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Abstract: Autonomous systems need to localize and track surrounding objects in 3D space for safe
motion planning. As a result, 3D multi-object tracking (MOT) plays a vital role in autonomous
navigation. Most MOT methods use a tracking-by-detection pipeline, which includes both the object
detection and data association tasks. However, many approaches detect objects in 2D RGB sequences
for tracking, which lacks reliability when localizing objects in 3D space. Furthermore, it is still
challenging to learn discriminative features for temporally consistent detection in different frames,
and the affinity matrix is typically learned from independent object features without considering
the feature interaction between detected objects in the different frames. To settle these problems, we
first employ a joint feature extractor to fuse the appearance feature and the motion feature captured
from 2D RGB images and 3D point clouds, and then we propose a novel convolutional operation,
named RelationConv, to better exploit the correlation between each pair of objects in the adjacent
frames and learn a deep affinity matrix for further data association. We finally provide extensive
evaluation to reveal that our proposed model achieves state-of-the-art performance on the KITTI
tracking benchmark.

Keywords: 3D multi-object tracking; sensor fusion; deep affinity; relation learning; neural network

1. Introduction

Multi-object tracking in a 3D environment (3D MOT) plays a crucial role in the
environmental perception of autonomous systems [1–4]. Typically, the 3D MOT task first
localizes all the surrounding 3D objects in a sequence, and then assigns them the consistent
identity numbers (IDs). As a result, the same objects in the sequence should be given
the same IDs, which is then used to predict the trajectories of the autonomous systems
surrounding objects and can be used to produce safe path planning for autonomous
navigation (i.e., obstacle avoidance). In recent years, 2D multi-object tracking has made
great progress, especially in the computer vision domain [5–9]. However, camera sensors
are unlikely to provide depth information, unless relatively computationally expensive
methods such as stereo-vision are used. Furthermore, cameras are typically quite sensitive
to lighting and environmental conditions (e.g., overexposure and day/night cycles). As a
result, some researchers draw attention to 3D MOT using point cloud data, especially when
PointNets [10,11] allow directly dealing with the irregular point clouds in an efficient way.
AB3DMOT [4] directly applies the Kalman filter [12] and Hungarian algorithm [13] over
the obtained 3D detections to achieves real-time performance. However, the point clouds
are incapable of offering rich texture information, which makes the Lidar-only detectors
struggle to capture high-resolution features from the point clouds, especially for the objects
in the long-distance that are likely to just contain few points. Besides, the hand-crafted
approaches Kalman filter [12] and Hungarian algorithm [13] only include low-level state
features of the objects (e.g., location, velocity, and acceleration) for the state update and
data association, which are not robust compared to the deep learning methods that could
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extract the object states to the high-level features with contextual information for the
data association.

In order to improve the reliability and safety, recent tracking-by-detection
approaches [2,14,15] first combine the camera with the Lidar sensor that is capable of
offering precise spatial information. Leveraging the sensor fusion technology and redun-
dant information from multiple sensors, the performance of 3D MOT can be significantly
boosted. After that, a pairwise feature similarity between any two objects in the different
frames is learned from fused features. For example, GNN3DMOT [14] captures the 2D/3D
appearance features and 2D/3D motion features from the image and the point cloud data.
However, the model just projects the 3D detections in the point clouds to the images to
obtain the 2D information, which leads to lower precision and recall of the performance.
With regard to the data association problem, JRMOT [15] employs Joint Probabilistic Data
Association (JPDA) [16] to assign different IDs to the corresponding objects, which is un-
likely to include semantic features for the object states. mmMOT [2] learns an affinity matrix
from the 2D/3D appearance features directly for data association. However, the motion
features and occlusion conditions are not involved in the model.

It is easy to observe that capturing the discriminative feature, which is beneficial for
distinguishing different objects, is the critical process when learning the affinity matrix and
the following data association. One efficient method to solve this problem is to represent
the objects in the adjacent frames as a directed graph. Specifically, each object can be
treated as a node in the graph, and the relationship between an object pair is the edge
between related two nodes. As a result, the problem of exploiting the discriminative feature
between two objects is convert to learn the relations between the nodes in a directed graph.
Consequently, we propose a deep neural network by employing the graph neural network
into the 3D MOT to better exploit discriminative features.

Furthermore, considering the fact that the nodes in the graph are not structured and
unordered, we are unlikely to leverage the advantages of convolutional neural networks
(CNNs) to exploit the features. Prior works for both 2D MOT and 3D MOT [2,3,7,8,14] use
a multi-layer perceptron (MLP) to capture contextual features for each node. However, it is
not efficient to learn local features between nodes using a MLP, as the MLP operation is not
a spatial convolution. As a result, we introduce a novel convolutional operation, named
RelationConv, to better exploit relations between nodes in the graph.

