The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Classification of References and Their Descriptive Analysis
3.2. Holistic Framework of the Issue
3.2.1. The Impact of Architecture on Human Beings and Directly Associated Research
3.2.2. Base Approaches to the Cognitive-Emotional Dimension of Architecture
Geometric Approach
The Phenomenology of Space and Geographical Experience Approach
The Philosophy, Environmental Psychology, and Evidence-Based Design Approach
3.2.3. New Tools in Architectural Research and Practice
Neuroscience
Virtual Reality
Combined Neuroscientific and Virtual Reality Technologies
3.2.4. The Cognitive-Emotional Dimension of Architecture Measured through Neuro-Aesthetics
3.2.5. Neuroscience in Architecture
4. Discussion
4.1. Limitations of the Approaches to the Study of Cognitive-Emotional Dimension of Architecture
4.2. Problems in Addressing the Cognitive-Emotional Dimension of Architecture
4.3. Beyond the Current State: The Challenges Facing Neuroarchitecture and Its Constituent Disciplines
4.4. Limitations of the Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams Goldhagen, S. Welcome to Your World: How the Built Environment Shapes our Lives; HarperCollins: New York, NY, USA, 2017. [Google Scholar]
- Ledoux, J.E. Cognitive-Emotional Interactions in the Brain. Cogn. Emot. 2008, 3, 267–289. [Google Scholar] [CrossRef]
- Glass, D.C.; Singer, J.E. Urban Stress: Experiments on Noise and Social stressors; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Ulrich, R.S. Visual landscapes and psychological well-being. Landsc. Res. 1979, 4, 17–23. [Google Scholar] [CrossRef]
- Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 2005, 5, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.S. View through a window may influence recovery. Science 1984, 224, 224–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, N. Designerly ways of knowing. Des. Stud. 1982, 3, 221–227. [Google Scholar] [CrossRef]
- Sternberg, E.M.; Wilson, M.A. Neuroscience and Architecture: Seeking Common Ground. Cell 2006, 127, 239–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.C.; Liu, A. Subjectivity and objectivity in design decisions. CIRP Ann. 2011, 60, 161–164. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- ANFA Neuroscience and Architecture. Health Care Facilities; ANFA: Woods Hole, MA, USA, 2004. [Google Scholar]
- Edelstein, E.A.; Macagno, E. Form follows function: Bridging neuroscience and architecture. In Sustainable Environmental Design in Architecture; Rassia, S., Pardalos, P.M., Eds.; Springer: New York, NY, USA, 2012; pp. 27–41. ISBN 978-1-4419-0744-8. [Google Scholar]
- Metzger, C. Neuroarchitecture; Jovis Verlag GmbH: Berlin, Germany, 2018. [Google Scholar]
- Northoff, G. Humans, Brains, and Their Environment: Marriage between Neuroscience and Anthropology? Neuron 2010, 65, 748–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuera-Trujillo, J.L.; Llinares Millán, C.; Montañana i Aviñó, A.; Rojas, J.-C. Multisensory stress reduction: A neuro-architecture study of paediatric waiting rooms. Build. Res. Inf. 2020, 48, 269–285. [Google Scholar] [CrossRef]
- Cross, E.S.; Ticini, L.F. Neuroaesthetics and beyond: New horizons in applying the science of the brain to the art of dance. Phenomenol. Cogn. Sci. 2012, 11, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A. Neuroaesthetics: A coming of age story. J. Cogn. Neurosci. 2011, 23, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Nanda, U.; Pati, D.; McCurry, K. Neuroesthetics and Healthcare Design. HERD Health Environ. Res. Des. J. 2009, 2, 116–133. [Google Scholar] [CrossRef]
- Bower, I.; Tucker, R.; Enticott, P.G. Impact of built environment design on emotion measured via neurophysiological correlates and subjective indicators: A systematic review. J. Environ. Psychol. 2019, 66, 101344. [Google Scholar] [CrossRef]
- Karakas, T.; Yildiz, D. Exploring the influence of the built environment on human experience through a neuroscience approach: A systematic review. Front. Archit. Res. 2020, 9, 236–247. [Google Scholar]
- Azzazy, S.; Ghaffarianhoseini, A.; GhaffarianHoseini, A.; Naismith, N.; Doborjeh, Z. A critical review on the impact of built environment on users’ measured brain activity. Archit. Sci. Rev. 2020, 147, 52–60. [Google Scholar]
- Rad, P.N.; Behzadi, F.; Yazdanfar, A.; Ghamari, H.; Zabeh, E.; Lashgari, R. Cognitive and perceptual influences of architectural and urban environments with an emphasis on the experimental procedures and techniques. PsyArXiv 2021. [Google Scholar] [CrossRef]
- Mallgrave, H.F. The Architect’s Brain: Neuroscience, Creativity, and Architecture; John Wiley & Sons: London, UK, 2010. [Google Scholar]
- Pham, M.T.; Rajić, A.; Greig, J.D.; Sargeant, J.M. A scoping review of scoping reviews: Advancing the approach and enhancing the consistency. Res. Synth. Methods 2014, 5, 371–385. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Helewa, A.; Walker, J. Critical Evaluation of Research in Physical Rehabilitation; W.B. Saunders Co.: Philadelphia, PA, USA, 2000. [Google Scholar]
- Lang, G.; Heiss, G.D. A practical guide to Research Methods; University Press of America: Lanham, MD, USA, 1998. [Google Scholar]
- Hanc, M.; McAndrew, C.; Ucci, M. Conceptual approaches to wellbeing in buildings: A scoping review. Build. Res. Inf. 2019, 47, 767–783. [Google Scholar] [CrossRef]
- Slavin, R.E. Best evidence synthesis: An intelligent alternative to meta-analysis. J. Clin. Epidemiol. 1995, 48, 9–18. [Google Scholar] [CrossRef]
- Day, R. How to Write and Publish a Scientific Paper; The Oryx Press: Phoenix, AZ, USA, 1998. [Google Scholar]
- Hutchinson, B.G. Critical Appraisal of Review Articles. Am. J. Prev. Med. 2007, 32, 361–369. [Google Scholar]
- Hutchison, B.G. Critical appraisal of review articles. Can. Fam. Physician 1993, 39, 1102. [Google Scholar]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Buchanan, D., Bryman, A., Eds.; Sage Publications: London, UK, 2009; pp. 671–689. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Saunders, M.; Lewis, P.; Thornhill, A. Research Methods for Business Students, 6th ed.; Pearson Education Ltd.: Essex, UK, 2012. [Google Scholar]
- Dixon-Woods, M.; Agarwal, S.; Jones, D.; Young, B.; Sutton, A. Synthesising qualitative and quantitative evidence: A review of possible methods. J. Health Serv. Res. Policy 2005, 10, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Bryman, A. Social Research Methods; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Hsieh, H.F.; Shannon, S.E. Three approaches to qualitative content analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Graneheim, U.H.; Lundman, B. Qualitative content analysis in nursing research: Concepts, procedures and measures to achieve trustworthiness. Nurse Educ. Today 2004, 24, 105–112. [Google Scholar] [CrossRef]
- Thomas, J.; Harden, A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med. Res. Methodol. 2008, 8, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golafshani, N. Understanding reliability and validity in qualitative research. Qual. Rep. 2003, 8, 597–607. [Google Scholar]
- Hill, C.E.; Thompson, B.J.; Williams, E.N. A guide to conducting consensual qualitative research. Couns. Psychol. 1997, 25, 517–572. [Google Scholar] [CrossRef] [Green Version]
- Tuan, Y. Topofilia: Un Estudio de las Percepciones, Actitudes y Valores Sobre el Entorno; Melusina: Barcelona, Spain, 2007; ISBN 9788496614178. [Google Scholar]
- Robinson, S. Nesting: Body, Dwelling, Mind; William Stout Publishers: San Francisco, CA, USA, 2011. [Google Scholar]
- Robinson, S. Introduction: Survival through Design. In Mind in Architecture: Neuroscience, Embodiment, and the Future of Design; Robinson, S., Pallasmaa, J., Eds.; MIT Press: Cambridge, MA, USA, 2015; pp. 1–8. [Google Scholar]
- Hietanen, J.K.; Korpela, K.M. Do both negative and positive environmental scenes elicit rapid affective processing? Environ. Behav. 2004, 36, 558–577. [Google Scholar] [CrossRef]
- ANFA. Mapping Memory of Space & Place. Report on the 2005 Workshop on Neuroscience & Health Care Architecture; ANFA: Woods Hole, MA, USA, 2005. [Google Scholar]
- Gage, F.H. Theme Presentation; The Salk Institute: San Diego, CA, USA, 2003. [Google Scholar]
- Malinin, L.H. Will ‘good’ Architecture make us more creative? Examining the role of place in creative cognition. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 18–19. [Google Scholar]
- Bruer, J.T. Education and the Brain: A Bridge Too Far. Educ. Res. 1997, 26, 4–16. [Google Scholar] [CrossRef]
- Perry, B.D. Childhood experience and the expression of genetic potential: What childhood neglect tells us about nature and nurture. Brain mind 2002, 3, 79–100. [Google Scholar] [CrossRef]
- Al-Ayash, A.; Kane, R.T.; Smith, D.; Green-Armytage, P. The influence of color on student emotion, heart rate, and performance in learning environments. Color Res. Appl. 2015, 42, 196–205. [Google Scholar] [CrossRef]
- Averill, J.R. Personal control over aversive stimuli and its relationship to stress. Psychol. Bull. 1973, 80, 286–303. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Page, G.G.; Marucha, P.T.; MacCallum, R.C.; Glaser, R. Psychological influences on surgical recovery: Perspectives from psychoneuroimmunology. Am. Psychol. 1998, 53, 1209–1218. [Google Scholar] [CrossRef]
- Stichler, J.F. Creating healing environments in critical care units. Crit. Care Nurs. Q. 2001, 24, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pinter-Wollman, N.; Jelić, A.; Wells, N.M. The impact of the built environment on health behaviours and disease transmission in social systems. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170245. [Google Scholar] [CrossRef]
- Kim, J.; Kaplan, R. Physical and psychological factors in sense of community: New urbanist Kentlands and nearby Orchard Village. Environ. Behav. 2004, 36, 313–340. [Google Scholar] [CrossRef]
- Powell, K. Inspiration from architecture: Building a better scientific rapport. Nature 2003, 424, 858–859. [Google Scholar] [CrossRef] [PubMed]
- Newman, O. Defensible Space; MacMillan: New York, NY, USA, 1972. [Google Scholar]
- Hollier, D. Against Architecture: The Writings of Georges Bataille; MIT Press: Athens, GA, USA, 1992. [Google Scholar]
- Dijkstraa, K.; Pieterseb, M.E. Individual Differences in Reactions towards Colour in Simulated Healthcare Environments: The Role of Stimulus Screening Ability. Environ. Psychol. 2008, 28, 268–277. [Google Scholar] [CrossRef]
- Aiello, J.; Epstein, Y.; Karlin, R. Effects of crowding on electrodermal activity. Sociol. Symp. 1975, 14, 43–58. [Google Scholar]
- Vannuci, M.; Gori, S.; Kojima, H. The spatial frequencies influence the aesthetic judgment of buildings transculturally. Cogn. Neurosci. 2014, 5, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Nanda, U.; Pati, D.; Ghamari, H.; Bajema, R. Lessons from neuroscience: Form follows function, emotions follow form. Intell. Build. Int. 2013, 5, 61–78. [Google Scholar] [CrossRef]
- Schildt, G. Alvar Aalto in His Own Words; Otava: Helsinki, Finland, 1997. [Google Scholar]
- Pallasmaa, J. Esencias; Gustavo Gili: Barcelona, Spain, 2018. [Google Scholar]
- Eberhard, J.P. Applying Neuroscience to Architecture. Neuron 2009, 62, 753–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veal, A. RIBA symposium encourages new links between design and research. Archit. Res. Q. 2005, 9, 17–19. [Google Scholar] [CrossRef]
- Changeux, J.P. Neuronal Man; Princeton University Press: Princeton, NJ, USA, 1985. [Google Scholar]
- Pearson, D. In Search of Natural Architecture; Abbeville Press: New York, NY, USA, 2005. [Google Scholar]
- Powell, J.A. Is architectural design a trivial pursuit? Des. Stud. 1987, 8, 187–206. [Google Scholar] [CrossRef]
- Bermudez, J.; Krizaj, D.; Lipschitz, D.; Yurgelun-Todd, D.; Nakamura, Y. fMRI study of architecturally-induced contemplative states. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 18–19. [Google Scholar]
- Meyakawa, K. Thoughts on Civilization in Architecture, AD. May 1965; 229–230.
