Validity of a Novel Research-Grade Physical Activity and Sleep Monitor for Continuous Remote Patient Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Study Protocol under Free-Living Conditions
2.4. Study Protocol under Supervised-Protocol Conditions
2.5. Data Reduction
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ENMO | Euclidean Norm Minus One |
FL | Free-living |
SP | Supervised Protocol |
TST | Total Sleep Time |
IMU | Inertial Measurement Unit |
SB | Sedentary Behaviour |
PA | Physical Activity |
PSG | Polysomnography |
References
- Vegesna, A.; Tran, M.; Angelaccio, M.; Arcona, S. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. Telemed. e-Health 2017, 23, 3–17. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Davies, E.V.; Harlow, E.R.; Hsu, J.J.; Knighton, S.C.; Walker, T.A.; Voos, J.E.; Drummond, C.K. Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital Infrastructure for Remote Patient Monitoring and Virtual Assessments. Front. Digit. Health 2020, 2. [Google Scholar] [CrossRef]
- Malasinghe, L.P.; Ramzan, N.; Dahal, K. Remote patient monitoring: A comprehensive study. J. Ambient Intell. Hum. Comput. 2019, 10, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Steinhubl, S.R.; Muse, E.D.; Topol, E.J. Can Mobile Health Technologies Transform Health Care? JAMA 2013, 310, 2395–2396. [Google Scholar] [CrossRef]
- Steinhubl, S.R.; Muse, E.D.; Topol, E.J. The emerging field of mobile health. Sci. Transl. Med. 2015, 7, 283rv3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamine, S.; Gerth-Guyette, E.; Faulx, D.; Green, B.B.; Ginsburg, A.S. Impact of mHealth Chronic Disease Management on Treatment Adherence and Patient Outcomes: A Systematic Review. J. Med. Internet Res. 2015, 17, e52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siwicki, B. A Guide to Connected Health Device and Remote Patient Monitoring Vendors. Healthcare IT News, 6 May 2020. Available online: https://www.healthcareitnews.com/news/guide-connected-health-device-and-remote-patient-monitoring-vendors(accessed on 3 August 2020).
- Smith, A.C.; Thomas, E.; Snoswell, C.L.; Haydon, H.; Mehrotra, A.; Clemensen, J.; Caffery, L.J. Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). J. Telemed. Telecare 2020, 26, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Wosik, J.; Fudim, M.; Cameron, B.; Gellad, Z.F.; Cho, A.; Phinney, D.; Curtis, S.; Roman, M.; Poon, E.G.; Ferranti, J.; et al. Telehealth transformation: COVID-19 and the rise of virtual care. J. Am. Med. Inform. Assoc. 2020, 27, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Free, C.; Phillips, G.; Watson, L.; Galli, L.; Felix, L.; Edwards, P.; Patel, V.; Haines, A. The Effectiveness of Mobile-Health Technologies to Improve Health Care Service Delivery Processes: A Systematic Review and Meta-Analysis. PLoS Med. 2013, 10, e1001363. [Google Scholar] [CrossRef] [PubMed]
- Wijesooriya, N.R.; Mishra, V.; Brand, P.L.; Rubin, B.K. COVID-19 and telehealth, education, and research adaptations. Paediatr. Respir. Rev. 2020, 35, 38–42. [Google Scholar] [CrossRef]
- Gill, G. Wearables for Remote Patient Monitoring: How Do We Get There? 2020. Available online: https://digitalhealthbuzz.com/wearables-for-remote-patient-monitoring-how-do-we-get-there/ (accessed on 30 December 2020).