In order to learn temporal-spatial features for the objects in the sequence, we also
propose a feature extractor that jointly learns appearance features and motion features
from both 2D images and 3D point clouds. Specifically, we use the off-the-shelf 2D image
and 3D point cloud detectors to extract respective features for the appearance features of
the objects. We learn the motion features by building a subnetwork that just takes the 2D
bounding boxes in the images as input. We finally fuse the appearance feature and motion
feature together for further data association. We summarize our contributions as below.

• We represent the detected objects as the nodes in a directed acyclic graph and propose
a graph neural network to exploit the discriminative features of the objects in the
adjacent frames for 3D MOT. Specifically, a directed graph is constructed by treating
each object feature as the node. Consequently, the Graph Neural Network (GNN)
technique could be employed to update node feature by combining the features of
other nodes.

• We propose a novel joint feature extractor to learn both 2D/3D appearance features
and 2D motion features from the images and the point clouds in the sequence. In par-
ticular, the 2D/3D appearance features are learned from the image and the point
cloud respectively by applying corresponding feature extractors. The motion model
uses the parameters of the 2D bounding box as the motion cues to capture the motion
features, which are finally aggregated with the 2D/3D appearance features to obtain
the joint feature.

• We propose the RelationConv operation to efficiently learn the correlation between
each pair of objects for the affinity matrix. The proposed operation is similar to the
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kernel of Convolutional Neural Network (CNN) that is used on the standard grid
data, but our operation is more flexible and can be applied over the irregular data
(e.g., graphs).

2. Related Work
2.1. 2D Multi-Object Tracking

MOT methods can be categorized into online and offline methods. Online method
envisage the prediction of data association between the detection in current frame and a few
past frames. Online are the standard for real-time applications. Early 2D trackers [17–21]
enhance the robustness and accuracy of tracking by exploiting and combining deep features
in the different layers. However, these integrated features from multiple layers are not
helpful when the targets are heavily occluded or even unseen in a certain frame. Several
2D MOT methods [22–24] employ correlation filters to improve the decision models. Deep
reinforcement learning is used in [25] to efficiently predict the location and the size for the
targets in the new frame.

On the other hand, offline methods aim at finding the solution as an optimization
problem for the whole data sequence. Some models [26,27] build a neural network with a
min-cost flow algorithm to optimize the total cost for the data association problem.

2.2. 3D Multi-Object Tracking

3D object detection has achieved great success in the recent years, especially given
PointNets [10,11] are capable of directly processing the unstructured point cloud data in
an efficient way. As a result, many researchers draw attention to 3D object tracking based
on accurate 3D detection results. Some approaches [28–30] first predict the 3D objects
from off-the-shelf 3D detectors, followed by a filter-based model to track the 3D objects
continuously. mmMOT [2] builds an end-to-end neural network to extract features for the
detected objects and data association. Specifically, it employs a 2D feature extractor [31]
and a 3D feature extractor [10] to capture the 2D and 3D features of objects in the adjacent
two frames. A sensor fusion module is then proposed to aggregate multimodality features,
which is then used for data association. However, the model only learns appearance
features for the detected objects, and motion features are not considered. Alternatively,
GNN3DMOT [14] proposes a joint feature extractor to learn discriminating appearance
features for the objects from the images and the point clouds, and then employs an LSTM
neural network to capture the motion information. Finally, a batch triplet loss is processed
for data association.

2.3. Joint Multi-Object Detection and Tracking

Joint multi-object detection and tracking method has become popular as it might lead
to a sub-optimal solution if the detection task and the tracking task are decoupled. Recent
methods [6,32] construct an end-to-end framework with a multi-task loss to directly localize
the objects and associate them with the objects in previous frame. Similarly, FaF [33] first
converts the sequential point clouds into stacked voxels, and then applies standard 3D
CNN over 3D space and time to predict 3D objects location, associate them in the multiple
frames, and forecast their motions.

2.4. Data Association in MOT

Data association is an essential problem in the MOT task to assign the same identity
for the same objects in the sequence. Traditionally, the Hungarian algorithm [13] minimizes
the total cost of the similarity for each pair of observations and hypotheses. Conversely,
JPDA [16] considers all the possible assignment hypotheses and uses a joint probabilistic
score to associate objects in the different frames. Modern works [26,34] first represent the
objects and corresponding relations as a directed acyclic graph. Each object is treated as a
node in the graph, and the relation between each pair of objects represents a graph edge.
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Successively, the data association problem can be solved as a linear programming problem
to find the optimal solution.