- van Eyck, A. Verleden, Heden En Toekomst. Forum 1967. [Google Scholar]
- Debord, G. La sociedad Del Espectáculo; Pre-textos: Valencia, Spain, 2003. [Google Scholar]
- Zeisel, J. Inquiry by Design: Inquiry by design. In Environment/Behavior/Neuroscience in Architecture, Interiors, Landscape, and Planning; W. W. Norton & Company: New York, NY, USA, 2006. [Google Scholar]
- García Cortés, J.M. Espacios Diferenciales. In Experiencias Urbanas Entre El Arte Y La Arquitectura; Armand Llacer: Paterna, Spain, 2007. [Google Scholar]
- Ramírez, J.A. Edificios-Cuerpo: Cuerpo Humano Y Arquitectura: Analogías, Metáforas, Derivaciones; Siruela: Madrid, Spain, 2003. [Google Scholar]
- Palladio, A. Los Cuatro Libros de la Arquitectura; Limusa-Universidad Autónoma Metropolitana: Ciudad de Mexico, Mexico, 2005. [Google Scholar]
- Corbusier, L. Le Modulor/Modulor 2; Ediciones Apóstrofe: Madrid, Spain, 2005. [Google Scholar]
- Vitruvio, M. Los Diez Libros de Arquitectura; Alianza Editorial: Madrid, Spain, 2016. [Google Scholar]
- Filarete, A.A. Treatise on architecture; Yale University Press: New Haven, CT, USA, 1965. [Google Scholar]
- Alberti, L.B. On the Art of Building in Ten Books; MIT Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Alberti, L.B. Tratado de Pintura; Universidad Autónoma Metropolitana: Ciudad de México, Mexico, 1998. [Google Scholar]
- Durand, J.N.L. Précis of the Lectures on Architecture; The Getty Research Institute: Los Angeles, CA, USA, 2000. [Google Scholar]
- Klint, K. Undervisning i møbeltegning ved Kunstakademiet. Arkit. Manedshæfte. 1930, 13, 193–224. [Google Scholar]
- Bataille, G. Dictionnaire Critique; Documents: Paris, France, 1929. [Google Scholar]
- Zevi, B. Hacia una Arquitectura Orgánica; Poseidon: Buenos Aires, Argentina, 1957. [Google Scholar]
- Smithson, P. Conversaciones con Estudiantes: Un Espacio Para Nuestra Generación; Gustavo Gili: Barcelona, Spain, 2004. [Google Scholar]
- Niemeyer, O. As curvas do Tempo: Memórias; Revan: Rio de Janeiro, Brazil, 1998. [Google Scholar]
- Mollino, C.; Vadacchino, F. Architettura: Arte e Tecnica; Chiantore: Torino, Italy, 1948. [Google Scholar]
- Ruggles, D.H. Beauty, Neuroscience, and Architecture: Timeless Patterns and Their Impact on Our Well-Being; University of Oklahoma Press: Denver, CO, USA, 2017. [Google Scholar]
- Höge, H. Fechner’s experimental aesthetics and the golden section hypothesis today. Empir. Stud. Arts 1995, 13, 131–148. [Google Scholar] [CrossRef]
- Franz, G.; von der Heyde, M.; Bülthoff, H.H. An empirical approach to the experience of architectural space in virtual reality-exploring relations between features and affective appraisals of rectangular indoor spaces. Autom. Constr. 2005, 14, 165–172. [Google Scholar] [CrossRef]
- Mehta, B.K.; Lee, H.; Shafle, M. Neuroscience of the Golden Ratio. In Proceedings of the ANFA Conference—Poster Session; Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2012. [Google Scholar]
- Dzebic, V.; Perdue, J.S.; Ellard, C.G. The influence of visual perception on responses towards real-world environments and application towards design. Intell. Build. Int. 2013, 5, 29–47. [Google Scholar] [CrossRef]
- Banaei, M.; Ahmadi, A.; Yazdanfar, A. Application of AI methods in the clustering of architecture interior forms. Front. Archit. Res. 2017, 6, 360–373. [Google Scholar] [CrossRef]
- Cavalcante, A.; Mansouri, A.; Kacha, L.; Barros, A.K.; Takeuchi, Y.; Matsumoto, N.; Ohnishi, N. Measuring streetscape complexity based on the statistics of local contrast and spatial frequency. PLoS ONE 2014, 9, e87097. [Google Scholar] [CrossRef] [PubMed]
- Coburn, A.; Kardan, O.; Kotabe, H.; Steinberg, J.; Hout, M.C.; Robbins, A.; MacDonald, J.; Hayn-Leichsenring, G.; Berman, M.G. Psychological responses to natural patterns in architecture. J. Environ. Psychol. 2019, in press. [Google Scholar] [CrossRef]
- Kacha, L.; Matsumoto, N.; Mansouri, A.; Cavalcante, A. Predicting perceived complexity using local xontrast statistics and fractal information. Courr. Savoir 2013, 16, 89–97. [Google Scholar]
- Husserl, E. Ideas: General Introduction to Pure Phenomenology; Routledge Classics: London, UK, 2012. [Google Scholar]
- Husserl, E. Ideen su einer Reinen Phänomenologie und Phänomenologischen Philosophie [Ideas Relativas a una Fenomenología pura y una Filosofía Fenomenológica]; Fondo de Cultura Económica: Querétaro, Mexico, 1913. [Google Scholar]
- Heidegger, M. El Ser y el Tiempo; Fondo de Cultura Economica: Madrid, Spain, 1998; Volume 2a, ISBN 84-375-0184-9. [Google Scholar]
- Dürckheim, K. Untersuchungen zum gelebten Raum. Neue Psychol. Stud. 1932, 6, 383–480. [Google Scholar]
- Minkowski, E. Vers une Cosmologie; Aubier: Paris, France, 1967. [Google Scholar]
- Buytendijk, F.J.J. Situation, Beiträge zur Phänomenologischen Psychologie und Psychopathologie; Spectrum: Utrecht, Germany, 1954. [Google Scholar]
- Lewin, K. Der Richtungsbegriff in der Psychologie: Der spezielle und allgemeine hodologische Raum. Psychol. Forsch. 1934, 19, 249–265. [Google Scholar] [CrossRef]
- Sartre, J.P. L’Être et le Néant; Encyclopaedia Universalies: Paris, France, 2016. [Google Scholar]
- Bachelard, G. La Poética Del Espacio; Fondo de Cultura Económica: Madrid, Spain, 2005; Volume 183, ISBN 843750368X. [Google Scholar]
- Rasmussen, S.E. La Experiencia De La Arquitectura: Sobre La Percepción De Nuestro Entorno; Reverté: Barcelona, Spain, 2004. [Google Scholar]
- Bollnow, O.F. Hombre y Espacio; Labor: Barcelona, Spain, 1969. [Google Scholar]
- Lacoste, Y. Mondialisation et géopolitique. Hérodote 2003, 108, 3–43. [Google Scholar] [CrossRef]
- Buttimer, A.; Seamon, D. The Human Experience of Space and Place; Croom Helm: London, UK, 1980. [Google Scholar]
- Gutiérrez Plaza, J.I.; Somoza Medina, J. De itinera balearica. Crónica del VIII Coloquio y Jornadas de campo de Geografía Urbana. Boletín AGE 2006, 42, 329–340. [Google Scholar]
- Lynch, K. La Imagen de la Ciudad; Gustavo Gili: Barcelona, Spain, 2008. [Google Scholar]
- Vara Muñoz, J.L. Un análisis necesario: Epistemología de la geografía de la percepción. Pap. Geogr. 2010, 51–52, 337–344. [Google Scholar]
- Pallasmaa, J. The Geometry of Feeling. A Look at the Phenomenology of Architecture. Skala Nord. J. Archit. Art 1985, 4, 22–25. [Google Scholar]
- Pallasmaa, J. From metaphorical to ecological functionalism. Archit. Rev. 1993, 193, 74–79. [Google Scholar]
- Holl, S.; Pallasmaa, J.; Pérez-Gómez, A.P. Questions of Perception: Phenomenology of Architecture; A+U: Tokyo, Japan, 1994. [Google Scholar]
- Pérez-Gómez, A. Mood and Meaning in Architecture. In Mind in Architecture: Neuroscience, Embodiment, and the Future of Design; Robinson, S., Pallasmaa, J., Eds.; MIT Press: Cambridge, MA, USA, 2015; pp. 219–235. [Google Scholar]
- Böhme, G. The Aesthetics of Atmospheres; Thibaud, J.-P., Ed.; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Schmitz, H.; Müllan, R.O.; Slaby, J. Emotions outside the box—The new phenomenology of feeling and corporeality. Phenomenol. Cogn. Sci. 2011, 10, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Griffero, T. Atmosferologia: Estetica Degli Spazi Emozionali; Laterza: Roma-Bari, Italy, 2010. [Google Scholar]
- Griffero, T.; Moretti, G. Atmosphere/Atmospheres: Testing A New Paradigm; Mimesis International: Varese, Italy, 2018. [Google Scholar]
- Gross, R. Psychology: The Science of Mind and Behaviour; Hodder Education: London, UK, 2015. [Google Scholar]
- Bones, M.; Secchiaroli, G. Environmental Psychology: A Psycho-Social Introduction; Sage: London, UK, 1995. [Google Scholar]
- Kaminski, G. Umweltpsychologie: Perspektiven, Probleme, Praxis; Klett: Stuttgart, Germany, 1976. [Google Scholar]
- Kruse, L.; Graumann, C. Environmental psychology in Germany. In Handbook of Environmental Psychology; Bechtel, R.B., Churchman, A., Eds.; Wiley & Sons: New York, NY, USA, 1987; pp. 1195–1226. [Google Scholar]
- Pol, E. La Psicología Ambiental en Europa; Anthropos Editorial: Barcelona, Spain, 1988. [Google Scholar]
- Burke, E. A Philosophical Inquiry into the Origin of Our Ideas of the Sublime and Beautiful; Simon & Brown: Pall-Mall, UK, 2003. [Google Scholar]
- Kant, I. Crítica de la Razón Pura; Tecnos: Madrid, Spain, 2004. [Google Scholar]
- Zeising, A. Neue Lehre von den Proportionen des menschlichen Körpers; Vero Verlag: Norderstedt, Germany, 2015. [Google Scholar]
- Vischer, F.T. Kritische Gänge: Kritik Meiner Aesthetik; Cotta: Stuttgart, Germany, 1866. [Google Scholar]
- Vischer, R. On the Optical Sense of Form: A Contribution to Aesthetics. In Empathy, Form, and Space: Problems in German Aesthetics; Francis, H., Ed.; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Fechner, G.T. Vorschule der aesthetik; Breitkopf & Härtel: Leipzig, Germany, 1876. [Google Scholar]
- Wundt, W.M. Principles of Physiological Psychology; General Books LLC: London, UK, 2009. [Google Scholar]
- Stumpf, C. On the Psychological Origin of Spatial Imagination; Hirzel: Leipzig, Germany, 1873. [Google Scholar]
- Ash, M.G. Gestalt Psychology in German Culture, 1890–1967: Holism and the Quest for Objectivity; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Sternberg, R.J. Cognitive Psychology; Harcourt Brace College Publishers: Orlando, FL, USA, 1996. [Google Scholar]
- Koffka, K. Principles of Gestalt Psychology; International, M., Ed.; East Lansing, MI, USA, 2014. [Google Scholar]
- Köhler, W. Die physischen Gestalten in Ruhe und im Stationären Zustand. Eine Naturphilosophische Untersuchung; Vieweg+Teubner Verlag: Braunschweing, Germany, 1920. [Google Scholar]
- Köhler, W. Gestalt Psychology: An Introduction to New Concepts in Modern Psychology; Liveright Publishing Corporation: New York, NY, USA, 1992. [Google Scholar]
- Sheynin, O. Fechner as a statistician. Br. J. Math. Stat. Psychol. 2004, 57, 53–72. [Google Scholar] [CrossRef]
- Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. The Measurement of Meaning; University of Illinois Press: Urbana, IL, USA, 1957. [Google Scholar]
- Küller, R. A Semantic Model for Describing Perceived Environment; National Swedish Institute for Building Research: Stockholm, Sweden, 1972; ISBN 91-540-2079-4. [Google Scholar]
- Küller, R. Architecture and emotions. In Architecture for People; Milkellides, B., Ed.; Studio Vista: London, UK, 1980; pp. 87–100. [Google Scholar]
- Küller, R. Environmental assessment from a neuropsychological perspective. In Environment Cognition and Action: An Integrated Approach; Garling, T., Evans, G.W., Eds.; Oxford University Press: New York, NY, USA, 1991; pp. 111–147. [Google Scholar]
- Russell, J.A.; Mehrabian, A. Evidence for a three-factor theory of emotions. J. Res. Pers. 1977, 11, 273–294. [Google Scholar] [CrossRef]
- Gifford, R.; Hine, D.W.; Muller-Clemm, W.; Reynolds, D.J.; Shaw, K.T. Decoding Modern Architecture: A Lens Model Approach for Understanding the Aesthetic Differences of Architects and Laypersons. Environ. Behav. 2000, 32, 163–187. [Google Scholar] [CrossRef]
- Ergan, S.; Shi, Z.; Yu, X. Towards quantifying human experience in the built environment: A crowdsourcing based experiment to identify influential architectural design features. J. Build. Eng. 2018, 20, 51–59. [Google Scholar] [CrossRef]
- Nagamachi, M. Kansei Engineering: A new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 1995, 15, 3–11. [Google Scholar] [CrossRef]
- Higuera-Trujillo, J.L.; Montañana i Aviñó, A.; Llinares Millán, C. User evaluation of neonatology ward design: An application of Focus Group and Semantic Differential. HERD Heal. Environ. Res. Des. J. 2017, 10, 23–48. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Cooper, E.W.; Hoshino, Y.; Kamei, K. Kansei and colour harmony models for townscape evaluation. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2006, 220, 725–734. [Google Scholar] [CrossRef]
- Sendai, S. Architectural Kansei of “Wall” in the façade design by Le Corbusier. Kansei Eng. Int. J. 2011, 10, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Llinares, C.; Page, A.; Llinares, J. An approach to defining strategies for improving city perception. Case study of Valencia, Spain. Cities 2013, 35, 78–88. [Google Scholar] [CrossRef]
- Levin, D.J. Defining Evidence-Based Design. Healthc. Des. Mag. 2008, 8, 8. [Google Scholar]
- Edelstein, E.A.; Doctors, S.; Brandt, R.; Denton, B.; Cranz, G.; Mangel, R.; Martin, M.; Chong, G.H. The effects of colour and light on health: Trans-disciplinary research results. World Health Des. 2008, 1, 57–61. [Google Scholar]
- Ulrich, R.S. Essay: Evidence-based health-care architecture. Lancet 2006, 368, S38–S39. [Google Scholar] [CrossRef]
- van der Voordt, T.J.; Vrielink, D.; van Wegen, H.B. Comparative floorplan-analysis in programming and architectural design. Des. Stud. 1997, 18, 67–88. [Google Scholar] [CrossRef] [Green Version]
- Sherman, S.A.; Varni, J.W.; Ulrich, R.S.; Malcarne, V.L. Post-occupancy evaluation of healing gardens in a pediatric cancer center. Landsc. Urban Plan. 2005, 73, 167–183. [Google Scholar] [CrossRef]
- Devlin, A.S.; Arneill, A.B. Health care environments and patient outcomes: A review of the literature. Environ. Behav. 2003, 35, 665–694. [Google Scholar] [CrossRef]
- Iyendo, T.O. Exploring the effect of sound and music on health in hospital settings: A narrative review. Int. J. Nurs. Stud. 2016, 63, 82–100. [Google Scholar] [CrossRef]
- Salonen, H.; Lahtinen, M.; Lappalainen, S.; Nevala, N.; Knibbs, L.D.; Morawska, L.; Reijula, K. Physical characteristics of the indoor environment that affect health and wellbeing in healthcare facilities: A review. Intell. Build. Int. 2013, 5, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, R.S. Effects of gardens on health outcomes: Theory and research. In Healing Gardens: Therapeutic Benefits and Design Recommendations; Marcus, C.C., Barnes, M., Eds.; Wiley: New York, NY, USA, 1999; pp. 27–86. [Google Scholar]
- Ulrich, R.S.; Zimring, C.; Zhu, X.; DuBose, J.; Seo, H.B.; Choi, Y.S.; Quan, X.; Joseph, A. A review of the research literature on evidence-based healthcare design. HERD Health Environ. Res. Des. J. 2008, 1, 61–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tzortzopoulos, P.; Kagioglou, M. Healing built-environment effects on health outcomes: Environment–occupant–health framework. Build. Res. Inf. 2019, 47, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Banasiak, M. From Benchtop to Bedside: Exchanging Research Lessons Learned in An Undergraduate Program; The American Institute of Architects: Denver, CO, USA, 2008. [Google Scholar]
- Malenbaum, S.; Keefe, F.J.; Williams, A.; Ulrich, R.; Somers, T.J. Pain in its environmental context: Implications for designing environments to enhance pain control. Pain 2008, 134, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, R.S.; Zimring, C.; Quan, X.; Joseph, A. The environment’s impact on stress. In Improving Healthcare with Better Building Design; Marberry, S., Ed.; Health Administration Press: Chicago, IL, USA, 2006; pp. 37–61. [Google Scholar]
- Aaron, J.N.; Carlisle, C.C.; Carskadon, M.A.; Meyer, T.J.; Hill, N.S.; Millman, R.P. Environmental noise as a cause of sleep disruption in an intermediate respiratory care unit. Sleep 1996, 19, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Carpman, J.R.; Grant, M.A.; Simmons, D.A. Avoiding the hidden costs of ineffective wayfinding. Health Facil. Manag. 1990, 3, 28–30. [Google Scholar]
- Algase, D.L.; Beattie, E.R.; Antonakos, C.; Beel-Bates, C.A.; Yao, L. Wandering and the physical environment. Am. J. Alzheimer’s Dis. Other Dement. 2010, 25, 340–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlas, D.; Sama, A.E.E.; Ward, M.F.F.; Lesser, M.L.L. Comparison of the auditory and visual privacy of emergency department treatment areas with curtains versus those with solid walls. Ann. Emerg. Med. 2001, 28, 135–139. [Google Scholar] [CrossRef]
- Chaudhury, H.; Mahmood, A.; Valente, M. Advantages and Disadvantages of Single-Versus Multiple-Occupancy Rooms in Acute Care Environments A Review and Analysis of the Literature. Environ. Behav. 2005, 37, 760–786. [Google Scholar] [CrossRef]
- Leather, P.; Beale, D.; Santos, A.; Watts, J.; Lee, L. Outcomes of environmental appraisal of different hospital waiting areas. Environ. Behav. 2003, 35, 842–869. [Google Scholar] [CrossRef] [Green Version]