- Migueles, J.H.; Cadenas-Sanchez, C.; Rowlands, A.V.; Henriksson, P.; Shiroma, E.J.; Acosta, F.M.; Rodriguez-Ayllon, M.; Esteban-Cornejo, I.; Plaza-Florido, A.; Gil-Cosano, J.J.; et al. Comparability of accelerometer signal aggregation metrics across placements and dominant wrist cut points for the assessment of physical activity in adults. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.-M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Czeisler, C.A. Impact of Sleepiness and Sleep Deficiency on Public Health—Utility of Biomarkers. J. Clin. Sleep Med. 2011, 7, S6–S8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiner, M.; Niermann, C.; Jekauc, D.; Woll, A. Long-term health benefits of physical activity—A systematic review of longitudinal studies. BMC Public Health 2013, 13, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. [Google Scholar] [CrossRef]
- DeGroote, L.; Hamerlinck, G.; Poels, K.; Maher, C.; Crombez, G.; De Bourdeaudhuij, I.; VandenDriessche, A.; Curtis, R.G.; Desmet, A. Low-Cost Consumer-Based Trackers to Measure Physical Activity and Sleep Duration Among Adults in Free-Living Conditions: Validation Study. JMIR Mhealth Uhealth 2020. [Google Scholar] [CrossRef] [PubMed]
- Dzierzewski, J.M.; Buman, M.P.; Giacobbi, P.R.; Roberts, B.L.; Aiken-Morgan, A.T.; Marsiske, M.; McCrae, C.S. Exercise and sleep in community-dwelling older adults: Evidence for a reciprocal relationship. J. Sleep Res. 2014, 23, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Mallinson, D.C.; Kamenetsky, M.E.; Hagen, E.W.; Peppard, P.E. Subjective sleep measurement: Comparing sleep diary to questionnaire. Nat. Sci. Sleep 2019, 11, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buman, M.P.; King, A.C. Exercise as a Treatment to Enhance Sleep. Am. J. Lifestyle Med. 2010, 4, 500–514. [Google Scholar] [CrossRef]
- Buman, M.P.; Winkler, E.A.H.; Kurka, J.M.; Hekler, E.B.; Baldwin, C.M.; Owen, N.; Ainsworth, B.E.; Healy, G.N.; Gardiner, P.A. Reallocating Time to Sleep, Sedentary Behaviors, or Active Behaviors: Associations With Cardiovascular Disease Risk Biomarkers, NHANES 2005–2006. Am. J. Epidemiol. 2014, 179, 323–334. [Google Scholar] [CrossRef]
- Chastin, S.F.M.; Palarea-Albaladejo, J.; Dontje, M.L.; Skelton, D.A. Combined Effects of Time Spent in Physical Activity, Sedentary Behaviors and Sleep on Obesity and Cardio-Metabolic Health Markers: A Novel Compositional Data Analysis Approach. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Cellini, N.; McDevitt, E.A.; Mednick, S.C.; Buman, M.P. Free-living cross-comparison of two wearable monitors for sleep and physical activity in healthy young adults. Physiol. Behav. 2016, 157, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lymberis, A.; de Rossi, D. Wearable eHealth Systems for Personalised Health Management: State of the Art and Future Challenges; IOS Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age Group Comparability of Raw Accelerometer Output from Wrist- and Hip-Worn Monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.; Hansen, B.H.; Van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand. J. Med. Sci. Sports 2017, 27, 1814–1823. [Google Scholar] [CrossRef]
- Aguilar-Farías, N.; Brown, W.J.; Peeters, G. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J. Sci. Med. Sport 2014, 17, 293–299. [Google Scholar] [CrossRef]