3. Model Structure

Our proposed 3D MOT network follows the tracking-by-detection paradigm. As shown
in Figure 1, the framework takes a sequence of images and related point clouds as input,
and consists of three modules: (a) a joint feature extractor to capture the appearance feature
and the motion feature from the 2D images and 3D point clouds, (b) a feature interaction
module that takes the joint feature as input and uses proposed RelationConv operation to
exploit the correlation between the pairs of objects in the different frames, (c) a confidence
estimator predicts if a certain detected object is a valid detection, and (d) a data association
module to compute the affinity matrix for associating the objects in the adjacent frames.
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Figure 1. Relation3DMOT architecture. The architecture consists of 4 main parts. The Joint Feature
extractor (a) takes the objects with 2D/3D bounding boxes as input, and then applies 2D feature
extractor VGG-16 and 3D feature extractor PointNet on the cropped image and point cloud, respec-
tively, to capture 2D/3D features, followed by a feature fusion module to obtain the appearance
feature for each detected object. The motion feature is extracted by applying the 2D bounding boxes
on a proposed MLP network. Note that the numbers in the brace indicate the number of the learning
convolutional parameters for the MLP network. Finally, we achieve fusion by concatenating the
appearance feature and the motion feature for each object. {B1, B2, . . . BN} denotes a list of the 2D
bounding boxes information. In the Feature Interaction module (b), we propose the novel RelationConv
operation to build a feature interaction module for discriminative feature extraction. The Confidence
Estimator (c) predicts whether the detected objects are true positive. In the Data Association mod-
ule (d), we finally learn an affinity matrix and predict several binary scores to optimize the data
association problem.

3.1. Problem Statement

As an online 3D MOT method, our model performs objects association in every
two consecutive frames from a given sequence. Assume that a new identity number
will be assigned if an object reappears in the frame due to the occlusion or misdetection
conditions. Consequently, our model focuses on correlation learning without considering
the re-establishment of the associations for the objects across the temporal gaps. We refer
to the current frame at time t with N detected objects as Xt =

{
xi

t|i = 1, 2, . . . , N
}

, and to
the previous frame at time t− 1 with M detected objects as Xt−1 =

{
xj

t−1|j = 1, 2, . . . , M
}

.
We aims at exploiting the discriminative feature for each xi

t and xj
t−1 pair, predicting a

feature affinity matrix for the correct matching, and finally assigning the matched IDs to
the corresponding objects in the current frame t.
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3.2. 2D Detector

For what concerns the object detection, there are two main methods to localize the
objects in the frames. One method is to use existing, state-of-the-art, 3D detectors (e.g.,
PointRCNN [35] and PointPillar [36]) to predict 3D bounding boxes, which are then projected
to corresponding images to obtain 2D bounding boxes. However, we believe that the fact
that the point clouds are lacking of rich color and texture information, so that this will not
provide sufficient semantic information to the detected objects. As a result, it is still not
efficient to localize the objects precisely. Therefore, another alternative method is to use
off-the-shelf 2D detectors to predict 2D bounding boxes. With respect to the 3D location,
we employ the method from the work in [37] to estimate the localization of the objects. We
use this method and introduce RRC-Net [38] as our 2D detector model, as we observed that
it should obtain the highest recall and accuracy.

3.3. Joint Feature Extractor

In order to exploit sufficient information for the detected objects in the frames, we
propose a joint feature extractor (see Figure 1a) to learn deep representations from both the
images and the point clouds. Specifically, we employ a modified VGG-16 [31] to extract
2D appearance features, and then apply PointNet [10] over the trimmed points, which are
obtained by extruding related 2D bounding boxes into the 3D frustums in the point cloud,
to capture 3D appearance features and predict 3D bounding boxes. After that, we propose
a sensor fusion module to aggregate the 2D and 3D appearance features together for further
feature interaction. With regard to the motion features, we build a subnetwork to learn the
high-level motions of objects just using the information of the 2D bounding boxes.

3.3.1. 2D Appearance Feature Extraction

As shown in Figure 1a, we take the objects in the 2D bounding boxes in the image as
input, which are then cropped and resized to the fixed size 224× 224 to adapt them to the
VGG-16 [31] feature extractor. The work in [18] indicates that the features in the different
CNN layers contain different semantic properties. For example, a lower convolutional layer
is likely to capture more detailed spatial information than low-level features, and a deeper
convolutional layer would tend to capture more abstract and high-level information. As a
result, inspired by the works in [2,18], we embed a skip-pool [39] method into the VGG-16
network (see Figure 2) to involve all the features at the different levels for the global feature
generation, which is then treated as the 2D appearance feature for the corresponding
detected object.
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Figure 2. Modified VGG-16. The module takes the cropped and resized object patches with dimension
224× 224 as input, and the layers output 64, 128, 256, 512 channels of the features, respectively, after a
max pooling operation. Next, the global average pooling (GAP) operation and multi-layer perceptron
(MLP) are used to obtain semantic features with 128 channels for each layer. Finally, all the layers are
concatenated together to generate the global feature that contains the information in all the layers.
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3.3.2. 3D Appearance Feature Extraction

We first obtain the 3D points of each object by extruding the corresponding 2D
bounding box into a 3D bounding frustum, where the 3D points on the object are then
trimmed from. After that, we apply PointNet [10] to capture the spatial features to predict
the corresponding 3D bounding box.