- Dobkins, K.R.; Heyman, G.D. Using neuroscience and behavioural data to tailor visual environments for infants and children. Intell. Build. Int. 2013, 5, 79–93. [Google Scholar] [CrossRef]
- Meyers-Levy, J.; Zhu, R. The influence of ceiling height: The effect of priming on the type of processing that people use. J. Consum. Res. 2007, 34, 174–186. [Google Scholar] [CrossRef]
- Taher, R. Organizational Creativity through Space Design; International Center for Studies in Creativity, Buffalo State College: Buffalo, NY, USA, 2008. [Google Scholar]
- Erkan, İ. Examining wayfinding behaviours in architectural spaces using brain imaging with electroencephalography (EEG). Archit. Sci. Rev. 2018, 61, 410–428. [Google Scholar] [CrossRef]
- Hull IV, R.B.; Harvey, A. Explaining the emotion people experience in suburban parks. Environ. Behav. 1989, 21, 323–345. [Google Scholar] [CrossRef]
- Joye, Y.; De Block, A. “Nature and I are Two”: A Critical Examination of the Biophilia Hypothesis. Environ. Values 2011, 20, 189–215. [Google Scholar] [CrossRef]
- Kellert, S.R.; Heerwagen, J.; Mador, M. Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Joye, Y. Architectural lessons from environmental psychology: The case of biophilic architecture. Rev. Gen. Psychol. 2007, 11, 305–328. [Google Scholar] [CrossRef] [Green Version]
- Dosen, A.S.; Ostwald, M.J. Evidence for prospect-refuge theory: A meta-analysis of the findings of environmental preference research. City, Territ. Archit. 2016, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, G. Origins of Architectural Pleasure; University of California Press: Los Angeles, CA, USA, 1999. [Google Scholar]
- Appleton, J. The Experience of Landscape; Wiley: London, UK, 1975. [Google Scholar]
- Kruithof, A.A. Tubular luminescence lamps for general illumination. Philips Tech. Rev. 1941, 6, 65–96. [Google Scholar]
- Park, M.Y.; Chai, C.G.; Lee, H.K.; Moon, H.; Noh, J.S. The Effects of Natural Daylight on Length of Hospital Stay. Environ. Health Insights 2018, 12. [Google Scholar] [CrossRef]
- Houser, K.W.; Tiller, D.K.; Bernecker, C.A.; Mistrick, R.G. The subjective response to linear fluorescent direct/indirect lighting systems. Light. Res. Technol. 2002, 34, 243–260. [Google Scholar] [CrossRef]
- Knez, I. Effects of indoor lighting on mood and cognition. J. Environ. Psychol. 1995, 15, 39–51. [Google Scholar] [CrossRef]
- Zhang, X.; Zuo, B.; Erskine, K.; Hu, T. Feeling light or dark? Emotions affect perception of brightness. J. Environ. Psychol. 2016, 47, 107–111. [Google Scholar] [CrossRef]
- Zeki, S. The representation of colours in the cerebral cortex. Nature 1980, 284, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Maffei, L.; Fiorentini, A. Arte e Cervello; Zanichelli: Bologna, Italy, 1995. [Google Scholar]
- Hogg, J.; Goodman, S.; Porter, T.; Mikellides, B.; Preddy, D.E. Dimensions and determinants of judgements of colour samples and a simulated interior space by architects and non-architects. Br. J. Psychol. 1979, 70, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, K.; Hidayetoglu, M.L.; Capanoglu, A. Effects of interior colors on mood and preference: Comparisons of two living rooms. Percept. Mot. Skills 2011, 112, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Chamilothori, K.; Chinazzo, G.; Rodrigues, J.; Dan-Glauser, E.; Wienold, J.; Andersen, M. Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality. Build. Environ. 2019, 150, 144–155. [Google Scholar] [CrossRef]
- Pals, R.; Steg, L.; Dontje, J.; Siero, F.W.; van Der Zee, K.I. Physical features, coherence and positive outcomes of person–environment interactions: A virtual reality study. J. Environ. Psychol. 2014, 40, 108–116. [Google Scholar] [CrossRef]
- Bateson, J.E.; Hui, M.K. The Ecological Validity of Photographic Slides and Videotapes in Simulating the Service Setting. J. Consum. Res. 1992, 19, 271–281. [Google Scholar] [CrossRef]
- Ijsselsteijn, W.A.; de Ridder, H.; Freeman, J.; Avons, S.E. Presence: Concept, determinants and measurement. In Proceedings of the SPIE Human Vision and Electronic Imaging V.; Rogowitz, B.E., Thrasyvoulos, N.P., Eds.; SPIE: San Jose, CA, USA, 2000; pp. 520–529. [Google Scholar]
- Schwarz, N.; Strack, F. Reports of subjective well-being: Judgmental processes and their methodological implications. Well-Being Found. Hedonic Psychol. 1999, 7, 61–84. [Google Scholar]
- Zaltman, G. How Customers Think: Essential Insights into the Mind of the Market; Harvard Business School Press: Boston, MA, USA, 2003. [Google Scholar]
- Rheingold, H. Virtual Reality: Exploring the Brave New Technologies of Artificial Experience and Interactive Worlds—From Cyberspace to Teledildonics; Simon & Schuster: New York, NY, USA, 1991. [Google Scholar]
- Vince, J. Introduction to Virtual Reality; Springer: New York, NY, USA, 2004. [Google Scholar]
- Winkielman, P.; Berntson, G.G.; Cacioppo, J.T. The psychophysiological perspective on the social mind. In Blackwell Handbook of Social Psychology: Intraindividual Processessychology; Tesser, A., Schwarz, N., Eds.; Blackwell Publishers: Oxford, UK, 2001; pp. 89–108. [Google Scholar]
- Poels, K.; Dewitte, S. How to capture the heart? Reviewing 20 years of emotion measurement in advertising. J. Advert. Res. 2006, 46, 18–37. [Google Scholar] [CrossRef]
- Reinerman-Jones, L.; Cosenzo, K.; Nicholson, D. Subjective and Objective Measures of Operator State in Automated Systems. In Advances in Understanding Human Performance. Neuroergonomics, Human Factors Design, and Special Populations; Marek, T., Karwowski, W., Valerie, R., Eds.; CRC Press: Boca Ratón, FL, USA, 2010; pp. 122–131. [Google Scholar]
- Reinerman-Jones, L.; Sollins, B.; Gallagher, S.; Janz, B. Neurophenomenology: An integrated approach to exploring awe and wonder. S. Afr. J. Philos. 2013, 32, 295–309. [Google Scholar] [CrossRef]
- Kandel, E.R. Principles of Neural Science; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Grabenhorst, F.; Rolls, E.T. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn. Sci. 2011, 15, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Kircher, T.; David, A. The Self in Neuroscience and Psychiatry; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Dewey, J. El arte como Experiencia; Paidós Ibérica: Barcelona, Spain, 2008. [Google Scholar]
- Breedlove, S.M.; Watson, N.V. Behavioral Neuroscience; Sinauer Associates: Sunderland, UK, 2019. [Google Scholar]
- Solms, M.; Turnbull, O. The Brain and the Inner World: An Introduction to the Neuroscience of Subjective Experience; Karnac Books: London, UK, 2002. [Google Scholar]
- Clément, G.; Reschke, M.F. Neuroscience in Space; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- de Paiva, A. Neuroscience for architecture: How building design can influence behaviors and performance. J. Civ. Eng. Archit. 2018, 12, 132–138. [Google Scholar]
- Nold, C. Emotional Cartography. Technologies of the Self. Available online: www.emotionalcartography.net/ (accessed on 18 March 2021).
- ANFA. Neuroscience & The Architecture of Spiritual Spaces; ANFA: Columbus, OH, USA, 2005. [Google Scholar]
- Eberhard, J.P. Architecture and the Brain: A new Knowledge Base from Neuroscience; Ostberg: Atlanta, GA, USA, 2007. [Google Scholar]
- Edelstein, E.A. Translational Design: The Relevance of Neuroscience to Architecture. In International Conference and Exhibition on Health Facility Planning, Design and Construction (PDC); American Society for Healthcare: San Diego, CA, USA, 2006. [Google Scholar]
- Cela-Conde, C.J.; Agnati, L.; Huston, J.P.; Mora, F.; Nadal, M. The neural foundations of aesthetic appreciation. Prog. Neurobiol. 2011, 94, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Zaidel, D. Neuropsychology of Art; Psychology Press: New York, NY, USA, 2005. [Google Scholar]
- Boeve, B.F.; Geda, Y.E. Polka music and semantic dementia. Neurology 2001, 57, 1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, N.; Peretz, I.; Johnsen, E.; Adolphs, R. Amygdala damage impairs emotion recognition from music. Neuropsychologia 2007, 45, 236–244. [Google Scholar] [CrossRef]
- Blanke, O.; Ortigue, S.; Landis, T. Color neglect in an artist. Lancet 2003, 316, 264. [Google Scholar] [CrossRef]
- Cantagallo, A.; Sala, S.D. Preserved insight in an artist with extrapersonal spatial neglect. Cortex 1998, 34, 163–189. [Google Scholar] [CrossRef]
- Halligan, P.W.; Marshall, J.C. The art of visual neglect. Lancet 1997, 350, 139–140. [Google Scholar] [CrossRef]
- Chatterjee, A. The neuropsychology of visual art: Conferring capacity. Int. Rev. Neurobiol. 2006, 74, 39–49. [Google Scholar]
- Chatterjee, A. Prospects for a neuropsychology of art. In Neuroaesthetics; Skov, M., Vartanian, O., Eds.; Baywood Publishing: New York, NY, USA, 2009; pp. 131–143. [Google Scholar]
- Miller, B.; Hou, C. Portraits of artists: Emergence of visual creativity in dementia. Arch. Neurol. 2004, 61, 842–844. [Google Scholar] [CrossRef] [Green Version]
- Bogousslavsky, J. Artistic creativity, style and brain disorders. Eur. Neurol. 2005, 54, 103–111. [Google Scholar] [CrossRef]
- Dirican, A.C.; Göktürk, M. Psychophysiological measures of human cognitive states applied in human computer interaction. Procedia Comput. Sci. 2011, 3, 1361–1367. [Google Scholar] [CrossRef] [Green Version]
- Ray, W.J.; Oathes, D. Brain imaging techniques. Int. J. Clin. Exp. Hypn. 2003, 51, 97–104. [Google Scholar] [CrossRef]
- Fairhall, S.L.; Ishai, A. Neural correlates of object indeterminacy in art compositions. Conscious. Cogn. 2008, 17, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Ishai, A.; Fairhall, S.L.; Pepperell, R. Perception, memory and aesthetics of indeterminate art. Brain Res. Bull. 2007, 73, 319–324. [Google Scholar] [CrossRef]
- Bagozzi, R.P. The role of psychophysiology in consumer research. In Handbook of Consumer Behavior; Robertson, T.S., Kassarjian, H.H., Eds.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1991; pp. 124–161. [Google Scholar]
- Soares, J.M.; Magalhães, R.; Moreira, P.S.; Sousa, A.; Ganz, E.; Sampaio, A.; Alves, V.; Marques, P.; Sousa, N. A hitchhiker’s guide to functional magnetic resonance imaging. Front. Neurosci. 2016, 10, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibault, R.T.; MacPherson, A.; Lifshitz, M.; Roth, R.R.; Raz, A. Neurofeedback with fMRI: A critical systematic review. Neuroimage 2018, 172, 786–807. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.X. Where Does EEG Come from and What Does It Mean? Trends Neurosci. 2017, 40, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Frounchi, J.; Amiri, M. Wavelet-based emotion recognition system using EEG signal. Neural Comput. 2017, 28, 1985–1990. [Google Scholar] [CrossRef]
- Yao, D.; Qin, Y.; Hu, S.; Dong, L.; Vega, M.L.B.; Sosa, P.A.V. Which Reference Should We Use for EEG and ERP practice? Brain Topogr. 2019, 32, 530–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 31005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boto, E.; Holmes, N.; Leggett, J.; Roberts, G.; Shah, V.; Meyer, S.S.; Duque, L.; Mullinger, K.J.; Tierney, T.M.; Bestmann, S.; et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018, 555, 657–661. [Google Scholar] [CrossRef]
- Pu, Y.; Cheyne, D.O.; Cornwell, B.R.; Johnson, B.W. Non-invasive investigation of human hippocampal rhythms using magnetoencephalography: A review. Front. Neurosci. 2018, 12, 273. [Google Scholar] [CrossRef] [Green Version]
- Valero-Cabré, A.; Amengual, J.L.; Stengel, C.; Pascual-Leone, A.; Coubard, O.A. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci. Biobehav. Rev. 2017, 83, 381–404. [Google Scholar] [CrossRef] [PubMed]
- Boucsein, W. Electrodermal Activity, 2nd ed.; Springer Science & Business Media: Newbury Park, NY, USA; London, UK; New Dehli, India, 2012. [Google Scholar]
- Dawson, M.E.; Schell, A.M.; Filion, D.L. The electrodermal system. In Handbook of Psychophysiology; Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., Eds.; University Press: Cambridge, UK, 2007; pp. 159–181. [Google Scholar]
- Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Raskin, D.C. Attention and Arousal. In Electrodermal Activity in Psychological Research; Prokasy, W.F., Raskin, D.C., Eds.; Academic Press: London, UK, 1973; pp. 123–156. [Google Scholar]
- Goldman, M. Principles of Clinical Electrocardiography; LANGE: Los Altos, CA, USA, 1976. [Google Scholar]
- Berntson, G.G.; Bigger, J.T.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235. [Google Scholar] [CrossRef] [Green Version]
- Laeng, B.; Sirois, S.; Gredebäck, G. Pupillometry: A Window to the Preconscious? Perspect. Psychol. Sci. 2012, 7, 18–27. [Google Scholar] [CrossRef]
- Hess, E.H.; Polt, J.M. Pupil size as related to interest value of visual stimuli. Science 1960, 132, 349–350. [Google Scholar] [CrossRef]
- Granholm, E.; Steinhauer, S.R. Pupillometric measures of cognitive and emotional processes. Int. J. Psychophysiol. 2004, 52, 1–6. [Google Scholar] [CrossRef]
- Di Dio, C.; Gallese, V. Neuroaesthetics: A review. Curr. Opin. Neurobiol. 2009, 19, 682–687. [Google Scholar]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef]
- Duchowski, A. Eye tracking Methodology: Theory and Practice; Springer Science & Business Media: London, UK, 2003. [Google Scholar]
- Schofield, C.A.; Johnson, A.L.; Inhoff, A.W.; Coles, M.E. Social anxiety and difficulty disengaging threat: Evidence from eye-tracking. Cogn. Emot. 2012, 26, 300–3011. [Google Scholar] [CrossRef] [Green Version]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; Oxford University Press: London, UK, 2011. [Google Scholar]
- Meißner, M.; Oll, J. The promise of eye-tracking methodology in organizational research: A taxonomy, review, and future avenues. Organ. Res. Methods 2019, 22, 590–617. [Google Scholar] [CrossRef]
- Kamen, G. Electromyographic Kinesiology. In Research Methods in Biomechanics; Robertson, D.G.E., Caldwell, G.E., Hamill, J., Kamen, G., Whittlesey, S.N., Eds.; Human Kinetics: Leeds, UK, 2004. [Google Scholar]
- Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 1971, 17, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Sato, W.; Fujimura, T.; Suzuki, N. Enhanced facial EMG activity in response to dynamic facial expressions. Int. J. Psychophysiol. 2008, 70, 70–74. [Google Scholar] [CrossRef]
- Larsen, J.T.; Norris, C.J.; Cacioppo, J.T. Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology 2003, 40, 776–785. [Google Scholar] [CrossRef]
- Wolf, K.; Mass, R.; Ingenbleek, T.; Kiefer, F.; Naber, D.; Wiedemann, K. The facial pattern of disgust, appetence, excited joy and relaxed joy: An improved facial EMG study. Scand. J. Psychol. 2005, 46, 403–409. [Google Scholar] [CrossRef]
- Calvo, M.G.; Nummenmaa, L. Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cogn. Emot. 2016, 30, 1081–1106. [Google Scholar] [CrossRef]
- Andreani, S.; Sayegh, A. Urban attractors, physical proximity and states of mind: Measuring dynamic experiences in varying typologies of the built environment. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 10–11. [Google Scholar]
- Kwon, J.; Kim, J. Individuals’ visual attention to interior elements in the audio-visual context of lived experiences. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 82–83. [Google Scholar]
- Suurenbroek, F.; Spanjar, G. (Eye)tracking users’ patterns: Visual experience and choice behavior in transition zones of Amsterdam-Southeast. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 176–177. [Google Scholar]
- Sussman, A. Using biometric software to understand the architectural experience and improve design. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 184–185. [Google Scholar]
- Chalup, S.K.; Hong, K.; Ostwald, M.J. Simulating pareidolia of faces for architectural image analysis. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2010, 2, 262–278. [Google Scholar]
- Frampton, K. Historia Crítica de la Arquitectura Moderna; Gustavo Gili: Barcelona, Spain, 2005. [Google Scholar]
- de Kort, Y.A.W.; Ijsselsteijn, W.A.; Kooijman, J.; Schuurmans, Y. Virtual laboratories: Comparability of real and virtual environments for environmental psychology. Presence Teleoperators Virtual Environ. 2003, 12, 360–373. [Google Scholar] [CrossRef]