- Van Hees, V.T.; Sabia, S.; Anderson, K.N.; Denton, S.J.; Oliver, J.; Catt, M.; Abell, J.G.; Kivimäki, M.; Trenell, M.I.; Singh-Manoux, A. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, A.; Sharkey, K.M.; Carskadon, M.A. Activity-Based Sleep-Wake Identification: An Empirical Test of Methodological Issues. Sleep 1994, 17, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, J.M.; Strecker, R.E.; Bianchi, M.T. Recent Developments in Home Sleep-Monitoring Devices. ISRN Neurol. 2012, 2012, e768794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp, K.R. Physical activity and physical activity induced energy expenditure in humans: Measurement, determinants, and effects. Front. Physiol. 2013, 4, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melanson, E.L.; Freedson, P.S.; Blair, S. Physical activity assessment: A review of methods. Crit. Rev. Food Sci. Nutr. 1996, 36, 385–396. [Google Scholar] [CrossRef]
- Schoeller, D.A.; Jefford, G. Determinants of the energy costs of light activities: Inferences for interpreting doubly labeled water data. Int. J. Obes. 2002, 26. [Google Scholar] [CrossRef] [Green Version]
- Neil-Sztramko, S.E.; Rafn, B.S.; Gotay, C.C.; Campbell, K.L. Determining activity count cut-points for measurement of physical activity using the Actiwatch2 accelerometer. Physiol. Behav. 2017, 173, 95–100. [Google Scholar] [CrossRef]
- Lambiase, M.J.; Gabriel, K.P.; Kuller, L.H.; Matthews, K.A. Temporal Relationships between Physical Activity and Sleep in Older Women. Med. Sci. Sports Exerc. 2013, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambiase, M.J.; Gabriel, K.P.; Chang, Y.-F.; Kuller, L.H.; Matthews, K.A. Utility of Actiwatch Sleep Monitor to Assess Waking Movement Behavior in Older Women. Med. Sci. Sports Exerc. 2014, 46, 2301–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.H.; Suen, L.K.P. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition. Sleep Breath. 2017, 21, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Quante, M.; Kaplan, E.R.; Rueschman, M.; Cailler, M.; Buxton, O.M.; Redline, S. Practical considerations in using accelerometers to assess physical activity, sedentary behavior, and sleep. Sleep Health 2015, 1, 275–284. [Google Scholar] [CrossRef]
- Shin, M.; Swan, P.; Chow, C.M. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions. Sleep Sci. 2015, 8, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Rowlands, A.V.; Murray, P.; Hurst, T.L. Physical Activity Classification Using the GENEA Wrist-Worn Accelerometer. Med. Sci. Sports Exerc. 2012, 44, 742–748. [Google Scholar] [CrossRef]
- Lee, P.; Tse, C. Calibration of wrist-worn ActiWatch 2 and ActiGraph wGT3X for assessment of physical activity in young adults. Gait Posture 2019, 68, 141–149. [Google Scholar] [CrossRef]
- Meltzer, L.J.; Walsh, C.M.; Traylor, J.; Westin, A.M.L. Direct comparison of two new actigraphs and pol-ysomnography in children and adolescents. Sleep 2012, 35, 159–166. [Google Scholar]
- Leinonen, A.-M.; Ahola, R.; Kulmala, J.; Hakonen, H.; Vähä-Ypyä, H.; Herzig, K.-H.; Auvinen, J.; Keinänen-Kiukaanniemi, S.; Sievänen, H.; Tammelin, T.H.; et al. Measuring Physical Activity in Free-Living Conditions—Comparison of Three Accelerometry-Based Methods. Front. Physiol. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of accelerometer methods for physical activity research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, J.; Zeitzer, J.M.; Lu, H.; Mignot, E. Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device compared to an actigraphy device. Sleep Sci. Pract. 2018, 2, 11. [Google Scholar] [CrossRef]