3.3.3. Motion Feature

Our model is a purely local tracker that only associates the objects in the adjacent
frames through time without considering the knowledge of previous and future frames.
As a result, the motion feature is designed to independently estimate the relative spatial
relationship for each pair of objects in the different frames. Unlike traditional motion
models (e.g., Kalman filter [12] and Long Short-Term Memory (LSTM) [40]), we learn the
relative spatial displacement directly from the location of the 2D/3D bounding box. How-
ever, considering the fact that we observe the 3D appearance features already containing
the spatial information for the foreground 3D points, it is not necessary to embed the
3D bounding boxes into the motion cues. Consequently, we only use the 2D bounding
boxes as the motion cues. After aggregation with the 3D appearance that contains the 3D
spatial information, we finally predict 2D/3D displacements of each object pair for spatial
relationship learning.

With respect to our motion feature for each object, we define the 2D bounding box
of a certain object as B2d = [x2d, y2d, w2d, h2d], where [x2d, y2d] is the center of the 2D
bounding box in the image, and w2d, h2d are the width and the height of the 2D bounding
box, respectively. As a result, the motion cue is defined as B = [B2d] (see Figure 1a),
which is then fed to a 3-layer MLP sub-network to capture the motion feature for each
detected object.

3.3.4. Features Aggregation and Fusion

We first aggregate 2D and 3D appearance features to have sufficient semantic features
to exploit (e.g., spatial and color features) for each detected object. We propose three
fusion operators: (1) an intuitive method is to add 2D and 3D appearance features together
after forcing them to have the same feature channels; (2) another common approach is
to concatenate 2D appearance feature and 3D appearance feature, after which a 1-layer
MLP is used to adapt the dimension of the fused features; and (3) the last operator is an
attention-based weighted sum. Specifically, as defined in Equation (1), a scalar score is first
computed by learning a 1-dimensional feature from the features in the different sensors,
after which the score is normalized by applying a sigmoid function. Finally, the weighted
sum for the fusion is computed by using an element-wise multiplication operation on the
normalized scores and corresponding features obtained from different sensors as defined
in Equation (2). We compare the performance by applying different fusion operators on our
model in the experiments and using a concatenation operator as our 2D and 3D appearance
features aggregation method in our model.

αs = σ(Ws
a ⊗ Fs) (1)

where Ws
a indicate the convolution parameters for the features Fs obtained from a

certain sensor s. αs is the learned attention-weighted score for the sensor s. ⊗ is a
multiplication operation.

Ffuse =
S

∑
s=0

(αs � (Ws
fuse ⊗ Fs)) (2)

where Ffuse denote the features after fusion. Ws
fuse are the convolution parameters for the

the features Fs obtained from a certain sensor s. � is an element-wise multiplication.
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We finally fuse the appearance feature and motion feature by concatenating the
aggregated 2D/3D appearance feature with the related motion feature for further fea-
ture interaction.

3.4. Feature Interaction Module

After the joint feature extractor, we gain the fused features for M individual objects in
the frame t− 1 and N objects in the frame t. We then propose a feature interaction module,
as shown in Figure 1b, to learn the relations between each pair of two objects (one object is
in previous frame t− 1 and the other object is in current frame t).

3.4.1. Graph Construction

In order to efficiently represent the objects in the different frames, we treat the feature
of each object as a node in a graph structure, and the edge between two nodes in the
graph can indicate the relationship between two objects in the different frames. As a
result, we first construct a directed acyclic graph structure to represent the objects in two
adjacent frames as shown in Figure 3. Generally, a directed acyclic graph can be defined
as G = (V, E), where V ⊂ RF are the nodes with F dimension, and E ⊆ V×V are edges
connecting two nodes in the graph.

xit

x1t-1

x2t-1

xjt-1

A

M

M

M

M

A

A

A

yi1

yi2

yij

Figure 3. Graph construction. A certain detected object in current frame t is represented as xt
i . The ob-

jects in previous frame t− 1 are then defined as xt−1
j , which are also treated as the neighborhood of

the Node xt
i . A and M are the appearance feature and the motion feature for respective nodes. yij

is the edge feature connecting i-th object node in current frame t and j-th object node in previous
frame t− 1.

