard deviation of the measurement noise increases.
Therefore, in this paper, a Monte Carlo simulation was conducted to ensure statistically
reliable BO-TMA performance from measurements including random noise [2–4,7,9–11,13].
Figure 3 shows the convergence of the position RMSE of Target 2 obtained by NRPSO
using 600 bearing measurements corrupted by the measurement noise with a standard
deviation of 1.9◦. As shown in Figure 3, cases including fluctuations in the RMSE with
a small number of runs (i.e., <100 runs) were avoided; thus, a Monte Carlo simulation
with 1000 runs was performed for each BO-TMA. The number of simulation runs was
determined by examining the variation of the position RMSE with respect to the number
of runs.
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Figure 3. Convergence of the position root mean square error (RMSE) of Target 2 obtained by Newton–Raphson particle
swarm optimization (NRPSO), in which 600 bearing measurements corrupted by measurement noise with a standard
deviation of 1.9◦ were used.

The BO-TMA results showed similar trends for the three targets with various standard
deviations of measurement noise with 600 measurements. These results are shown in
Figure 4. The NRM method showed accurate estimates with small standard deviations
without divergence, but it generated the “ill-conditioned” Hessian matrix as the standard
deviation increased, indicating that the position RMSE of the estimate increased. In the case
of Target 2, the rate of divergence rapidly increased by up to about 40% when the standard
deviation of the measurement noise was 1.9◦. Here, divergence refers to a case where the
target state cannot be found due to inaccurate initialization. In this paper, divergence was
classified as a case where the estimated distance to the target from the observer was more
than 20 km. The PSO method showed a larger RMSE than the NRM method for cases
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where the measurement noise had a small standard deviation, but the increase in the RMSE
in accordance with the increase of the standard deviation remained small. Consequently,
for cases where the measurement noise had a large standard deviation, PSO generated
the target state estimates with a smaller RMSE than the NRM. In particular, PSO did not
show divergence for all standard deviations, which is important for checking the reliability
of the estimation results. These results are caused by the fact that NRM applies the local
curvature of the cost function and generates the solution outside the allowable range of
state variations specified in Table 1 as the number of iterations increases, whereas PSO only
considers the solution inside the search area. The results of the NRPSO method showed a
good combination of the advantages of the deterministic and heuristic methods. It was
confirmed that NRPSO tended to generate the smaller RMSE of the two methods for all
standard deviations, and it did not show divergence.
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Figure 4. Bearing-only target motion analysis (BO-TMA) results versus measurement noise standard deviation for (a) Target
1, (b) Target 2, and (c) Target 3. The results of the Newton–Raphson method (NRM), particle swarm optimization (PSO),
and NRPSO are represented by magenta, green, and black, respectively. The left column indicates the position RMSE, the
center column shows the velocity RMSE, and the right column shows the rate of divergence.

The BO-TMA performance was also confirmed using various numbers of measure-
ments according to the sampling period with a measurement noise of σ = 0.5◦. These
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results are shown in Figure 5. The measurement noise was assumed to be a zero mean Gaus-
sian noise. Therefore, the case with fewer measurements is closer to the “ill-conditioned”
case, and the case with a larger number of measurements is closer to the “well-conditioned”
case. It was confirmed that NRPSO selected the result with the smaller error between
the two methods for all of the cases with different numbers of measurements, and it did
not show divergence. As a result, it was confirmed that NRPSO worked robustly for
various conditions.
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Figure 5. BO-TMA results versus number of measurements when the standard deviation of the measurement noise was
0.5◦ for (a) Target 1, (b) Target 2, and (c) Target 3. The results of NRM, PSO, and NRPSO are represented by magenta, green,
and black, respectively. The left column shows the position RMSE, the center column shows the velocity RMSE, and the
right column shows the rate of divergence.

In this paper, a hybrid method was proposed to derive a reliable initial target position
and velocity from noise-corrupted bearing measurements. In the previously presented
results, the BO-TMA results of NRPSO showed better estimation performance than the case
where NRM and PSO were utilized individually. In general, the amount of computational
power and the performance of the optimization method are proportional. NRPSO requires
a large amount of computational power because it is performed by combining the NRM
method and the PSO method. Therefore, additional simulations were performed to com-
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pare the performance of NRPSO and PSO at a similar computational power. As the number
of particles in the PSO method increases, more computational power is required, and more
precise estimation can be obtained. To increase the amount of computational power of
PSO, the number of particles, Np, was increased from 400 to 1500 so that the CPU time
for each run in the PSO process was similar to that of the NRPSO. The results are listed in
Figure 6. The results of PSO with Np = 1500 showed smaller RMSEs for smaller measure-
ment noise standard deviations than the results of PSO with Np = 400; however, it showed
increased RMSEs for larger standard deviations. Therefore, the estimation performance
of PSO became similar to NRM as the number of particles increases. For all the standard
deviations in consideration, the RMSEs of NRPSO were smaller than those of PSO with
Np = 1500. In conclusion, even with a similar amount of computational power, NRPSO
still shows better estimation performance than PSO.
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Figure 6. BO-TMA results versus measurement noise standard deviation for (a) Target 1, (b) Target
2, and (c) Target 3. The results of PSO (Np = 400), PSO (Np = 1500), and NRPSO (Np = 400) are
represented by green, blue, and black, respectively. The left column indicates the position RMSE, and
the right column shows the velocity RMSE.
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5. Summary and Conclusions

In this paper, the BO-TMA results of NRM and PSO were compared for various
conditions. For the BO-TMA problem, appropriate values of input parameters of the
PSO method were determined through a series of simulation studies. The convergence
rate of the PSO method was shown to be slow, although more robust estimation results
were obtained.

The NRM method performed accurately when the standard deviation of the measure-
ment noise was small or when the number of the measurements was large. However, in
the opposite cases, the heuristic method (i.e., PSO) produced more accurate estimation
results than NRM. Moreover, divergence, which may be caused by inaccurate initialization
of NRM, did not occur with PSO. After analyzing the BO-TMA results of NRM and PSO,
they were transformed into a hybrid form called NRPSO that combined the advantages of
the two methods. Through a series of simulation studies, it was found that NRPSO can
be used to estimate the initial target states under various conditions with accuracy and
robustness, without the divergence that often occurs in NRM.

It should be noted that the computational load was not considered in this paper. How-
ever, NRPSO requires significant computation power in order to run many iterations with a
sufficiently large number of particles to perform accurate target localization. Therefore, suf-
ficient computation power is required for practical scenarios that demand fast computation.
If this is not possible, an appropriate compromise can be found between the computation
burden and accuracy, or NRPSO can be applied to only part of the overall iteration process.
In order to effectively utilize the NRPSO method proposed in this paper, a study on the
degradation of the estimation performance due to the reduction in the computational load
is required, and a comparison with various batch estimation methods is needed to verify
the NRPSO performance.
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