- Esliger, D.W.; Rowlands, A.V.; Hurst, T.L.; Catt, M.; Murray, P.; Eston, R.G. Validation of the GENEA Accelerometer. Med. Sci. Sports Exerc. 2011, 43, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- Marschollek, M.; Gietzelt, M.; Schulze, M.; Kohlmann, M.; Song, B.; Wolf, K.-H. Wearable Sensors in Healthcare and Sensor-Enhanced Health Information Systems: All Our Tomorrows? Healthc. Inform. Res. 2012, 18, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Baandrup, L.; Fasmer, O.B.; Glenthøj, B.Y.; Jennum, P.J. Circadian rest-activity rhythms during benzodiazepine tapering covered by melatonin versus placebo add-on: Data derived from a randomized clinical trial. BMC Psychiatry 2016, 16, 348. [Google Scholar] [CrossRef] [Green Version]
- Gresham, G.; Hendifar, A.E.; Spiegel, B.; Neeman, E.; Tuli, R.; Rimel, B.J.; Figlin, R.A.; Meinert, C.L.; Piantadosi, S.; Shinde, A.M. Wearable activity monitors to assess performance status and predict clinical outcomes in advanced cancer patients. NPJ Digit. Med. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Sazonov, E.S. Highly Accurate Recognition of Human Postures and Activities through Classification with Rejection. IEEE J. Biomed. Health Inform. 2014, 18, 309–315. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Tian, Y.; Zhou, T.-S.; Li, J.-S. An Automatic User-adapted Physical Activity Classification Method Using Smartphones. IEEE Trans. Biomed. Eng. 2016, 64, 706–714. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Galland, B.; Taylor, R.; Meredith-Jones, K. ActiGraph GT3X+ and Actical Wrist and Hip Worn Accelerometers for Sleep and Wake Indices in Young Children Using an Automated Algorithm: Validation With Polysomnography. Front. Psychiatry 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.; McDevitt, B.; Akhtar, N.; Doherty, R.; Scott, W.N.; Connolly, J. Preliminary investigations of the agreement between two wearable accelerometers for use in clinical studies. In Proceedings of the 31st Irish Signals and Systems Conference (ISSC 2020), Letterkenny, Ireland, 11–12 June 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Philips Healthcare. Actiwatch 2 Activity Monitor. 2020. Available online: https://www.usa.philips.com/healthcare/product/HC1044809/actiwatch-2-activity-monitor (accessed on 3 December 2020).
- Born, A. Verisense IMU Supports Clinical Trials as CE Certified Class 1 Medical Device. Electronics360. 2020. Available online: https://electronics360.globalspec.com/article/16100/verisense-imu-supports-clinical-trials-as-ce-certified-class-1-medical-device?from_rss=1 (accessed on 3 December 2020).
- Shimmer Research Ltd. IMU Specifications. 2020. Available online: https://static1.squarespace.com/static/5da5da507123036dd47fac05/t/5df8f77d2969387e13f7918a/1576597398078/Spec+sheet.pdf (accessed on 30 December 2020).
- SleepFoundation.org, “Sample Sleep Log,” SleepFoundation.org. 2020. Available online: https://www.sleepfoundation.org/sample-sleep-log (accessed on 30 December 2020).
- Cambridge Biomedical Research Centre. DAPA Measurement Toolkit. 2020. Available online: https://dapa-toolkit.mrc.ac.uk/physical-activity/subjective-methods/diaries-and-logs (accessed on 30 December 2020).
- Matthews, C.E.; Ainsworth, B.E.; Hanby, C.; Pate, R.R.; Addy, C.; Freedson, P.S.; Jones, D.A.; Macera, C.A. Development and testing of a short physical activity recall questionnaire. Med. Sci. Sports Exerc. 2005, 37, 986–994. [Google Scholar] [PubMed]
- Van Hees, V.T.; Sabia, S.; Jones, S.E.; Wood, A.R.; Anderson, K.N.; Kivimäki, M.; Frayling, T.M.; Pack, A.I.; Bucan, M.; Trenell, M.I.; et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 2018, 8, 12975. [Google Scholar] [CrossRef]
- Shimmer Research Ltd. About, Verisense. 26 June 2019. Available online: https://www.verisense.net/about (accessed on 5 January 2020).