However, as we only learn the correlation between each object in the frame t and all
the objects in the frame t− 1, rather than taking the relations between the pair of objects
in the same frame into account, our graph for the objects representation is constructed
as G = (Vt, Et), Et ⊆ Vt ×Vt−1, where Vt indicate N objects at current frame t, and Vt−1,
which are also the neighborhood nodes of Vt, denote M objects at previous frame t− 1.
The edge feature set Et for all the nodes in current frame are defined as Equation (3):
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Xt =
{

xt
i ∈ RF, i = 1, 2, . . . , N

}
Vt = Xt

yi
t
j = |x

t
i − xt−1

j |, j = 1, 2, . . . , M

et
i = (yi

t
1, yi

t
2, . . . , yiM

t), i = 1, 2, . . . , N

Et =
{

et
i|i = 1, 2, . . . , N

}
(3)

where xt
i indicates a certain object node in current frame t, yi

t
j denotes the edge feature

connecting i-th object node xt
i in current frame t and j-th object node xt−1

j in previous frame
t− 1. The | · | is the absolute value operation. et

i are the edge features connecting i-th object
node in current frame t and all the M neighborhood nodes in previous frame t− 1.

3.4.2. Relation Convolution Operator

Considering irregular and unordered properties of the nodes in the graph, we are
unlikely to use regular CNN filters (e.g., 3× 3, 7× 7 f ilters) on the unstructured graph
for convolutional operation, as these filters are only suited to deal with regular grid
data, such as images. As a consequence, the traditional method in the literature to deal
with unstructured data can apply shared MLP on the graph to learn local and global
contextual representations. However, it is not efficient to extract the spatially local features
from unordered data using the shared 1× 1 filters, which leads to small receptive fields.
Inspired by the processing of standard convolutional kernels, PointCNN [41] learned a
transformation matrix as a regular CNN filter to capture local features for the irregular
point clouds, and it outperforms MLP-based methods PointNets [10,11] by a large margin.

In order to leverage the ability of CNNs, capable of extracting spatially-local cor-
relation with large receptive fields, we propose a relation convolution operator, named
RelationConv, to extract fine-grained local representations for the nodes on the graph.
The advantages of our RelationConv are that it is similar to standard convolutional kernels
and can work on irregular data (e.g., graphs). In standard CNNs, to obtain the abstract
features fX, the convolutional operation between the filters W and the feature map X can
be defined as in Equation (4).

fX = W · X (4)

where X represents the feature map with standard grid distribution, and W are the convo-
lutional filters. The operator “·” denotes element-wise multiplication.

Similarly, as defined in Equation (5), our RelationConv first learns a flexible filter W()
by applying a shared MLP with a nonlinear function on the edge feature of the unordered
graph, and then an element-wise multiplication operation is used on the learned filter W
and the edge feature Et to extract the local feature for the nodes in the graph (see Figure 4). It
is easy to observe that our flexible filter W is learned from all the nodes and corresponding
neighborhood in the graph, which forces it to consider the global information in the graph,
and also makes it independent to the ordering of the nodes.

W(Et) = ReLU(MLP(Et))

fEt = W(Et) · Et (5)

where Et is the edge feature set. W(Et) are the learnable and flexible filters obtained from a
shared Multi-layer perceptron MLP() with a nonlinear function RELU() [42]. fEt are the
abstract features captured from our RelationConv operation.



Sensors 2021, 21, 2113 9 of 16

N
 x

 M
 x

 f MLP

N
 x

 M
 x

 f

element 
multiplication

N
 x

 M
 x

 f

in
p
u
t 
fe

a
tu

re

o
u
tp

u
t 
fe

a
tu

re

filter

{ 512, 512 }

Figure 4. RelationConv operation structure. Assume that frame t and frame t− 1 include N and M
detected objects (nodes), respectively. The proposed RelationConv operation takes N×M nodes with
f -dimension features as input. An MLP subnetwork is then employed to learn a flexible filter, which
applies an element multiplication operation over the input feature to obtain the semantic output.
Note that the numbers in the brace indicate the number of the learning convolutional parameters in
the MLP subnetwork.

3.4.3. Feature Interaction

It is likely that the same objects in different frames should learn similar discriminative
features. Therefore, the feature similarity should be dependent. In contrast, the feature
similarity of two different objects should be low. As a result, the discriminative feature is
beneficial for avoiding confusion while matching the objects.

Given the obtained fused features containing 2D/3D appearance features and 2D
motion features, we propose a feature interaction module to learn the correlation between
each object pair in the different frames as shown in Figure 1b. Rather than directly learning
the deep affinity for further data association, we firstly employ a feature interaction module
equipped with a 1-layer RelationConv network to learn more discriminative features,
which allows the feature communication between two objects in adjacent frames before
learning the affinity matrix.