- Lange, E. The limits of realism: Perceptions of virtual landscapes. Landsc. Urban Plan. 2001, 54, 163–182. [Google Scholar] [CrossRef]
- Steuer, J. Defining Virtual Reality: Dimensions determining telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Xu, S.; Li, Z.; Salvendy, G. Individualization of Head-Related Transfer Function for Three-Dimensional Virtual Auditory Display: A Review. In Proceedings of the Virtual Reality; Shumaker, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 397–407. [Google Scholar]
- Papale, P.; Chiesi, L.; Rampinini, A.C.; Pietrini, P.; Ricciardi, E. When neuroscience “touches” architecture: From hapticity to a supramodal functioning of the human brain. Front. Psychol. 2016, 7, 866. [Google Scholar] [CrossRef] [Green Version]
- Rangaraju, N.; Terk, M. Framework for immersive visualization of building analysis data. In Proceedings of the Fifth International Conference on Information Visualisation; Banissi, E., Khosrowshahi, F., Sarfraz, M., Ursyn, A., Eds.; IEEE: London, UK, 2001; pp. 37–42. [Google Scholar]
- Baños, R.M.; Botella, C.; Alcañiz, M.; Liaño, V.; Guerrero, B.; Rey, B. Immersion and emotion: Their impact on the sense of presence. Cyber Psychol. Behav. 2004, 7, 734–741. [Google Scholar] [CrossRef]
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- Slobounov, S.M.; Ray, W.; Johnson, B.; Slobounov, E.; Newell, K.M. Modulation of cortical activity in 2D versus 3D virtual reality environments: An EEG study. Int. J. Psychophysiol. 2015, 95, 254–260. [Google Scholar] [CrossRef]
- Churchill, E.F.; Snowdon, D. Collaborative virtual environments: An introductory review of issues and systems. Virtual Real. 1998, 3, 3–15. [Google Scholar] [CrossRef]
- Parsons, T.D. Virtual Reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Paranandi, M.; Sarawgi, T. Virtual Reality in Architecture: Enabling possibilities. In Proceedings of the 7th International Conference on ComputerAided Architectural Design Research in Asia (CAADRIA 2002); Moham Eshaq, A.R., Chee, W.K., Mai, N., Ken, T.K.N., Sharifah Nur, A.S.A., Eds.; CAADRIA: Cyberjaya, Malaysia, 2002; pp. 309–316. [Google Scholar]
- Morganti, F.; Carassa, A.; Geminiani, G. Planning optimal paths: A simple assessment of survey spatial knowledge in virtual environments. Comput. Hum. Behav. 2007, 23, 1982–1996. [Google Scholar] [CrossRef]
- McCall, C.; Hildebrandt, L.K.; Hartmann, R.; Baczkowski, B.M.; Singer, T. Introducing the Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in three emotionally evocative virtual worlds. Comput. Hum. Behav. 2016, 59, 93–107. [Google Scholar] [CrossRef]
- Díaz Levicoy, D. TIC en Educación Superior: Ventajas y desventajas. Educ. Tecnol. 2014, 4, 44–50. [Google Scholar]
- Zhang, L.; Chi, Y.M.; Edelstein, E.; Schulze, J.; Gramann, K.; Velasquez, A.; Cauwenberghs, G.; Macagno, E. Wireless physiological monitoring and ocular tracking: 3D calibration in a fully-immersive virtual health care environment. In Proceedings of the 32rd Annual international conference of the IEEE, Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; IEEE: Buenos Aires, Argentina, 2010; pp. 4464–4467. [Google Scholar]
- Higuera-Trujillo, J.L.; Marin-Morales, J.; Rojas, J.; López-Tarruella, J.; Llinares, C.; Guixeres, J.; Alcañíz, M. Emotional cartography in design: A novel technique to represent emotional states altered by spaces. In D&E 2016-10th Internacional Conference on Design & Emotion; Desmet, P., Fokkinga, S., Ludden, G., Cila, N., van Zuthem, H., Eds.; The Design & Emotion Society: Amsterdam, The Netherlands, 2016; pp. 561–586. [Google Scholar]
- Hobbs, H.; Hunker, K.; Demircay, V.; Rodriquez, T.; Issa, R. A Preference study among four interior architectural geometries in a semi-immersive virtual environment. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 52–53. [Google Scholar]
- Frost, P.; Warren, P. Virtual reality used in a collaborative architectural design process. In IEEE International Conference on Information Visualization. An International Conference on Computer Visualization and Graphics 2000; Banissi, E., Bannatyne, M., Chen, C., Khosrowshahi, F., Sarfraz, M., Ursyn, A., Eds.; Practical, Interactive Institute Malmö University: Malmö, Sweden, 2000; pp. 568–573. [Google Scholar]
- Cazorla, M.P.; Fiel, M.V.; Sanjuán, L.M.; Miralles, F.F. Representaciones virtuales y otros recursos técnicos en la accesibilidad al patrimonio cultural. EGA. Expresión Gráfica Arquit. 2011, 16, 164–173. [Google Scholar]
- Stevenson, C.; Runyon, S.; Schulze, J.; Cauwenberghs, G.; Rafii, M.; Macagno, E. Virtual environments to assess facility design for the cognitively impaired. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 98–99. [Google Scholar]
- Conroy, R. Spatial Navigation in Immersive Virtual Environments. Ph.D. Thesis, University College London, London, UK, 2001. [Google Scholar]
- Smith, S.P.; Trenholme, D. Rapid prototyping a virtual fire drill environment using computer game technology. Fire Saf. J. 2009, 44, 559–569. [Google Scholar] [CrossRef] [Green Version]
- LaViola, J.J.; Kruijff, E.; McMahan, R.P.; Bowman, D.; Poupyrev, I.P. 3D User Interfaces: Theory and Practice; Addison-Wesley Professional: Boston, MA, USA, 2017. [Google Scholar]
- Bliss, J.P.; Tidwell, P.D.; Guest, M.A. The Effectiveness of Virtual Reality for Administering Spatial Navigation Training to Firefighters. Presence Teleoperators Virtual Environ. 1997, 6, 73–83. [Google Scholar] [CrossRef]
- Napieralski, P.E.; Altenhoff, B.M.; Bertrand, J.W.; Long, L.O.; Babu, S.V.; Pagano, C.C.; Davis, T.A. An evaluation of immersive viewing on spatial knowledge acquisition in spherical panoramic environments. Virtual Real. 2014, 18, 189–201. [Google Scholar] [CrossRef]
- Richardson, A.E.; Montello, D.R.; Hegarty, M. Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem. Cognit. 1999, 27, 741–750. [Google Scholar] [CrossRef] [Green Version]
- van der Ham, I.J.M.; Faber, A.M.E.; Venselaar, M.; van Kreveld, M.J.; Löffler, M. Ecological validity of virtual environments to assess human navigation ability. Front. Psychol. 2015, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bozgeyikli, E.; Bozgeyikli, L.; Raij, A.; Katkoori, S.; Alqasemi, R.; Dubey, R. Virtual Reality Interaction Techniques for Individuals with Autism Spectrum Disorder: Design Considerations and Preliminary Results, Proceedings of the HCI International 2016 Conference; Springer: Toronto, ON, Canada, 2016; pp. 127–137. [Google Scholar]
- Tregillus, S.; Al Zayer, M.; Folmer, E. Handsfree omnidirectional VR navigation using head tilt. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems; ACM: Denver, CO, USA, 2017; pp. 4063–4068. [Google Scholar]
- Nescher, T.; Huang, Y.-Y.; Kunz, A. Planning redirection techniques for optimal free walking experience using model predictive control. In Proceedings of the 2014 IEEE Symposium on 3D User Interfaces (3DUI); Atlanta, GA, USA, 2014; pp. 111–118. [Google Scholar]
- Nabiyouni, M.; Saktheeswaran, A.; Bowman, D.A.; Karanth, A. Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. In Proceedings of the 2015 IEEE Symposium on 3D User Interfaces (3DUI), Arles, France, 23–24 March 2015; pp. 3–10. [Google Scholar]
- Bozgeyikli, E.; Raij, A.; Katkoori, S.; Dubey, R. Locomotion in Virtual Reality for Individuals with Autism Spectrum Disorder. In Proceedings of the 2016 Symposium on Spatial User Interaction; Association for Computing Machinery, Tokyo, Japan, 15–16 October 2016; pp. 33–42. [Google Scholar]
- Lee, J.; Ahn, S.; Hwang, J.I. A Walking-in-Place Method for Virtual Reality Using Position and Orientation Tracking. Sensors 2018, 18, 2832. [Google Scholar] [CrossRef] [Green Version]
- Hendrix, C.; Barfield, W. Presence within virtual environments as a function of visual display parameters. Presence Teleoperators Virtual Environ. 1996, 5, 290–301. [Google Scholar] [CrossRef]
- Kimura, K.; Reichert, J.F.; Olson, A.; Pouya, O.R.; Wang, X.; Moussavi, Z.; Kelly, D.M. Orientation in virtual reality does not fully measure up to the real-world. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ni, T.; Bowman, D.A.; Chen, J. Increased display size and resolution improve task performance in information-rich virtual environments. In GI ’06 Proceedings of Graphics Interface 2006; Mann, S., Gutwin, C., Eds.; Canadian Information Processing Society: Quebec, QC, Canada, 2006; pp. 139–146. [Google Scholar]
- Sharples, S.; Cobb, S.; Moody, A.; Wilson, J.R. Virtual Reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays 2008, 29, 58–69. [Google Scholar] [CrossRef]
- Ellis, S.R. Nature and origin of virtual environments: A bibliographical essay. Comput. Syst. Eng. 1991, 2, 312–346. [Google Scholar] [CrossRef]
- Hughes, J.F.; Van Dam, A.; Foley, J.D.; Feiner, S.K. Computer Graphics: Principles and Practice; Addison-Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Moscoso, C.; Matusiak, B.; Svensson, U.P.; Orleanski, K. Analysis of stereoscopic images as a new method for daylighting studies. ACM Trans. Appl. Percept. 2015, 11, 21. [Google Scholar] [CrossRef]
- Wood, D.; Fels, J. The natures of maps: Cartographic constructions of the natural world. Cartogr. Int. J. Geogr. Inf. Geovisualization 2008, 43, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Rohrmann, B.; Bishop, I.D. Subjective responses to computer simulations of urban environments. J. Environ. Psychol. 2002, 22, 319–331. [Google Scholar] [CrossRef]
- Higuera-Trujillo, J.L.; López-Tarruella, J.; Llinares Millán, C. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Appl. Ergon. 2017, 65, 398–409. [Google Scholar] [CrossRef]
- Rapoport, A. Facts and Models. In Design Methods in Architecture; Broadbent, G., Ward, A., Eds.; London, UK, 1969; pp. 136–146. [Google Scholar]
- Shields, J.A.E. Comparing physiological responses to modes of spatial representation. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 164–165. [Google Scholar]
- Lombard, M. Direct responses to people on the screen: Television and personal space. Communic. Res. 1995, 22, 288–324. [Google Scholar] [CrossRef]
- Duarte, E.; Rebelo, F.; Wogalter, M.S. Virtual reality and its potential for evaluating warning compliance. Hum. Factors Ergon. Manuf. Serv. Ind. 2010, 20, 526–537. [Google Scholar] [CrossRef]
- Hemeida, F.A.E.; Mostafa, H.H. Neuro architectural design. Int. J. Parallel Emergent Distrib. Syst. 2017, 32, S173–S179. [Google Scholar] [CrossRef]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef]
- Cho, M.E.; Kim, M.J. Measurement of user emotion and experience in interaction with space. J. Asian Archit. Build. Eng. 2017, 16, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Ergan, S.; Radwan, A.; Zou, Z.; Tseng, H.A.; Han, X. Quantifying Human Experience in Architectural Spaces with Integrated Virtual Reality and Body Sensor Networks. J. Comput. Civ. Eng. 2019, 33, 04018062. [Google Scholar] [CrossRef]
- Merril, J.R. Using emerging technologies such as virtual reality and the World Wide Web to contribute to a richer understanding of the brain. Ann. N. Y. Acad. Sci. 1997, 820, 229–233. [Google Scholar] [CrossRef]
- Radwan, A.; Ergan, S. Quantifying human experience in interior architectural spaces. In Proceedings of the Computing in Civil Engineering 2017; Lin, K., El-Gohary, N., Tang, P., Eds.; ASCE: Seattle, WA, USA, 2017; pp. 373–380. [Google Scholar]
- Riva, G. Virtual environments in clinical psychology. Psychother. Theory Res. Pract. Train. 2003, 40, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.A.; Schultheis, M.; Kerns, K.A.; Mateer, C. Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol. Rehabil. 2004, 14, 207–239. [Google Scholar] [CrossRef]
- Tarr, M.J.; Warren, W.H. Virtual reality in behavioral neuroscience and beyond. Nat. Neurosci. 2002, 5, 1089–1092. [Google Scholar] [CrossRef]
- Jelić, A.; Tieri, G.; De Matteis, F.; Babiloni, F.; Vecchiato, G. The Enactive Approach to Architectural Experience: A Neurophysiological Perspective on Embodiment, Motivation, and Affordances. Front. Psychol. 2016, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Pasqualini, I.; Llobera, J.; Blanke, O. The ‘I’ of architectonic perception. In Proceedings of the ANFA Conference—Poster Session; Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2012. [Google Scholar]
- Sanchez-Vives, M.V.V.; Slater, M. From presence to consciousness through Virtual Reality. Nat. Rev. Neurosci. 2005, 6, 332–339. [Google Scholar] [CrossRef]
- Ghahramani, Z.; Wolpert, D.M. Modular decomposition in visuomotor learning. Nature 1997, 386, 392–395. [Google Scholar] [CrossRef]
- Aguirre, G.K.; Detre, J.A.; Alsop, D.C.; D’Esposito, M. The parahippocampus subserves topographical learning in man. Cereb. Cortex 1996, 6, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Pugnetti, L.; Mendozzi, L.; Motta, A.; Cattaneo, A.; Barbieri, E.; Brancotti, A. Evaluation and retraining of adults’ cognitive impairments: Which role for virtual reality technology? Comput. Biol. Med. 1995, 25, 213–227. [Google Scholar] [CrossRef]
- Slater, M.; Guger, C.; Edlinger, G.; Leeb, R.; Pfurtscheller, G.; Antley, A.; Garau, M.; Brogni, A.; Friedman, D. Analysis of physiological responses to a social situation in an immersive virtual environment. Presence Teleoperators Virtual Environ. 2006, 15, 553–569. [Google Scholar] [CrossRef]
- Berka, C.; Pojmani, N.; Coyne, J.J.; Cole, A.; Denise, C. Neurogaming: Merging Cognitive Neuroscience & Virtual Simulation in an Interactive Training Platform. In Advances in Understanding Human Performance. Neuroergonomics, Human Factors Design, and Special Populations; Marek, T., Karwowski, W., Valerie, R., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 313–324. [Google Scholar]
- Azevedo, A.S.; Jorge, J.; Campos, P. Combining EEG data with place and plausibility responses as an approach to measuring presence in outdoor virtual environments. Presence Teleoperators Virtual Environ. 2014, 23, 354–368. [Google Scholar] [CrossRef]
- McCall, C.; Hildebrandt, L.K.; Bornemann, B.; Singer, T. Physiophenomenology in retrospect: Memory reliably reflects physiological arousal during a prior threatening experience. Conscious Cogn. 2015, 38, 60–70. [Google Scholar] [CrossRef]
- Bian, Y.; Yang, C.; Gao, F.; Li, H.; Zhou, S.; Li, H.; Sun, X.; Meng, X. A framework for physiological indicators of flow in VR games: Construction and preliminary evaluation. Pers. Ubiquitous Comput. 2016, 20, 821–832. [Google Scholar] [CrossRef]
- Chittaro, L.; Sioni, R.; Crescentini, C.; Fabbro, F. Mortality salience in virtual reality experiences and its effects on users’ attitudes towards risk. J. Hum.-Comput. Stud. 2017, 101, 10–22. [Google Scholar] [CrossRef]
- Kisker, J.; Gruber, T.; Schöne, B. Behavioral realism and lifelike psychophysiological responses in virtual reality by the example of a height exposure. Psychol. Res. 2019, 1–14. [Google Scholar] [CrossRef]
- Biedermann, S.V.; Biedermann, D.G.; Wenzlaff, F.; Kurjak, T.; Nouri, S.; Auer, M.K.; Wiedemann, K.; Briken, P.; Haaker, J.; Lonsdorf, T.B.; et al. An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biol. 2017, 15, 125. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Yeh, S.-C.; Huang, Y.; Wu, Z.; Cui, J.; Zheng, L. The Effect of Augmented Reality and Virtual Reality on Inducing Anxiety for Exposure Therapy: A Comparison Using Heart Rate Variability. J. Healthc. Eng. 2018, 2018, 6357351. [Google Scholar] [CrossRef]
- Zimmer, P.; Wu, C. Same but different? Replicating the real surroundings in a virtual Trier Social Stress Test (TSST-VR) does not enhance presence or the psychophysiological stress response. Physiol. Behav. 2019, 212, 112690. [Google Scholar] [CrossRef]
- Lin, J.; Cao, L.; Li, N. Assessing the influence of repeated exposures and mental stress on human wayfinding performance in indoor environments using virtual reality technology. Adv. Eng. Inform. 2019, 39, 53–61. [Google Scholar] [CrossRef]
- Peperkorn, H.M.; Alpers, G.W.; Mühlberger, A. Triggers of fear: Perceptual cues versus conceptual information in spider phobia. J. Clin. Psychol. 2014, 70, 704–714. [Google Scholar] [CrossRef]
- Gromer, D.; Reinke, M.; Christner, I.; Pauli, P. Causal Interactive Links between Presence and Fear in Virtual Reality Height Exposure. Front. Psychol. 2019, 10, 141. [Google Scholar] [CrossRef]