- Philips Healthcare. Actiware; Philips Healthcare: Andover, MA, USA, 2020. [Google Scholar]
- Welk, G.J. Principles of Design and Analyses for the Calibration of Accelerometry-Based Activity Monitors. Med. Sci. Sports Exerc. 2005, 37, S501. [Google Scholar] [CrossRef]
- Bassett, D.R.; Freedson, P.; Kozey, S. Medical Hazards of Prolonged Sitting. Exerc. Sport Sci. Rev. 2010, 38, 101–102. [Google Scholar] [CrossRef]
- Van Hees, V.T.; Gorzelniak, L.; León, E.C.D.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; Da Silva, I.C.M.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage, S. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. J. Appl. Physiol. 2014, 117, 738–744. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. The R Project for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.; Van Hees, V.T. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Sabia, S.; Van Hees, V.T.; Shipley, M.J.; Trenell, M.I.; Hagger-Johnson, G.; Elbaz, A.; Kivimaki, M.; Singh-Manoux, A. Association Between Questionnaire- and Accelerometer-Assessed Physical Activity: The Role of Sociodemographic Factors. Am. J. Epidemiol. 2014, 179, 781–790. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 26.0; IBM Corp: Armonk, NY, USA, 2019. [Google Scholar]
- Lehman, A. JMP for Basic Univariate and Multivariate Statistics: A Step-by-Step Guide; SAS Press: Cary, NC, USA, 2005. [Google Scholar]
- Swinscow, T.D.V. “Statistics at Square One,” The BMJ | The BMJ: Leading General Medical Journal. Research. Education. Comment. 1997. Available online: https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one (accessed on 30 December 2020).
- Mukaka, M.M. A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Šimundić, A.-M. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC 2009, 19, 203–211. [Google Scholar]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Chin, S. Open-Source Initiative Paving Way for Wearable Sensor Standards. FierceElectronics. 16 September 2019. Available online: https://www.fierceelectronics.com/sensors/open-source-initiative-paving-way-for-wearable-sensor-standards (accessed on 8 October 2020).
- Spinner, J. Wearables Group Seeks Collaboration on Decentralized Tech. 11 May 2020. Available online: https://www.outsourcing-pharma.com/Article/2020/11/05/Wearables-group-seeks-collaboration-on-decentralized-tech (accessed on 30 December 2020).
- OWEAR. Open Source Algorithms & Data Sets. Wearable Technology Software Database. Available online: https://www.owear.org (accessed on 30 December 2020).
- Welch, W.A.; Bassett, D.R.; Thompson, D.L.; Freedson, P.S.; Staudenmayer, J.W.; John, D.; Steeves, J.A.; Conger, S.A.; Ceaser, T.; Howe, C.A.; et al. Classification Accuracy of the Wrist-Worn GENEA Accelerometer. Med. Sci. Sports Exerc. 2013, 45, 2012–2019. [Google Scholar] [CrossRef] [Green Version]
- Loprinzi, P.D.; Smith, B. Comparison between Wrist-Worn and Waist-Worn Accelerometry. J. Phys. Act. Health 2017, 14, 539–545. [Google Scholar] [CrossRef]
- Soaz, C.; Diepold, K. Step Detection and Parameterization for Gait Assessment Using a Single Waist-Worn Accelerometer. IEEE Trans. Biomed. Eng. 2016, 63, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Wolff-Hughes, D.L.; Bassett, D.R.; Fitzhugh, E.C. Population-Referenced Percentiles for Waist-Worn Accelerometer-Derived Total Activity Counts in U.S. Youth: 2003–2006 NHANES. PLoS ONE 2014, 9, e115915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Health Statistics (U.S.) (Ed.) National Health and Nutrition Examination Survey. National Youth Fitness Survey Plan, Operations, and Analysis, 2012; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2014.