3.4.4. Confidence Estimator

As shown in Figure 1c, we build a 3-layer MLP binary classification network to predict
the scalar scores sdet by applying the sigmoid() function to the final layer of the network
defined as (6). The outputs are used as the validation scores that indicate the confidence of
the true positive objects.

sdet =
1

1 + exp (−fdet)
(6)

where fdet indicate the last-layer features of the detected objects.

3.5. Data Association
3.5.1. Affinity Matrix Learning

In order to associate and match the objects in the different frames, given the corre-
lation representation after feature communication among objects, we use a 3-layer MLP
subnetwork to learn an affinity matrix with a 1-dimension output feature sA. The affinity
matrix is capable of determining whether a certain object pair indicates a link. Besides,
the scalar score in the matrix shows the confidence of the object pair associating with the
same identity.

Furthermore, inspired by the work in [2], we learn a start-estimator and an end-
estimator to predict whether an object is linked. Specifically, the start-estimator learns the
scalar scores sstart to determine whether a certain object just appears in previous frame
t− 1. On the other hand, the end-estimator predicts the score send whether a certain object
is likely to disappear in the next frame t (e.g., due to the presence of any hard occlusion
or going out-of-bounds, etc.). The start-estimator and the end-estimator use an average
pooling over the deep correlation representation to summarize the relations, and then
employ the respective MLP network to learn the scalar scores for all the objects.
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3.5.2. Linear Programming

We obtain several binary variables for prediction scores from our proposed neural
network as shown in Figure 1d. In summary, the detection score si

det indicates the confi-
dence whether the i-th object is a true positive detection. si j

A, obtained from a so f tmax()
function as defined in Equation (7), denotes the affinity confidence whether the j-th object
in previous frame t− 1 and the i-th object in current frame t are the same objects. sj

start

denotes the confidence whether j-th object in previous frame t− 1 starts a new trajectory
in frame t− 1. si

end denotes the confidence whether i-th object in current frame t ends a
trajectory in the frame t. Similar to si

det obtained from a sigmoid() function in Equation (6),
sj

start, si
end are defined as Equation (8).

si j
A =

exp ( fij)

∑
Nt−1
k=0 exp ( fik)

(7)

where fij indicate the last-layer features of the matching score for the detected object pair
in the respective frames t and t− 1. Nt−1 is the total number of the detected objects in the
frame t− 1.

sj
start =

1
1 + exp (− f j

t−1)

si
end =

1
1 + exp (− fi

t)

(8)

where f j
t−1, fi

t denote the last-layer features of the detected objects in frame t− 1 and t,
respectively.

We finally aggregate all the prediction scores to a new vector S = [si
det, si j

A, sj
start, si

end]
for the optimization of the data association problem.

Considering the graph structure for all the detected objects, the data association
problem can be formulated as the min-cost flow graph problem [2,27]. Specifically, we
use these obtained prediction scores to define linear constraints, and then find an optimal
solution for the matching problem.

There are two circumstances for a certain true positive object in previous frame t− 1.
It can be matched to another object in current frame t, or it starts a new trajectory. As a
result, we define the linear constraint as Equation (9).

sj
det = sj

start +
N

∑
i=0

si j
A (9)

Similarly, a certain true positive object in current frame t can be matched to another
object in previous frame t− 1, or it ends a trajectory. Consequently, the linear constraint
can be defined as Equation (10).

si
det = si

end +
M

∑
j=0

si j
A (10)

Finally, we formulate the data association problem as

arg min
s

= Θ(X)TS

s.t. CS = 0, S ∈ {0, 1}
(11)

where Θ(X) indicates a flattened vector that comprises all the prediction scores. CS is a
matrix form that satisfies two linear constraint Equations (9) and (10).
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4. Experiments
4.1. Dataset

We first evaluate our neural network on the KITTI object tracking benchmark [43,44].
The benchmark consists of 21 training sequences and 29 testing sequences. We split the
training sequences into 10 sequences for training and 11 sequences for validation. As a
result, we obtain 3975 frames for training and 3945 frames for validation. The dataset is
captured from a car equipped with two color/gray stereo cameras, one Velodyne HDL-64E
rotating 3D laser scanner and one GPS/IMU navigation system. Each object is annotated
with a unique identity number (ID) across the frames in the sequences, 2D bounding boxes
3D bounding boxes parameters. We measure the distance between the predicted bounding
box and corresponding bounding box of matched object-hypothesis by calculating the
intersection over union (IoU).

4.2. Evaluation Metrics

The evaluation metrics to assess the performance of tracking methods are based on
CLEAR MOT [45,46]. Specifically, MOT precision (MOTP) measures the average total error
of distances for all the frames in the sequences as defined in Equation (12), and it indicates
the total misalignment between the predicted bounding boxes and corresponding matched
object-hypothesis.