- Chiamulera, C.; Ferrandi, E.; Benvegnù, G.; Ferraro, S.; Tommasi, F.; Maris, B.; Zandonai, T.; Bosi, S. Virtual reality for neuroarchitecture: Cue reactivity in built spaces. Front. Psychol. 2017, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A. The Aesthetic Brain: How We Evolved to Desire Beauty and Enjoy Art; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Shimamura, A. Experiencing Art: In the Brain of the Beholder; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Biren, A. Spatial manifestations of the Human Psyche: Architecture based on neurological theories of aesthetic experience & environmental preference. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 20–21. [Google Scholar]
- Reimann, M.; Zaichkowsky, J.; Neuhaus, C.; Bender, T.; Weber, B. Aesthetic package design: A behavioral, neural, and psychological investigation. J. Consum. Psychol. 2010, 20, 431–441. [Google Scholar] [CrossRef]
- Halit, H.; de Hann, M.; Johnston, M.H. Modulation of event-related potentials by prototypical and atypical faces. Neuroreport 2000, 11, 1871–1875. [Google Scholar] [CrossRef]
- Martindale, C.; Moore, K. Priming, prototypicality, and preference. J. Exp. Psychol. Hum. Percept. Perform. 1988, 14, 661–670. [Google Scholar] [CrossRef]
- Postrel, V. The Substance of Style; HarperCollins: New York, NY, USA, 2003. [Google Scholar]
- Ramachandran, V.S.; Hirstein, W. The Science of Art: A Neurological Theory of Aesthetic Experience. J. Conscious. Stud. 1999, 6–7, 15–51. [Google Scholar]
- Frey, D. Zum Problem der Symmetrie in der bildenden Kunst. Stud. Gen. 1949, 2, 268–278. [Google Scholar]
- Gombrich, E.H. The Sense of Order; Phaidon: London, UK, 1984. [Google Scholar]
- Frith, C.D.; Nias, D.K.B. What determines aesthetic preferences? J. Gen. Psychol. 1974, 91, 163–173. [Google Scholar] [PubMed]
- Rentschler, I.; Jüttner, M.; Unzicker, A.; Landis, T. Innate and learned components of human visual preference. Curr. Biol. 1999, 9, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Baudouin, J.Y.; Tiberghien, G. Symmetry, averageness, and feature size in the facial attractiveness of women. Acta Psychol. 2004, 117, 313–332. [Google Scholar] [CrossRef]
- Rhodes, G.; Proffitt, F.; Grady, J.M.; Sumich, A. Facial symmetry and the perception of beauty. Psychon. Bull. Rev. 1998, 5, 659–669. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Symmetry; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Goldberg, E.; Funk, B.A.; Podell, K. How the brain deals with novelty and ambiguity: Implications for neuroaesthetics. Rend. Lincei 2012, 23, 227–238. [Google Scholar] [CrossRef]
- Julesz, B. Foundations of Cyclopean perception; Chicago University Press: Chicago, IL, USA, 1971. [Google Scholar]
- Locher, P.; Nodine, C. Symmetry Catches the Eye. In Eye movements: From Physiology to Cognition; O’Regan, J.K., Levy-Schoen, A., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 353–361. [Google Scholar]
- Arnheim, R. New Essays on the Psychology of Art; University of California Press: Berkeley, CA, USA, 1986. [Google Scholar]
- Höfel, L.; Jacobsen, T. Electrophysiological indices of processing symmetry and aesthetics: A result of judgment categorization or judgment report? J. Psychophysiol. 2007, 21, 9–21. [Google Scholar] [CrossRef]
- Arnheim, R. The Power of the Center: A Study of Composition in The Visual Arts; University of California Press: London, UK, 1982. [Google Scholar]
- Firstov, V.; Firstov, V.; Voloshinov, A.; Locher, P. The colorimetric barycenter of paintings. Empir. Stud. Arts 2007, 25, 209–2017. [Google Scholar] [CrossRef]
- Jalil, N.A.; Yunus, R.M.; Said, N.S. Environmental Colour Impact upon Human Behaviour: A Review. Procedia-Soc. Behav. Sci. 2012, 35, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Aminoff, E.; Gronau, N.; Bar, M. The parahippocampal cortex mediates spatial and non-spatial associations. Cereb. Cortex 2007, 17, 1493–1503. [Google Scholar] [CrossRef] [Green Version]
- Biaggio, M.K.; Supplee, K.A. Dimensions of aesthetic perception. J. Psychol. 1983, 114, 29–35. [Google Scholar] [CrossRef]
- Popper, K. Simplicity. In The Logic of Scientific Discovery; Routledge: London, UK, 1992. [Google Scholar]
- Berlyne, D.E. Novelty, Complexity, and Hedonic Value. Percept. Psychophys. 1970, 8, 279–286. [Google Scholar] [CrossRef]
- Berlyne, D.E. Studies in the New Experimental Aesthetics: Steps toward an Objective Psychology of Aesthetic Appreciation; Hemisphere: Oxford, UK, 1974. [Google Scholar]
- Helson, H. Adaptation-Level Theory: An Experimental and Systematic Approach to Behavior; Harper and Row: New York, NY, USA, 1964. [Google Scholar]
- Spehar, B.; Clifford, C.W.; Newell, B.R.; Taylor, R.P. Universal aesthetic of fractals. Comput. Graph. 2003, 27, 813–820. [Google Scholar] [CrossRef]
- Abboushi, B.; Elzeyadi, I.; Taylor, R.; Sereno, M. Fractals in architecture: The visual interest, preference, and mood response to projected fractal light patterns in interior spaces. J. Environ. Psychol. 2019, 61, 57–70. [Google Scholar] [CrossRef]
- Taylor, R.P.; Spehar, B.; Wise, J.A.; Clifford, C.W.; Newell, B.R.; Hagerhall, C.M.; Puncell, T.; Martin, T.P. Perceptual and physiological responses to the visual complexity of fractal patterns. Nonlinear Dyn. Psychol. Life Sci. 2005, 9, 89–114. [Google Scholar]
- Shermer, M. The Believing Brain; MacMillan: New York, NY, USA, 2011. [Google Scholar]
- Kandel, E. Reductionism in Art and Brain Science: Bridging the Two Cultures; Columbia University Press: New York, NY, USA, 2016. [Google Scholar]
- Bar, M. Visual objects in context. Nat. Rev. Neurosci. 2004, 5, 617–629. [Google Scholar] [CrossRef]
- Fenske, M.J.; Aminoff, E.; Gronau, N.; Bar, M. Top-down facilitation of visual object recognition: Object-based and context-based contributions. Prog. Brain Res. 2006, 155, 3–21. [Google Scholar]
- Brieber, D.; Nadal, M.; Leder, H.; Rosenberg, R. Art in Time and Space: Context Modulates the Relation between Art Experience and Viewing Time. PLoS ONE 2014, 9, e99019. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, W.M.; Weber, E.U. Content and discontent: Indications and implications of domain specificity in preferential decision making. In Research on Judgment and Decision Making; Goldstein, W.M., Hogarth, R.M., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 566–617. [Google Scholar]
- Oliva, A.; Torralba, A. The role of context in object recognition. Trends Cogn. Sci. 2007, 11, 520–527. [Google Scholar] [CrossRef]
- Zajonc, R.B. Feeling and thinking: Preferences need no inferences. Am. Psychol. 1980, 35, 151–175. [Google Scholar] [CrossRef]
- Bar, M. The proactive brain: Using analogies and associations to generate predictions. Trends Cogn. Sci. 2007, 11, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Leder, H. Explorationen in der Bildästhetik; Pabst: Lengerich, Germany, 2002. [Google Scholar]
- Reber, R.; Winkielman, P.; Schwarz, N. Effects of perceptual fluency on affective judgments. Psychol. Sci. 1998, 9, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Oliva, A.; Torralba, A. Building the gist of a scene: The role of global image features in recognition. In Progress in Brain Research; Martinez-Conde, S., Macknik, S.L., Martinez, L.M., Alonso, J.M., Tse, P.U., Eds.; Elsevier, 2006; Volume 155, pp. 23–36. [Google Scholar]
- Zeki, S. The Neurology of Ambiguity. Conscious. Cogn. 2004, 13, 173–196. [Google Scholar] [CrossRef]
- Simons, J.S.; Koutstaal, W.; Prince, S.; Wagner, A.D.; Schacter, D.L. Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage 2003, 19, 613–626. [Google Scholar] [CrossRef]
- Kubovy, M. Visual aesthetics. In Encyclopedia of Psychology; Kazdin, A.E., Ed.; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Munar, E.; Nadal, M.; Rosselló, J.; Flexas, A.; Moratti, S.; Maestú, F.; Marty, G.; Cela-Conde, C.J. Lateral Orbitofrontal Cortex Involvement in Initial Negative Aesthetic Impression Formation. PLoS ONE 2012, e38152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeki, S. Inner Vision: An Exploration of Art and the Brain; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Hagendoorn, I.G. Some speculative hypotheses about the nature and perception of dance and choreography. J. Conscious. Stud. 2004, 11, 79–110. [Google Scholar]
- Konecni, V.J. Determinants of aesthetic preference and effects of exposure to aesthetic stimuli: Social emotional, and cognitive factors. Prog. Exp. Pers. Res. 1978, 9, 149–197. [Google Scholar]
- Forgas, J.P. Mood and judgment: The Affect Infusion Model (AIM). Psychol. Bull. 1995, 117, 39–66. [Google Scholar] [CrossRef]
- Bower, G.H. Mood and memory. Am. Psychol. 1981, 36, 129–148. [Google Scholar] [CrossRef] [PubMed]
- Berlyne, D.E. Aesthetics and Psychobiology; Appleton-Century-Crofts: New York, NY, USA, 1971. [Google Scholar]
- Kirk, U.; Skov, M.; Christensen, M.S.; Nygaard, N. Brain correlates of aesthetic expertise: A parametric fMRI study. Brain Cogn. 2009, 69, 306–315. [Google Scholar] [CrossRef]
- Zajonc, R.B. Attitudinal effects of mere exposure. J. Pers. Soc. Psychol. 1968, 9, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Davenport, J.L.; Potter, M.C. Scene consistency in object and background perception. Psychol. Sci. 2004, 15, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Boyce, S.J.; Pollatsek, A.; Rayner, K. Effect of background information on object identification. J. Exp. Psychol. Hum. Percept. Perform. 1989, 15, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Biederman, I.; Vessel, E. Perceptual Pleasure and the Brain. Am. Sci. 2006, 94, 247–253. [Google Scholar] [CrossRef]
- Supp, G.G.; Schlögl, A.; Trujillo-Barreto, N.; Müller, M.M.; Gruber, T. Directed cortical information flow during human object recognition: Analyzing induced EEG gamma-band responses in brain’s source space. PLoS ONE 2007, 2, e684. [Google Scholar] [CrossRef]
- Martinovic, J.; Gruber, T.; Müller, M.M. Induced gamma band responses predict recognition delays during object identification. J. Cogn. Neurosci. 2007, 19, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Keil, A.; Müller, M.M.; Ray, W.J.; Gruber, T.; Elbert, T. Human gamma band activity and perception of a Gestalt. J. Neurosci. 1999, 19, 7152–7161. [Google Scholar] [CrossRef] [Green Version]
- Başar-Eroglu, C.; Strüber, D.; Kruse, P.; Başar, E.; Stadler, M. Frontal gamma-band enhancement during multistable visual perception. Int. J. Psychophysiol. 1996, 24, 113–125. [Google Scholar] [CrossRef]
- Leder, H. Determinants of preference. When do we like what we know? Empir. Stud. Arts 2001, 19, 201–211. [Google Scholar] [CrossRef]
- de Araujo, I.E.; Rolls, E.T.; Velazco, M.I.; Margot, C.; Cayeux, I. Cognitive modulation of olfactory processing. Neuron 2005, 46, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Ritterfeld, U. Social heuristics in interior design preferences. J. Environ. Psychol. 2002, 22, 369–386. [Google Scholar] [CrossRef]
- Erk, S.; Spitzer, M.; Wunderlich, A.P.; Galley, L.; Walter, H. Cultural objects modulate reward circuitry. Neuroreport 2002, 13, 2499–2503. [Google Scholar] [CrossRef]
- Schaefer, M.; Rotte, M. Favorite brands as cultural objects modulate reward circuit. Neuroreport 2007, 18, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Plassmann, H.; O’Doherty, J.; Shiv, B.; Rangel, A. Marketing actions can modulate neural representations of experienced pleasantness. Proc. Natl. Acad. Sci. USA 2008, 105, 1050–1054. [Google Scholar] [CrossRef] [Green Version]
- Gutchess, A.H.; Welsh, R.C.; Boduroĝlu, A.; Park, D.C. Cultural differences in neural function associated with object processing. Cogn. Affect. Behav. Neurosci. 2006, 6, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Chebat, J.C.; Morrin, M. Colors and Cultures: Exploring the Effects of Mall Décor on Consumer Perceptions. J. Bus. Res. 2007, 60, 189–196. [Google Scholar] [CrossRef]
- Eysenck, H.J.; Hawker, G.W. The taxonomy of visual aesthetic preferences: An empirical study. Empir. Stud. Arts 1994, 12, 95–101. [Google Scholar] [CrossRef]
- Gordon, P.C.; Holyoak, K.J. Implicit learning and generalisation of the ‘mere exposure’ effect. J. Pers. Soc. Psychol. 1983, 45, 492–500. [Google Scholar] [CrossRef]
- Barron, F.; Welsh, G.S. Artistic perception as a possible factor in personality style: Its measurement by a figure preference test. J. Psychol. 1952, 33, 199–203. [Google Scholar] [CrossRef]
- Hekkert, P.; van Wieringen, P.C.W. The impact of level of expertise on the evaluation of original and altered versions of post-impressionistic paintings. Acta Psychol. 1996, 94, 117–131. [Google Scholar] [CrossRef]
- Hekkert, P.; van Wieringen, P.C.W. Beauty in the eye of expert and nonexpert beholders: A study in the appraisal of art. Am. J. Psychol. 1996, 109, 389–407. [Google Scholar] [CrossRef]
- Winston, A.S.; Cupchik, G.C. The evaluation of high art and popular art by naive and experienced viewers. Vis. Arts Res. 1992, 18, 1–14. [Google Scholar]
- Iñarra, S.; Vidal, F.J.; Llinares, M.C.; Guixeres, J. Atención visual en la evaluación de espacios arquitectónicos. EGA. Expresión Gráfica Arquit. 2015, 20, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Höfel, L.; Brattico, E.; Jacobsen, T. Electrophysiological correlates of aesthetic music processing. Ann. N. Y. Acad. Sci. 2009, 1169, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S.; Magnussen, S. Expertise in pictorial perception: Eye-movement patterns and visual memory in artists and laymen. Perception 2007, 36, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Bangert, M.; Peschel, T.; Schlaug, G.; Rotte, M.; Drescher, D.; Hinrichs, H. Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage 2006, 30, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Cela-Conde, C.J.; García-Prieto, J.; Ramasco, J.J.; Mirasso, C.R.; Bajo, R.; Munar, E.; Flexas, A.; del-Pozo, F.; Maestú, F. Dynamics of brain networks in the aesthetic appreciation. Proc. Natl. Acad. Sci. USA 2013, 110, 10454–10461. [Google Scholar] [CrossRef] [Green Version]
- Farah, M. The Cognitive Neuroscience of Vision; Blackwell Publishers: Malden, MA, USA, 2000. [Google Scholar]
- Marr, D. Vision, A. A Computational Investigation into the Human Representation and Processing of Visual Information; WH Freeman and Company: New York, NY, USA, 1982. [Google Scholar]
- Jacobsen, T.; Höfel, L. Descriptive and evaluative judgment processes: Behavioral and electrophysiological indices of processing symmetry and aesthetics. Cogn. Affect. Behav. Neurosci. 2003, 3, 289–299. [Google Scholar] [CrossRef]
- Blood, A.J.; Zatorre, R.J. Intensely pleasurable response to music correlate with activity in the brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. USA 2001, 92, 11818–11823. [Google Scholar] [CrossRef] [Green Version]
- Wise, R.A.; Rompre, P.P. Brain dopamine and reward. Annu. Rev. Psychol. 1989, 40, 191–225. [Google Scholar] [CrossRef]
- Schwartz, G.E.; Davidson, R.J.; Maer, F. Right hemisphere lateralization for emotion in the human brain: Interactions with cognition. Science 1975, 190, 286–288. [Google Scholar] [CrossRef]
- Kosslyn, S.M. Seeing and imagining in the cerebral hemispheres: A computational approach. Psychol. Rev. 1987, 94, 148–175. [Google Scholar] [CrossRef]
- Kirk, U.; Skov, M.; Hulme, O.; Christensen, M.S.; Zeki, S. Modulation of aesthetic value by semantic context: An fMRI study. Neuroimage 2009, 44, 1125–1132. [Google Scholar] [CrossRef]
- Brown, S.; Gao, X.; Tisdelle, L.; Eickhoff, S.B.; Liotti, M. Naturalizing aesthetics: Brain areas for aesthetic appraisal across sensory modalities. Neuroimage 2011, 58, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Decety, J.; Jackson, P.L. The functional architecture of human empathy. Behav. Cogn. Neurosci. Rev. 2004, 3, 71–100. [Google Scholar] [CrossRef] [PubMed]
- Freedberg, D.; Gallese, V. Motion, emotion and empathy in esthetic experience. Trends Cogn. Sci. 2007, 11, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallgrave, H.F. Architecture and Embodiment: The Implications of the New Sciences and Humanities for Design; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Serences, J.T.; Yantis, S. Selective visual attention and perceptual coherence. Trends Cogn. Sci. 2006, 10, 38–45. [Google Scholar] [CrossRef]