- Swartz, A.M.; Strath, S.J.; Bassett, D.R.; O’Brien, W.L.; King, G.A.; Ainsworth, B.E. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med. Sci. Sports Exerc. 2000, 32, S450–S456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Activity | Time (min) |
---|---|
Sit | 2 |
3.5 km/h walk on treadmill | 2 |
4.5 km/h walk on treadmill | 2 |
5.5 km/h walk on treadmill | 2 |
7.5 km/h walk on treadmill | 2 |
11.5 km/h walk on treadmill | 2 |
Walking on flat surface at regular pace | 6 |
200 m slow walk on flat surface | |
200 m normal walk on flat surface | |
200 m fast walk on flat surface | |
200 m jog walk on flat surface | |
Ascend 15 steps | |
Descend 15 steps |
Overall Accuracy % * | Sensitivity % * | Specificity % * | Spearman’s * | Range * | ||
---|---|---|---|---|---|---|
Sedentary | FL | 92.9 | 93.2 | 90.9 | 0.72 ± 0.05 | 0.65–0.83 |
SP | 56.0 | 35.6 | 96.4 | 0.36 ± 0.016 | 0.11–0.63 | |
Light | FL | 90.4 | 51.3 | 93.9 | 0.42 ± 0.06 | 0.27–0.53 |
SP | 65.2 | 14.4 | 79.9 | −0.04 ± 0.10 | −0.27–0.12 | |
MVPA | FL | 95.8 | 84.8 | 96.0 | 0.52 ± 0.09 | 0.35–0.78 |
SP | 65.0 | 95.2 | 63.1 | 0.49 ± 0.13 | 0.16–0.60 |
Sleep Time | Participant Diary | Actiwatch 2 | Verisense—Guided | Verisense—Unguided |
---|---|---|---|---|
Participant Diary | - | 0.53 | 0.79 | 0.46 |
Actiwatch 2 | 0.53 | - | 0.66 | 0.43 |
Verisense—Guided | 0.79 | 0.66 | - | 0.67 |
Verisense—Unguided | 0.46 | 0.43 | 0.67 | - |
Wake Time | Participant Diary | Actiwatch 2 | Verisense—Guided | Verisense—Unguided |
---|---|---|---|---|
Participant Diary | - | 0.89 | 0.90 | 0.80 |
Actiwatch 2 | 0.89 | - | 0.83 | 0.80 |
Verisense—Guided | 0.90 | 0.83 | - | 0.82 |
Verisense—Unguided | 0.80 | 0.80 | 0.82 | - |
Total Sleep Time | Participant Diary | Actiwatch 2 | Verisense—Guided | Verisense—Unguided |
---|---|---|---|---|
Participant Diary | - | 0.46 | 0.75 | 0.44 |
Actiwatch 2 | 0.46 | - | 0.54 | 0.31 |
Verisense—Guided | 0.75 | 0.54 | - | 0.63 |
Verisense—Unguided | 0.44 | 0.31 | 0.63 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDevitt, B.; Moore, L.; Akhtar, N.; Connolly, J.; Doherty, R.; Scott, W. Validity of a Novel Research-Grade Physical Activity and Sleep Monitor for Continuous Remote Patient Monitoring. Sensors 2021, 21, 2034. https://doi.org/10.3390/s21062034
McDevitt B, Moore L, Akhtar N, Connolly J, Doherty R, Scott W. Validity of a Novel Research-Grade Physical Activity and Sleep Monitor for Continuous Remote Patient Monitoring. Sensors. 2021; 21(6):2034. https://doi.org/10.3390/s21062034
Chicago/Turabian StyleMcDevitt, Bríd, Lisa Moore, Nishat Akhtar, James Connolly, Rónán Doherty, and William Scott. 2021. "Validity of a Novel Research-Grade Physical Activity and Sleep Monitor for Continuous Remote Patient Monitoring" Sensors 21, no. 6: 2034. https://doi.org/10.3390/s21062034
APA StyleMcDevitt, B., Moore, L., Akhtar, N., Connolly, J., Doherty, R., & Scott, W. (2021). Validity of a Novel Research-Grade Physical Activity and Sleep Monitor for Continuous Remote Patient Monitoring. Sensors, 21(6), 2034. https://doi.org/10.3390/s21062034