MOTP =
∑i,t dt

i

∑t ct
(12)

where dt
i indicates the distance between the bounding box of i-th object and corresponding

matched hypothesis in the frame t. ct indicates the total number of the matched objects in
the frame t.

MOT accuracy (MOTA) measures the total tracking accuracy for all the frames as
defined in Equation (13).

MOTA = 1− ∑t (FNt + FPt + IDSWt)

∑t GTt
(13)

where FNt, FPt, IDSWt, GTt denote the total number of false negative objects, false positive
objects, identity switches, and ground truth, respectively, in the frame t.

Besides, the work in [46] introduces other metrics to improve the tracking assessment,
such as mostly tracking (MT) indicating the percentage of the entire trajectories in the
sequences that could cover more than 80% in total length, mostly lost (ML) indicating the
percentage of the entire trajectories in the sequences that could cover less than 20% in total
length, and partial tracked (PT) indicating 1−MT −ML.

4.3. Training Settings

Our model is implemented using Pytorch v1.1. We trained our model on a ThinkSta-
tion P920 workstation with one NVIDIA GTX 1080Ti, and use Adam as a training opti-
mization strategy with the initial learning rate 3× 10−4. Besides, the super convergence
training strategy is employed to boost the training processing and the maximum learning
rate is set to 6× 10−4.

4.4. Results

Table 1 shows that our Relation3D model achieves competitive results compared to
recent state-of-the-art online tracking methods. Compared to the 2D tracking methods, our
model is just slightly behind MASS [47], but outperforms all other 2D trackers. However,
we discuss that the 2D information in our network still provides main contributions, as we
observe the difference between our results and other 2D trackers is not quite much. We
analyze the reason that the 3D information in our model also comes from the 2D detector
RRC-Net [38]. As a result, we believe that inefficient 2D results are likely to lead to worse
tracking performance.
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Compared to the 3D tracking methods, our model achieves the best performance.
However, Kalman filter method AB3DMOT [4] could perform in real-time and achieve the
best ID− SW and Frag performance. Due to the fact the occlusion condition in our model
is not taken into account, our ID− SW and Frag results are not efficient.

Compared to the 2D&3D tracking methods, it is easy to observe that our MOTA and
MOTP results outperform those of GNN3DMOT [14], whose feature interaction mechanism
employs an MLP network to exploit the discriminative features. It shows the effectiveness
of our RelationConv operation for feature interaction. Besides, GNN3DMOT uses the 3D
detections to obtain the 2D information by projecting the point cloud to the image, which
leads to only 80.40% MOTA. Consequently, we believe that employing state-of-the-art
2D detectors directly is more beneficial for the 3D trackers. Compared to mmMOT [2],
our model is slightly better as it is beneficial from our RelationConv operation and the
combination of both the appearance features and motion features.

Table 1. 3D tracking results on KITTI tracking test set.

Methods Input MOTA (%) MOTP (%) ID-SW Frag MT ML

BeyondPixels [48] 2D 84.24 85.73 468 944 73.23 2.77
MASS [47] 2D 85.04 85.53 301 744 74.31 2.77

extraCK [49] 2D 79.99 82.46 343 938 62.15 5.54
JCSTD [50] 2D 80.57 81.81 61 643 56.77 7.38

IMMDP [51] 2D 83.04 82.74 172 365 60.62 11.38

AB3DMOT [4] 3D 83.84 85.24 9 224 66.92 11.38
PMBM [30] 3D 80.39 81.26 121 613 62.77 6.15

mono3DT [3] 3D 84.52 85.64 377 847 73.38 2.77

DSM [52] 2D + 3D 76.15 83.42 296 868 60.00 8.31
FANTrack [53] 2D + 3D 77.72 82.32 150 812 62.61 8.76
mmMOT [2] 2D + 3D 84.43 85.21 400 859 73.23 2.77

GNN3DMOT [14] 2D + 3D 80.40 85.05 113 265 70.77 11.08

OURS 2D + 3D 84.78 85.21 281 757 73.23 2.77

Table 2 indicates the effectiveness of different fusion methods. It shows that the
concatenation operation outperforms the addition and attention-based weighted sum
methods. We believe that the concatenation operation is capable of better exploiting the
information from the features obtained from different sensors. Specifically, the addition
operation is inefficient to align the features captured from 2D RGB images and 3D point
clouds, making it difficult to learn discriminative feature after the element-wise addition.
Although the attention-based weighted sum method enables highlightng the importance
for the different features, the concatenation operation is a more general operation that
gathers all the information from different modalities.

Table 2. Effectiveness of different fusion methods.

Fusion Method MOTA (%) MOTP (%) ID-SW Frag MT (%) ML (%)

add 91.72 90.35 106 210 90.28 0.9
concatenate 92.33 90.35 38 143 90.28 0.9

weighted sum 91.94 90.35 82 187 90.28 0.9

Table 3 shows that the performance is best when the edge feature yi j
t = |xi

t − xj
t−1|.