- Lane, R.D.; Reiman, E.M.; Axelrod, B.; Yun, L.S.; Holmes, A.; Schwartz, G.E. Neural correlates of levels of emotional awareness: Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J. Cogn. Neurosci. 1998, 10, 525–535. [Google Scholar] [CrossRef]
- Ernst, L.H.; Weidner, A.; Ehlis, A.C.; Fallgatter, A.J. Controlled attention allocation mediates the relation between goal-oriented pursuit and approach–avoidance reactions to negative stimuli. Biol. Psychol. 2012, 91, 312–320. [Google Scholar] [CrossRef]
- Campbell-Sills, L.; Simmons, A.N.; Lovero, K.L.; Rochlin, A.A.; Paulus, M.P.; Stein, M.B. NeuroImage functioning of neural systems supporting emotion regulation in anxiety-prone individuals. Neuroimage 2011, 54, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Volle, E.; Gilbert, S.J.; Benoit, R.G.; Burgess, P.W. Specialization of the rostral prefrontal cortex for distinct analogy processes. Cereb. Cortex 2010, 20, 2647–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirino, E.; Belger, A.; Goldman-Rakic, P.; McCarthy, G. Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: An event-related functional magnetic resonance imaging study. J. Neurosci. 2000, 20, 6612–6618. [Google Scholar] [CrossRef] [PubMed]
- Munar, E.; Nadal, M.; Castellanos, N.P.; Flexas, A.; Maestú, F.; Mirasso, C.; Cela-Conde, C.J. Aesthetic appreciation: Event-related field and time-frequency analyses. Front. Hum. Neurosci. 2011, 5, 185. [Google Scholar] [CrossRef] [Green Version]
- Di Dio, C.; Macaluso, E.; Rizzolatti, G. The Golden Beauty: Brain Response to Classical and Renaissance Sculptures. PLoS Med. 2007, 2, e1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vartanian, O.; Goel, V. Neuroanatomical correlates of aesthetic preference for paintings. Neuroreport 2004, 15, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Ishizu, T.; Zeki, S. Toward a brain-based theory of beauty. PLoS ONE 2011, 6, e21852. [Google Scholar] [CrossRef] [Green Version]
- Cela-Conde, C.J.; Marty, G.; Maestú, F.; Ortiz, T.; Munar, E.; Fernández, A.; Roca, M.; Rosselló, J.; Quesney, F. Activation of the prefrontal cortex in the human visual aesthetic perception. Proc. Natl. Acad. Sci. USA 2004, 101, 6321–6325. [Google Scholar] [CrossRef] [Green Version]
- Francis, S.; Rolls, E.T.; Bowtell, R.; McGlone, F.; O’Doherty, J.; Browning, A.; Clare, S.; Smith, E. The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 1999, 10, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Small, D.M.; Gregory, M.D.; Mak, Y.E.; Gitelman, D.; Mesulam, M.M.; Parrish, T. Dissociation of neural representation of intensity and affective valuation in human gestation. Neuron 2003, 39, 701–711. [Google Scholar] [CrossRef] [Green Version]
- Wallis, J.D. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 2007, 30, 31–56. [Google Scholar] [CrossRef] [Green Version]
- Kirk, U. The Neural Basis of Object-Context Relationships on Aesthetic Judgement. PLoS ONE 2008, e3754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kringelbach, M.L.; Rolls, E.T. The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 2004, 72, 341–372. [Google Scholar] [CrossRef] [PubMed]
- Tsukiura, T.; Cabeza, R. Shared brain activity for aesthetic and moral judgments: Implications for the Beauty-is-Good stereotype. Soc. Cogn. Affect. Neurosci. 2011, 6, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Zeki, S.; Stutters, J. A brain-derived metric for preferred kinetic stimuli. Open Biol. 2012, 2, 120001. [Google Scholar] [CrossRef] [Green Version]
- Vessel, E.A.; Starr, G.G.; Rubin, N. The brain on art: Intense aesthetic experience activates the default mode network. Front. Hum. Neurosci. 2012, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, H.; Zeki, S. Neural correlates of beauty. J. Neurophysiol. 2004, 91, 1699–1705. [Google Scholar] [CrossRef] [Green Version]
- Teasdale, J.D.; Howard, R.J.; Cox, S.G.; Ha, Y.; Brammer, M.J.; Williams, S.C.; Checkley, S.A. Functional MRI study of the cognitive generation of affect. Am. J. Psychiatry 1999, 156, 209–215. [Google Scholar] [PubMed]
- de Tommaso, M.; Pecoraro, C.; Sardaro, M.; Serpino, C.; Lancioni, G.; Livrea, P. Influence of aesthetic perception on visual event-related potentials. Conscious. Cogn. 2008, 17, 933–945. [Google Scholar] [CrossRef]
- Taylor, S.F.; Phan, K.L.; Decker, L.R.; Liberzon, I. Subjective rating of emotionally salient stimuli modulates neural activity. Neuroimage 2003, 18, 650–659. [Google Scholar] [CrossRef]
- Kim, H.; Adolphs, R.; O’Doherty, J.P.; Shimojo, S. Temporal isolation of neural processes underlying face preference decisions. Proceedings of the National Academy of Sciences. Proc. Natl. Acad. Sci. USA 2007, 104, 18253–18258. [Google Scholar] [CrossRef] [Green Version]
- Paradiso, S.; Johnson, D.L.; Andreasen, N.C.; O’Leary, D.S.; Watkins, G.L.; Boles Ponto, L.L.; Hichwa, R.D. Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am. J. Psychiatry 1999, 156, 1618–1629. [Google Scholar] [CrossRef]
- Yue, X.; Vessel, E.A.; Biederman, I. The neural basis of scene preferences. Neuroreport 2007, 18, 525–529. [Google Scholar] [CrossRef]
- Ishizu, T.; Zeki, S. The brain’s specialized systems for aesthetic and perceptual judgment. Eur. J. Neurosci. 2013, 37, 1413–1420. [Google Scholar] [CrossRef]
- Jacobsen, T.; Schubotz, R.I.; Höfel, L.; Cramon, D.Y.V. Brain correlates of aesthetic judgment of beauty. Neuroimage 2006, 29, 276–285. [Google Scholar] [CrossRef]
- Small, D.M.; Zatorre, R.J.; Dagher, A.; Evans, A.C.; Jones-Gotman, M. Changes in brain activity related to eating chocolate. Brain 2001, 124, 1720–1733. [Google Scholar] [CrossRef] [Green Version]
- Gottfried, J.A.; Deichmann, R.; Winston, J.S.; Dolan, R.J. Functional heterogeneity in human olfactory cortex: An event-related functional magnetic resonance imaging study. J. Neurosci. 2002, 22, 10819–10828. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.; Nystrom, L.; Fissell, K.; Noll, D.; Fiez, J. Tracking the hemodynamic responses for reward and punishment. J. Neurophysiol. 2000, 84, 3072–3077. [Google Scholar] [CrossRef] [Green Version]
- Iidaka, T.; Okada, T.; Murata, T.; Omori, M.; Kosaka, H.; Sadato, N.; Yonekura, Y. Age-related differences in the medial temporal lobe responses to emotional faces as revealed by fMRI. Hippocampus 2002, 12, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Salimpoor, V.N.; Benovoy, M.; Longo, G.; Larcher, K.; Cooperstock, J.; Dagher, A.; Zatorre, R.J. The rewarding aspects of music listening involve the dopaminergic striatal reward systems of the brain: An investigation with [C11]raclopride PET and fMRI. Neuroimage 2008, 47, S39–S41. [Google Scholar] [CrossRef]
- Koelsch, S.; Fritz, T.; Müller, K.; Friederici, A.D. Investigating emotion with music: An fMRI study. Hum. Brain Mapp. 2006, 27, 239–250. [Google Scholar] [CrossRef]
- Koelsch, S.; Fritz, T.; Schlaug, G. Amygdala activity can be modulated by unexpected chord functions during music listening. Neuroreport 2008, 19, 1815–1819. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Clark, A. Happily entangled: Prediction, emotion, and the embodied mind. Synthesethese 2018, 195, 2559–2575. [Google Scholar] [CrossRef]
- Cupchik, G.C.; Vartanian, O.; Crawley, A.; Mikulis, D.J. Viewing artworks: Contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain Cogn. 2009, 70, 84–91. [Google Scholar] [CrossRef]
- Leder, H.; Belke, B.; Oeberst, A.; Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol. 2004, 95, 489–508. [Google Scholar] [CrossRef]
- Chatterjee, A. Prospects for a Cognitive Neuroscience of Visual Aesthetics. Bull. Psychol. Arts 2004, 4, 56–60. [Google Scholar]
- Coburn, A.; Vartanian, O.; Chatterjee, A. Buildings, beauty, and the brain: A neuroscience of architectural experience. J. Cogn. Neurosci. 2017, 29, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Nadal, M.; Munar, E.; Capó, M.À.; Rosselló, J.; Cela-Conde, C.J. Towards a framework for the study of the neural correlates of aesthetic preference. Spat. Vis. 2008, 21, 379–396. [Google Scholar]
- Linaraki, D.; Voradaki, G. The Interaction of Space with the Human Nervous System and its Impact on Human Psychology. In Proceedings of the ANFA Conference—Poster Session; Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2012. [Google Scholar]
- Jelić, A. Designing “pre-reflective” architecture. Implications of neurophenomenology for architectural design and thinking. Ambiances 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- von Hayek, F.A. The Sensory Order; Chicago University Press: Chicago, IL, USA, 1952. [Google Scholar]
- Arnheim, R. Art and Visual Perception: A Psychology of the Creative Eye; University of California Press: Berkeley, CA, USA, 2004. [Google Scholar]
- Hebb, D.O. The Organisation of Behavior; Wiley: New York, NY, USA, 1949. [Google Scholar]
- Neutra, R.J. Survival through Design; Oxford University Press: New York, NY, USA, 1954. [Google Scholar]
- Moholy-Nagy, L. Von Material zu Architektur; Florian Kupferberg: Mainz, Germany, 1929. [Google Scholar]
- Robinson, S.; Pallasmaa, J. Mind in Architecture: Neuroscience, Embodiment, and the Future of Design; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Varela, F.; Thompson, E.; Rosch, E. The Embodied Mind. Cognitive Science and Human Experience; MIT Press: London, UK, 2016. [Google Scholar]
- Vijayan, V.T.; Embi, M.R. Probing phenomenological experiences through electroencephalography brainwave signals in neuroarchitecture study. Int. J. Built Environ. Sustain. 2019, 6, 11–20. [Google Scholar] [CrossRef]
- Ulrich, R.S. Natural versus urban scenes: Some psychophysiological effects. Environ. Behav. 1981, 13, 523–556. [Google Scholar] [CrossRef]
- Arbib, M.A. Toward a Neuroscience of the Design Process. In Mind in Architecture: Neuroscience, Embodiment, and the Future of Design; Robinson, S., Pallasmaa, J., Eds.; MIT Press: Cambridge, MA, USA, 2015; pp. 75–98. [Google Scholar]
- Banasiak, M. Cultivating a culture for Neuro-Architecture. In Proceedings of the ANFA Conference—Poster Session; Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2012. [Google Scholar]
- Edelstein, E.A.; Sax, C.L. Diffusion of innovation: Neuroscience & Architecture from Pedagogy to Practice. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 32–33. [Google Scholar]
- Manganelli, J.; Green, K.; Brooks, J.; Mocko, G.; Walker, I.; Healy, S. Patterns in Architecture, Cognition, Systems, and Software: Representing and Analyzing Cognition during the Design Process. In Proceedings of the ANFA Conference—Poster Session; Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2012. [Google Scholar]
- Wiesmann, M.; Ishai, A. Expertise reduces neural cost but does not modulate repetition suppression. Cogn. Neurosci. 2011, 2, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, M. Neural Mechanisms of Place Attachment. In Proceedings of the ANFA Conference—Poster Session; Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2012. [Google Scholar]
- Golledge, R.G. Human wayfinding and cognitive maps. In Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes; Golledge, R.G., Ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1999; pp. 5–45. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Peponis, J.; Wineman, J. Spatial structure of environment and behavior. In Handbook of Environmental Psychology; Bechtel, R.B., Churchman, A., Eds.; Wiley & Sons: New York, NY, USA, 2002; pp. 271–291. [Google Scholar]
- Edelstein, E.A.; Gramann, K.; Schulze, J.; Shamlo, N.B.; van Erp, E.; Vankov, A.; Makeig, S.; Wolszon, L.; Macagno, E. Neural Responses during Navigation in the Virtual Aided Design Laboratory Brain Dynamics of Orientation in Architecturally Ambiguous Space. In Proceedings of the Movement and Orientation in Built Environments: Evaluating Design Rationale and User Cognition; Haq, S., Hölscher, C., Torgrude, S., Eds.; SFB/TR 8: Veracruz, Mexico, 2008; pp. 35–41. [Google Scholar]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef] [Green Version]
- Thapan, K.; Arendt, J.; Skene, D.J. An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 2001, 535, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.V.; Gonzalez, E.W.; McEachron, D.L. Chronobioengineering indoor lighting to enhance facilities for ageing and Alzheimer’s disorder. Intell. Build. Int. 2013, 5, 48–60. [Google Scholar] [CrossRef]
- Edelstein, E.A. Influence of architectural lighting on health. Inf. Newsl. 2009, 7, 1–5. [Google Scholar]
- Ising, H.; Raun, C. Acute and chronic endocrine effects of noise: Review of the research conducted at the Institute for Water, Soil and Air Hygiene. Noise Heal. 2000, 2, 7. [Google Scholar]
- Alvarsson, J.J.; Wiens, S.; Nilsson, M.E. Stress recovery during exposure to nature sound and environmental noise. Int. J. Environ. Res. Public Health 2010, 7, 1036–1104. [Google Scholar] [CrossRef]
- Martínez-Soto, J.; Gonzales-Santos, L.; Pasaye, E.; Barrios, F.A. Exploration of neural correlates of restorative environment exposure through functional magnetic resonance. Intell. Build. Int. 2013, 5, 10–28. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, M.; Chun, C. Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Build. Environ. 2015, 88, 65–72. [Google Scholar] [CrossRef]
- Martínez Soto, J.; Nanni, M.; Gonzales-Santos, L.; Pasaye, E.; Barrios, F. Neural responses to restorative environments: An Eye Tracking and fMRI study. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 62–63. [Google Scholar]
- Tilley, S.; Neale, C.; Patuano, A.; Cinderby, S. Older people’s experiences of mobility and mood in an urban environment: A mixed methods approach using electroencephalography (EEG) and interviews. Int. J. Environ. Res. Public Health 2017, 14, 151. [Google Scholar] [CrossRef]
- Alvarez, A. Museum of Memory: An analysis of how museum circulation can help visitors remember a space. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 8–9. [Google Scholar]
- Du, S.; Shu, E.; Tong, F.; Ge, Y.; Li, L.; Qiu, J.; Guillotel, P.; Fleureau, J.; Danieau, F.; Muller, D. Visualizing the emotional journey of a museum. In Proceedings of the 2016 EmoVis Conference on Emotion and Visualization; Kerren, A., Cernea, D., Pohl, M., Eds.; Linkoping University: Sonoma, CA, USA, 2016; pp. 7–14. [Google Scholar]
- Kirchberg, V.; Tröndle, M. The museum experience: Mapping the experience of fine art. Curator Museum J. 2015, 58, 169–193. [Google Scholar] [CrossRef]
- Tschacher, W.; Greenwood, S.; Kirchberg, V.; Wintzerith, S.; van den Berg, K.; Tröndle, M. Physiological correlates of aesthetic perception of artworks in a museum. Psychol. Aesthet. Creat. Arts 2012, 6, 96. [Google Scholar] [CrossRef]
- Lacuesta, R.; Garcia, L.; García-Magariño, I.; Lloret, J. System to recommend the best place to live based on wellness state of the user employing the heart rate variability. IEEE Access 2017, 5, 10594–10604. [Google Scholar] [CrossRef]
- Tsunetsugu, Y.; Miyazaki, Y.; Sato, H. Visual effects of interior design in actual-size living rooms on physiological responses. Build. Environ. 2005, 40, 1341–1346. [Google Scholar] [CrossRef]
- Chow, L. Enriched Environment. A Treatment Centre for Transitional Youth with Mental Illness. Ph.D. Thesis, Carleton University, Ottawa, ON, Canada, 2015. [Google Scholar]
- Kayan, C. Neuro-Architecture. Enriching Healthcare Environments for Children. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2011. [Google Scholar]
- Edelstein, E.A. Translational Design: The intersection of Neuroscience and Architecture. Master’s Thesis, New School of Architecture & Design, San Diego, CA, USA, 2006. [Google Scholar]
- Arbib, M.A. The challenge of adapting Neuroscience to the needs of Architecture. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; pp. 12–13. [Google Scholar]
- Dance, A. The brain within buildings. Proc. Natl. Acad. Sci. USA 2017, 114, 785–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramann, K.; Müller, H.J.; Schönebeck, B.; Debus, G. The neural basis of ego-and allocentric reference frames in spatial navigation: Evidence from spatio-temporal coupled current density reconstruction. Brain Res. 2006, 1118, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gossmann, J.; Stevenson, C.; Chi, M.; Cauwenberghs, G.; Gramann, K.; Schulze, J.; Otto, P.; Tzyy-Ping, J.; Peterson, R.; et al. Spatial cognition and architectural design in 4d immersive virtual reality: Testing cognition with a novel audiovisual cave-cad tool. In Proceedings of the Proceedings of the Spatial Cognition for Architectural Design Conference; Bhatt, M., Hölscher, C., Shipley, T.F., Eds.; New York, NY, USA, 2011; pp. 41–50. [Google Scholar]