We observe that the first option xj
t−1 only considers the neighborhood information with-

out involving the center nodes. The third option xi
t − xj

t−1 uses the relative distance
value between the object pair as the edge feature, which is efficient when dealing with
spatial data (e.g., point cloud). However, the result represents that the absolute value
operator is more efficient when we learn discriminative features for the similarity. One
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possible reason is that only the absolute distance of the two high-level features is needed to
measure the discrimination of different objects, which is beneficial for the model robust-
ness. The fourth option [xi

t, xj
t−1] encodes the edge feature by combining the individual

information without explicitly considering the distance between each pair of objects.

Table 3. Effectiveness of different edge feature aggregation operations.

Edge Feature MOTA (%) MOTP (%) ID-SW Frag MT (%) ML (%)

xj
t−1 90.94 90.35 193 290 90.28 0.9

|xi
t − xj

t−1| 92.33 90.35 38 143 90.28 0.9
xi

t − xj
t−1 91.85 90.35 92 194 90.28 0.9

[xi
t, xj

t−1] 91.96 90.35 80 181 90.28 0.9

We also investigate the effectiveness of the appearance feature, motion feature, and
different convolutional operations as shown in Table 4, which indicates that the motion
feature could contribute the MOTA by 0.35%, and significantly reduce the number of
ID− SW and Frag by 39 and 30, respectively, which convincingly verifies that the motion
cues could help to match the correct objects for data association. Besides, our RelationConv
outperforms the MLP method by 0.24% for MOTA metric and also performs much better
in terms of ID− SW and Frag metrics.

Table 4. Effectiveness of appearance feature (A), motion feature (M), and different convolu-
tional operation.

Feature MOTA (%) MOTP (%) ID-SW Frag MT (%) ML (%)

A + MLP 91.74 90.35 104 202 90.28 0.9
A + M + MLP 92.09 90.35 65 172 90.28 0.9

A + RelationConv 91.99 90.35 76 178 90.28 0.9
A + M + RelationConv 92.33 90.35 38 143 90.28 0.9

It is worth highlighting that the MOTP metric is only related to the distance between
predicted bounding boxes and corresponding matched object-hypothesis as shown in
Equation (12). Besides, the MT and ML are irrelevant to the measurement of whether the
IDs of the objects remain the same throughout the entire sequence. As a result, the met-
rics of MOTP, MT, ML are unlikely to be updated during our ablation investigation
(see Tables 2–4), as long as the results of object detection performance remain the same.

We also study the effectiveness of different nonlinear activation functions in Equation (5)
for our RelationConv operation. As shown in Table 5, the functions RELU and LeakyRELU
achieve competitive results, which indicates that they are more likely to regress the model
to the optimal solution. However, the sigmoid function performs the worst. We discuss the
reason that its disadvantages, such as information loss due to vanishing gradients, make the
model difficult to achieve optimization.

Table 5. Effectiveness of different activation functions for the proposed RelationConv operation.

Activation Function MOTA (%) MOTP (%) ID-SW Frag MT (%) ML (%)

RELU 92.33 90.35 38 143 90.28 0.9
Leaky RELU 91.92 90.35 84 190 90.28 0.9

Sigmoid 91.33 90.35 110 197 90.28 0.9

We finally provide some examples of the tracking results as shown in Figure 5, which
includes three consecutive frames. All the detected objects are included in the green
oriented 3D bounding boxes. We assign different IDs to different objects in each frame,
and then track them by assigning the same IDs for the same objects in the different frames.



Sensors 2021, 21, 2113 14 of 16

Figure 5. Qualitative results on the KITTI object tracking benchmark validation dataset.

4.5. Ablation Study

We investigate different hyperparameter settings to evaluate the effectiveness of our
model on the KITTI object tracking benchmark [43].

5. Conclusions

We proposed a deep affinity network, named Relation3DMOT, able to learn discrim-
inative features and associate the objects in adjacent frames for 3D MOT. We employed
a joint feature extractor to capture the 2D/3D appearance feature and 2D motion feature
from 2D images and 3D point clouds, respectively, followed by a feature interaction module
able to enhance the feature communication among objects in different frames. We also
proposed a novel and efficient convolutional operation, named RelationConv, to abstract
semantic and contextual relations for each object pair. Finally, we carried out extensive
experiments on the KITTI object tracking benchmark to demonstrate the effectiveness of
our Relation3DMOT tracker.

In the future, we plan to improve our model by considering objects with hard occlu-
sion between frames. Further to this, it would be interesting to develop an end-to-end
framework for the joint task of object detection and tracking, as we believe that it could
avoid the decoupling issues that might arise when we deal with the object detection and
tracking separately.
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