- Marchette, S.A.; Vass, L.K.; Ryan, J.; Epstein, R.A. Outside looking in: Landmark generalization in the human navigational system. J. Neurosci. 2015, 35, 14896–14908. [Google Scholar] [CrossRef] [Green Version]
- Burgess, N.; Maguire, E.A.; Spiers, H.J.; O’Keefe, J. A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 2001, 14, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, G.K.; Zarahn, E.; D’esposito, M. An area within human ventral cortex sensitive to “building” stimuli: Evidence and implications. Neuron 1998, 21, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Banaei, M.; Hatami, J.; Yazdanfar, A.; Gramann, K. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Front. Hum. Neurosci. 2017, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Gonzalez-Mora, J.L.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. J. Environ. Psychol. 2015, 41, 10–18. [Google Scholar] [CrossRef]
- McNaughton, B.L.; Battaglia, F.P.; Jensen, O.; Moser, E.I.; Moser, M.B. Path integration and the neural basis of the’cognitive map. Nat. Rev. Neurosci. 2006, 7, 663–678. [Google Scholar] [CrossRef]
- O’Keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Clarendon Press: Oxford, UK, 1978. [Google Scholar]
- Zola-Morgan, S.; Squire, L.R.; Amaral, D.G. Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci. 1986, 6, 2950–2967. [Google Scholar] [CrossRef] [Green Version]
- Ekstrom, A.D.; Caplan, J.B.; Ho, E.; Shattuck, K.; Fried, I.; Kahana, M.J. Human hippocampal theta activity during virtual navigation. Hippocampus 2005, 15, 881–889. [Google Scholar] [CrossRef]
- Epstein, R.; Harris, A.; Stanley, D.; Kanwisher, N. The parahippocampal place area: Recognition, navigation, or encoding? Neuron 1999, 23, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Burgess, N.; Maguire, E.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Nasr, S.; Echavarria, C.E.; Tootell, R.B. Thinking outside the box: Rectilinear shapes selectively activate scene-selective cortex. J. Neurosci. 2014, 34, 6721–6735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacha, L.; Matsumoto, N.; Mansouri, A. Electrophysiological Evaluation of Perceived Complexity in Streetscapes. J. Asian Archit. Build. Eng. 2015, 14, 585–592. [Google Scholar] [CrossRef]
- Banaei, M.; Yazdanfar, A.; Nooreddin, M.; Yoonessi, A. Enhancing urban trails design quality by using electroencephalography device. Procedia-Soc. Behav. Sci. 2015, 201, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Kober, S.E.; Neuper, C. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. Int. J. Psychophysiol. 2011, 79, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Martin, J.L.; Gehrman, P.; Shochat, T.; Corey-Bloom, J.; Marler, M.; Nolan, S.; Levi, L. Effect of light on agitation in institutionalized patients with severe Alzheimer disease. Am. J. Geriatr. Psychiatry 2003, 11, 194–203. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sato, M. Physiological Responses to llluminance and Color Temperature of Lighting. Ann. Physiol. Anthropol. 1992, 11, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, H.; Sakaguchi, T. Effect of illuminance and color temperature on lowering of physiological activity. Appl. Hum. Sci. 1999, 18, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Minguillon, J.; Lopez-Gordo, M.A.; Renedo-Criado, D.A.; Sanchez-Carrion, M.J.; Pelayo, F. Blue lighting accelerates post-stress relaxation: Results of a preliminary study. PLoS ONE 2017, e0186399. [Google Scholar] [CrossRef]
- Shin, Y.B.; Woo, S.H.; Kim, D.H.; Kim, J.; Kim, J.J.; Park, J.Y. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment. Neurosci. Lett. 2015, 584, 28–32. [Google Scholar] [CrossRef]
- Soto Magan, V.E.; Webler, F.S.; Andersen, M. Perceived and yet not seen: Non-visual effects in daylit spaces. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 94–95. [Google Scholar]
- Küller, R.; Mikellides, B.; Janssens, J. Color, arousal, and performance—A comparison of three experiments. Color Res. Appl. 2009, 34, 141–152. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. USA 2013, 110, 10446–10453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppenheim, I.; Mühlmann, H.; Blechinger, G.; Mothersill, I.W.; Hilfiker, P.; Jokeit, H.; Kurthen, M.; Krämer, G.; Grunwald, T. Brain electrical responses to high- and low-ranking buildings. Clin. EEG Neurosci. 2009, 40, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Mecklinger, A.; Kriukova, O.; Mühlmann, H.; Grunwald, T. Cross-cultural differences in processing of architectural ranking: Evidence from an event-related potential study. Cogn. Neurosci. 2014, 5, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, A.; Talmon, R.; Karp, O.; Amir, I.; Bar, M.; Grobman, Y.J. Affective response to architecture–investigating human reaction to spaces with different geometry. Archit. Sci. Rev. 2016, 60, 116–125. [Google Scholar] [CrossRef]
- Bertamini, M.; Palumbo, L.; Gheorghes, T.N.; Galatsidas, M. Do observers like curvature or do they dislike angularity? Br. J. Psychol. 2016, 107, 154–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pati, D.; O’Boyle, M.; Hou, J.; Nanda, U.; Ghamari, H. Can hospital form trigger fear response? HERD Heal. Environ. Res. Des. J. 2016, 9, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, C.M. Wellbuilt for wellbeing: Using sensors and surveys to explore the indoor environment and health. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 90–91. [Google Scholar]
- Kallai, J.; Makany, T.; Csatho, A.; Karadi, K.; Horvath, D.; Kovacs-Labadi, B.; Jarai, R.; Nadel, L.; Jacobs, J.W. Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 2007, 121, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Sussman, A.; Hollander, J.B. Cognitive Architecture: Designing for How We Respond to the Built Environment; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Fich, L.B.; Gimmier, A.; Petrini, L.; Jelic, A.; Djebbara, Z.; Jönsson, P. Does views to nature and the design of spaces matter? In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 68–69. [Google Scholar]
- Chamilothori, K.; Chinazzo, G.; Rodrigues, J.; Dan-Glauser, E.; Wienold, J.; Andersen, M. Perceived interest and heart rate response to façade and daylight patterns in virtual reality. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 42–43. [Google Scholar]
- Vecchiato, G.; Jelic, A.; Tieri, G.; Maglione, A.G.; De Matteis, F.; Babiloni, F. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 2015, 16, 425–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choo, H.; Nasar, J.L.; Nikrahei, B.; Walther, D.B. Neural codes of seeing architectural styles. Sci. Rep. 2017, 7, 40201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecchiato, G.; Tieri, G.; Jelic, A.; De Matteis, F.; Maglione, A.G.; Babiloni, F. Electroencephalographic correlates of sensorimotor integration and embodiment during the appreciation of virtual architectural environments. Front. Psychol. 2015, 6, 1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, R.S. Human responses to vegetation and landscapes. Landsc. Urban Plan. 1986, 13, 29–44. [Google Scholar] [CrossRef]
- Laumann, K.; Gärling, T.; Stormark, K.M. Selective attention and heart rate responses to natural and urban environments. J. Environ. Psychol. 2003, 23, 125–134. [Google Scholar] [CrossRef]
- Mazumder, R.; Ellard, C. The space between: An exploration into how urban environments influence affect and distance perception. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 104–105. [Google Scholar]
- Navarrete, D.A. Applied cognitive architecture: The restorative impact of perceived open space. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 122–123. [Google Scholar]
- Skov, M. Neuroaesthetic problems: A framework for neuroaesthetic research. In Neuroaesthetics; Skov, M., Vartanian, O., Eds.; Baywood Publishing: Amityville, NY, USA, 2009; pp. 9–26. [Google Scholar]
- Bruce, V.; Green, P.R.; Georgeson, M.A. Visual Perception: Physiology, Psychology and Ecology; Psychology Press: New York, NY, USA, 2003. [Google Scholar]
- Bourdieu, P. Social space and symbolic power. Sociol. Theory 1989, 7, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Ebrahem, S. Exploring the phenomenological perception of the architectural spatial experience. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 56–57. [Google Scholar]
- O’Neill, M.E. Corporeal experience: A haptic way of knowing. J. Archit. Educ. 2001, 55, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, T.; Buchta, K.; Kohler, M.; Schroger, E. The primacy of beauty in judging the aesthetics of objects. Psychol. Rep. 2004, 94, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Richter, H.; Britt, D. Dada, Art and Anti-Art, World of Art; Thames & Hudson: New York, NY, USA, 1997. [Google Scholar]
- Clay, F. The origin of the aesthetic emotion. Sammelbände Int. Musik. 1908, 9, 282–290. [Google Scholar]
- Brown, S.; Dissanayake, E. The arts are more than aesthetics: Neuroaesthetics as narrow aesthetics. In Neuroaesthetics; Skov, M., Vartanian, O., Eds.; Baywood Publishing: Amityville, NY, USA, 2009; pp. 43–57. [Google Scholar]
- Poldrack, R.A. Can cognitive processes be inferred from neuroimaging data? Trends Cogn. Sci. 2006, 10, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Cacioppo, J.T.; Berntson, G.G.; Larsen, J.T.; Poehlmann, K.M.; Ito, T.A. The Psychophysiology of Emotion. In Handbook of Emotions; Lewis, M., Haviland-Jones, J.M., Barrett, L.F., Eds.; Guilford Press: New York, NY, USA, 2000; pp. 173–191. [Google Scholar]
- Winkielman, P.; Cacioppo, J.T. Mind at ease puts a smile on the face: Psychophysiological evidence that processing facilitation elicits positive affect. J. Pers. Soc. Psychol. 2001, 81, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, M.; Williams, A.; Oloyede, A. Wearable neuroimaging and emotion: Investigating emotional responses to architectural environments with functional near-Infrared spectroscopy (fNIRS). In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; p. 58. [Google Scholar]
- Babiloni, F.; Cherubino, P.; Graziani, I.; Trettel, A.; Bagordo, G.M.; Cundari, C.; Borghini, G.; Aricò, P.; Maglione, A.G.; Vecchiato, G. The great beauty: A by neuroelectric imaging during the observation of the real Michelangelo’s Moses sculpture. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 6965–6968. [Google Scholar]
- Siddharth Patel, A.N.; Jung, T.P.; Sejnowski, T.J. A wearable multi-modal bio-sensing system towards real-world applications. IEEE Trans. Biomed. Eng. 2018, 66, 1137–1147. [Google Scholar] [CrossRef]
- Smith, M.; Nanda, U.; Macagno, E.; Greving, T. A culture of experimentation: From the torrey pines living lab to emerging neuro- architecture lab. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 174–175. [Google Scholar]
- Locher, P.; Krupinski, E.A.; Mello-Thoms, C.; Nodine, C.F. Visual interest in pictorial art during an aesthetic experience. Spat. Vis. 2007, 21, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, M.E.K. Make a safe environment by design. J. Gerontol. Nurs. 1985, 11, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Batteux, C. Les Beaux Arts Réduits à un Même Principe; Durand: Paris, France, 1746. [Google Scholar]
- Holl, S. Cuestiones de Percepción: Fenomenología de la Arquitectura; Gustavo Gili: Barcelona, Spain, 2011; ISBN 9788425224058. [Google Scholar]
- Djebbara, Z. Incentive architecture: Neural correlates of spatial affordances during transition in architectural settings. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 52–53. [Google Scholar]
- Srikantharajah, J.; Ellard, C.; Condia, B. Place, peripheral vision, and space perception: A pilot study in VR. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 180–181. [Google Scholar]
- Rooney, K.K.; Condia, R.J.; Loschky, L.C. Focal and ambient processing of built environments: Intellectual and atmospheric experiences of architecture. Front. Psychol. 2017, 8, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, B.K. Smell and the architectural experience. In Proceedings of the 2014 ANFA Conference; Albright, T., Cooke, G., Marks, F., Whitelaw, A., Macagno, E., Eds.; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2014; p. 68. [Google Scholar]
- Marks, L.E. The Unity of the Senses: Interrelations among the Modalities; Academic Press: London, UK, 1978. [Google Scholar]
- Jones, P.B.; Canniffe, E. Modern Architecture through Case Studies 1945–1990; Architectural Press: Oxford, UK, 2007. [Google Scholar]
- Trehub, S.E. Human processing predispositions and musical universals. In The Origins of Music; Wallin, N.L., Merker, B., Brown, S., Eds.; MIT Press: Cambridge, MA, USA, 2000; pp. 427–448. [Google Scholar]
- Dutton, D. The Art Instinct: Beauty, Pleasure, & Human Evolution; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Child, I.L. Aesthetic theories. In Handbook of Perception; Carterette, E.C., Friedman, M.P., Eds.; Academic Press: New York, NY, USA, 1978; pp. 111–131. [Google Scholar]
- Reber, R.; Schwarz, N.; Winkielman, P. Processing Fluency and Aesthetic Pleasure: Is Beauty in the Perceiver’s Processing Experience? Personal. Soc. Psychol. Rev. 2004, 8, 364–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumthor, P. Pensar la Arquitectura; Gustavo Gili: Barcelona, Spain, 2014. [Google Scholar]
- Appenzeller, T. Evolution or Revolution? Science 1998, 282, 1451–1454. [Google Scholar] [CrossRef]
- Skov, M.; Nadal, M. Art is not special: An assault on the last lines of defense against the naturalization of the human mind. Rev. Neurosci. 2018, 29. [Google Scholar] [CrossRef] [Green Version]
- Rakic, P. Neurogenesis in adult primate neocortex: An evaluation of the evidence. Nat. Rev. Neurosci. 2002, 3, 65–71. [Google Scholar] [CrossRef]
- Livingston, R.B. Brain mechanisms in conditioning and learning. Neurosci. Res. Program Bull. 1966, 4, 349–354. [Google Scholar]
- Kozbelt, A. Tensions in naturalistic, evolutionary explanations of aesthetic reception and production. New Ideas Psychol. 2017, 47, 113–120. [Google Scholar] [CrossRef]
- Whitfield, A. Individual differences in evaluation of architectural colour: Categorization effects. Percept. Mot. Skills 1984, 59, 183–186. [Google Scholar] [CrossRef]
- Vessel, E.A.; Maurer, N.; Denker, A.H.; Starr, G.G. Stronger shared taste for natural aesthetic domains than for artifacts of human culture. Cognition 2018, 179, 121–131. [Google Scholar] [CrossRef]
- Swaab, D. Somos Nuestro Cerebro; Plataforma: Barcelona, Spain, 2014. [Google Scholar]
- Cupchik, G.C.; Winston, A.S.; Herz, R.S. Judgments of similarity and difference between paintings. Vis. Arts Res. 1992, 14, 37–50. [Google Scholar]
- Ackerman, D. Una Historia Natural de los Sentidos; Anagrama: Barcelona, Spain, 1992. [Google Scholar]
- Pallasmaa, J.; Mallgrave, H.F.; Arbib, M.A. Architecture and Neuroscience; Tapio Wirkkala-Rut Bryk Foundation: Helsinki, Finland, 2013. [Google Scholar]
- Eberhard, J.P. Sustainability and Neuroscience. In Sustainable Environmental Design in Architecture: Impacts on Health; Rassia, S.T., Pardalos, P.M., Eds.; Springer: New York, NY, USA, 2012; pp. 3–6. [Google Scholar]
- Sternberg, E.M. Healing Spaces; Harvard University Press: London, UK, 2009. [Google Scholar]
- Turk, M.R.; Amr, A.; Al Rawi, O. A school designed to improve student’s brain activity using integrated neuro-architectural design aspects (qeeg-vr). In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 146–147. [Google Scholar]
- Goldstein, R.N. Architectural design and the collaborative research environment. Cell 2006, 127, 243–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auvray, M.; Spence, C. The multisensory perception of flavor. Conscious. Cogn. 2008, 17, 1016–1031. [Google Scholar] [CrossRef]
- Hollander, J.; Foster, V. Brain responses to architecture and planning: A preliminary neuro-assessment of the pedestrian experience in Boston, Massachusetts. Archit. Sci. Rev. 2016, 59, 474–481. [Google Scholar]
- Mavros, P.; Austwick, M.Z.; Smith, A.H. Geo-EEG: Towards the use of EEG in the study of urban behaviour. Appl. Spat. Anal. Policy 2016, 9, 191–212. [Google Scholar] [CrossRef] [Green Version]
- Portugali, J. Toward a cognitive approach to urban dynamics. Environ. Plan. B Plan. Des. 2004, 31, 589–613. [Google Scholar] [CrossRef]
- Taylor-Hochberg, A. Emerging methodologies of neuro-urbanism: Operationalizing neuroscience in architecture and urban planning practice. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 186–187. [Google Scholar]
- Barrett, P.; Sharma, M.; Zeisel, J. Optimal spaces for those living with dementia: Principles and evidence. Build. Res. Inf. 2019, 47, 734–746. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, J. Improving person-centered care through effective design. Generations 2013, 37, 45–52. [Google Scholar]
- Zuanon, R.; de Faria, B.A. Landscape Design and Neuroscience Cooperation: Contributions to the Non-pharmacological Treatment of Alzheimer’s Disease. In Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management, Proceedings of the Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management; Duffy, V.G., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 353–374. [Google Scholar]
- Slater, M.; Usoh, M.; Steed, A. Depth of Presence in virtual environments. Presence Teleoperators Virtual Environ. 1994, 3, 130–144. [Google Scholar] [CrossRef]
- Riches, S.; Elghany, S.; Garety, P.; Rus-Calafell, M.; Valmaggia, L. Factors Affecting Sense of Presence in a Virtual Reality Social Environment: A Qualitative Study. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Diemer, J.; Alpers, G.W.; Peperkorn, H.M.; Shiban, Y.; Mühlberger, A. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 2015, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The Past, Present, and Future of Virtual and Augmented Reality Research: A network and cluster analysis of the literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriegeskorte, N.; Simmons, W.K.; Bellgowan, P.S.; Baker, C.I. Circular analysis in systems neuroscience: The dangers of double dipping. Nat. Neurosci. 2009, 12, 535–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Zangeneh Soroush, M.; Maghooli, K.; Setarehdan, S.K.; Motie Nasrabadi, A. A Review on EEG Signals Based Emotion Recognition. Int. Clin. Neurosci. J. 2018, 4, 118–129. [Google Scholar] [CrossRef]
- Valenza, G.; Lanata, A.; Scilingo, E.P. The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 2012, 3, 237–249. [Google Scholar] [CrossRef]
- Calvo, R.A.; D’Mello, S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 2018, 4, 118–129. [Google Scholar] [CrossRef]
- Camerer, C.; Loewenstein, G.; Prelec, D. Neuroeconomics: How neuroscience can inform economics. J. Econ. Lit. 2005, 43, 9–64. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Caballero, A.; Martínez-Rodrigo, A.; Pastor, J.M.; Castillo, J.C.; Lozano-Monasor, E.; López, M.T.; Zangróniz, R.; Latorre, J.M.; Fernández-Sotos, A. Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 2016, 64, 55–73. [Google Scholar] [CrossRef]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Gentili, C.; Pasquale, E.; Alcañiz, M.; Valenza, G. Real vs. immersive-virtual emotional experience: Analysis of psycho-physiological patterns in a free exploration of an art museum. PLoS ONE 2019, 14, e0223881. [Google Scholar] [CrossRef] [PubMed]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.; Valenza, G. Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. 2018, 8, 13657. [Google Scholar] [CrossRef] [PubMed]
- Marín-Morales, J.; Llinares, C.; Guixeres, J.; Alcañiz, M. Emotion Recognition in Immersive Virtual Reality: From Statistics to Affective Computing. Sensors 2020, 20, 5163. [Google Scholar] [CrossRef] [PubMed]
- Arbib, M.A. Brains, machines and buildings: Towards a neuromorphic architecture. Intell. Build. Int. 2012, 4, 147–168. [Google Scholar] [CrossRef]
- Arbib, M.A.; Ngoon, T.; Janes, E. From neural space to physical space: Giving a “brain” to a building. In Proceedings of the 2018 ANFA Conference; The Academy of Neuroscience for Architecture: La Jolla, CA, USA, 2018; pp. 16–17. [Google Scholar]
- Lehrerm, J. Proust y la Neurociencia; Ediciones Paidós: Barcelona, Spain, 2010. [Google Scholar]
- Pepperell, R. Art, Energy and the Brain. In Progress in Brain Research; Christensen, J.F., Gomila, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 417–435. [Google Scholar]
- McAuley, L.; Tugwell, P.; Moher, D. Does the inclusion of grey literature influence estimates of intervention effectiveness reported in meta-analyses? Lancet 2000, 356, 1228–1231. [Google Scholar] [CrossRef]
- Keehner, M.; Fischer, M.H. Naive realism in public perceptions of neuroimages. Nat. Rev. Neurosci. 2011, 12, 118. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, D.; Callard, F. Social science and neuroscience beyond interdisciplinarity: Experimental entanglements. Theory, Cult. Soc. 2015, 32, 3–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source Type | Source | Number of References |
---|---|---|
Database (N = 289.145) | Springer | 259,121 |
NDLTD | 10,962 | |
PubMed | 5609 | |
Elsevier | 3438 | |
Taylor & Francis | 3209 | |
IEEE | 2416 | |
Avery | 1949 | |
Wiley | 1523 | |
Emerald | 453 | |
Reference Lists | 278 | |
PsvcINFO | 178 | |
Cogprints | 9 | |
Repositories (N = 37.635) | Google Scholar | 36,249 |
Dialnet | 711 | |
ScieLo | 675 | |
Reference lists (N = 278) | Academy of Neuroscience for Architecture | 69 |
Neuroscience + Architecture | 41 | |
International Network for Neuroaesthetics | 168 | |
Total | 327,058 |
Category | Sub-Category |
---|---|
1. The impact of architecture on human beings and directly associated research | |
2. Base approaches to the cognitive-emotional dimension of architecture | 2a Geometry |
2b1 Space phenomenology | |
2b2 Geographical experience | |
2c1 Philosophy | |
2c2 Environmental psychology | |
2c3 Evidence-based design | |
3. New architectural study and practise tools | 3a Neuroscience |
3b Virtual reality | |
3c Combined neuroscientific and virtual reality technologies | |
4. The cognitive-emotional dimension of architecture through neuro-aesthetics | 4a Neuroscience and psychology in art and aesthetics |
5. Neuroscience in architecture |
Principle | Trend |
---|---|
Totality | The whole is different from the sum (the perception of entities depends on their context) |
Dialectic | Establishing entities separate from their background |
Contrast | The entity is better perceived if there is marked contrast with its background |
Hierarchy | The greater the importance of an entity, the more hierarchical its parts are |
Birkhoff | Entities with multiple axes are more positively perceived |
Symmetry | To perceive features as symmetrical, around a centre point |
Multi-stability | Perceiving different entities from the same ambiguous experience |
Reification | To assign more information to a perception than is contained in the base stimuli |
Completion | To perceive forms as closed when they are not |
Closure | To perceive closed forms as better |
Continuity | To integrate elements of entities if they are aligned |
Good Gestalt | To integrate elements of entities if they form a regular pattern |
Invariance | To recognise entities, regardless of transformations |
Proximity | Group entities based on their proximity |
Similarity | Group entities based on their similarities |
Experience | To categorise stimuli based on previous experiences |
Design Variable | Effect |
---|---|
Ceiling height | High ceilings inspire freedom, low ceilings calm [177]. |
High ceilings generate greater creativity and feelings of comfort [178]. | |
Ceiling height positively affects wayfinding [179] | |
Presence of vegetation | Vegetation reduces stress and anxiety [4]. |
In parks, pleasure increases based on tree density, and arousal with weed density [180]. | |
Biophilia hypothesis: preference for natural forms [181,182]. | |
Attention restoration theory: natural environments are restorative. Their restorative characteristics are “fascination,” “being away,” “coherence,” and “compatibility” [183]. | |
Complexity | Preference for moderate levels of complexity, similar to a savannah environment [184]. |
Prospect-refuge: preference for natural and built environments, which offer visual control of the environment and places to hide [185,186,187]. | |
Illumination | Colour temperature and illuminance are interrelated with comfort [188]. |
Natural light reduces hospital stays [189]. | |
Light and form are interrelated: walls and ceilings influence the perception of brightness. A room appears larger when it receives more indirect light [190]. | |
Mood valence and cognitive performance alter based on light parameters: colour temperature with a less negative effect on mood, improved cognitive performance, the combination of colour temperature, and illuminance with better evaluation in mood, improved cognitive performance [191]. | |
Emotional states affect the perception of brightness [192]. | |
Colour | Extracted at an early stage of visual processing [193] |
Wide variety of effects on aesthetic preferences [194]. | |
Hue and saturation are related to the emotional state [195]. | |
Warm tones have higher arousal values, and colder tones are lower [196]. | |
Use | The use to which a space is put influences its psychological evaluation [197]. |
Coherence | In natural settings, the coherence of a setting with wooden furniture is significantly greater than a setting with metal furniture, but significantly less than a setting without furniture [198]. |
Objective Aspect | Effect/Related Neurophysiological Activity (RNA) | Appreciation | WOROI |
---|---|---|---|
Symmetry | Symmetry and asymmetry can evoke emotional states [359]. | Between both there is a wide spectrum of compositions [360]. | |
General preference for symmetry [361]. | In graphic patterns [362]. | ||
In faces [363,364]. | |||
Traditionally linked to beauty [365]. | |||
Various artistic currents have used this [358]. | A certain tendency to break it to avoid rigidity [366]. | ||
Detected rapidly in different circumstances [367]. | Including in art [368]. | ||
May be due to a cognitive propensity to process [369]. | |||
RNA: sustained posterior activity, spontaneously during its analysis [370]. | 21 | ||
Centre | The geometric centre of a visual work has special importance [371]. | The “colorimetric barycentre” of a painting corresponds closely to its geometric centre [372]. | |
Colour | The colour of light has various influences at neurophysiological and behavioural levels [373]. | ||
RNA: Prefrontal cortex activity is related to coloured objects [374]. | 22 | ||
Complexity | Has great weight in aesthetic judgement [375]. | ||
An aspect that lacks uniqueness [376], a part of other variables. | Has been combined with aspects such as symmetry [369]. | ||
Preference for moderate levels of complexity [377,378]. | Its effects depend on the level of adaptation of the observer [379]. | ||
Preference in general for low fractal dimensions, between 1.3 and 1.5 [380], and for medium-high in architecture [381]. | Affects EDA recording [382]. | ||
Order | Can improve the reading of a complex pattern and, therefore, its aesthetic evaluation, but a lack of complexity evokes monotony, and complexity without order evokes chaos [166]. | Some current architectural works are proof of this imbalance, this being one of the reasons for the increase in written explanations [165]. | |
Pattern recognition as a factor with a high impact on natural selection [383]. | |||
Visual brain understood as a pattern-recognition device [384]. | |||
Proportion | Certain ratios, such as the golden section, generate greater preference [93]. | ||
Context | Important when making general perceptual judgments [385,386]. | And when making aesthetic judgements in particular [387,388]. | |
The representation of the context of an object in terms of its relationships to other objects or through a statistical summary of the scene [389]. | |||
A rapid affective precognitive assessment of the environment is undertaken, based on elements of the scene [390]. | |||
RNA: memory subsystems may be altered by context [374]. | |||
RNA: the para-hippocampal cortex participates in contextual associations [374]. | 65 | ||
RNA: the retro-splenial cortex participates in contextual associations [391]. | 310 | ||
Processing fluency | Clear images are processed more easily [358]. | Contributes to making images more preferred [392,393]. | |
However, to distinguish certain basic scenes (such as indoor vs. outdoor), very crude information might be sufficient [394]. | |||
Ambiguity is an inherent aspect of the process, relates to openness to multiple interpretations [395]. | |||
RNA: The left fusiform gyrus seems to participate more in semantic processing, and the right fusiform gyrus participates in visual recognition [396]. | 133, 134 |
Subjective Aspect | Neurobehavioural Effect/Related Neurophysiological Activity (RNA) | Sub-Effect/Appreciation | WOROI |
---|---|---|---|
Emotional state | Affects aesthetic judgement [401]. | Influences the way a work of art is processed [402]. | |
Tendency to memorise and associate information consistent with the emotional state of the subject [403]. | |||
Affects judgement of distance | |||
Familiarity—Novelty | Affects aesthetic judgement [377,404,405,406]. | Objects are processed more efficiently in a familiar context [407,408]. | |
For a work to be attractive it must be located in a specific range of the “novelty/familiarity’’ ratio [366]. | |||
RNA: the frontal lobe and the right hemisphere participate in novelty processing [366] | 18, 707 | ||
RNA: blood-oxygen-dependent level is reduced by repeating an image [409]. | |||
RNA: the gamma band exhibits greater activity in the inferior-temporal, superior-parietal, and frontal brain areas when viewing familiar than non-familiar objects [410]. | 16, 168, 18 | ||
RNA: the gamma band exhibits a stronger increase after 250 ms of identification of familiar objects [411]. | Related to increased activity in the gamma band in the occipital [412] and frontal areas, when observing ambiguous objects [413]. | 26, 18 | |
Pre-classification | Previous considerations affect aesthetic judgment. | Knowing that a work of art is a forgery alters both familiarity and aesthetic judgements [414]. | |
RNA: neural activity can be modulated by external influences, as with the semantic labelling of scents [415]. | |||
Social: Social Status | Demonstrations of dominance or wealth influence aesthetic judgment [416]. | Related to activation of the reward-related brain areas [417]. | |
RNA: reward circuitry most activated by objects associated with wealth or social dominance [418]. | |||
RNA: Knowing the economic value of a product increases preference and activation of the medial OFC [419]. | 698 | ||
Social: Culture | Modulates visual perceptual processing [420]. | Affects even basic visual aspects, such as colour [421]. | |
Related to artistic sensitivity [422]. | Can be developed with expertise, something for which humans are perhaps conditioned, given that a self-rewarding experience is elicited when a work is recognised [423]. | ||
Significant in aesthetic judgement [424,425]. | |||
Behavioural differences in terms of how experts and non-experts experience art [426]. | |||
Related to style-based processing [427]. | |||
Architectural eye tracking-based studies [428]. | |||
RNA: expertise generates different event-related potentials in aesthetic judgment [429]. | |||
RNA: expertise generates different eye-movement patterns and visual memory [430]. | |||
RNA: expertise generates changes in memory and perception-related structures [431]. | |||
RNA: expertise helps to execute creative processes faster (considering that these involve a decrease in average arousal measured through EDA and EMG). |
Aspect | Related Neurophysiological Activity | WOROI | |
---|---|---|---|
Attention | Stimulus location | Frontal eye field [445]. | 34 |
Cingulate cortex [446]. | 4 | ||
Attention given to external stimuli | Rostral prefrontal cortex [447]. Plays a role in emotion regulation [448] and memory [449]. | 46 | |
Observation | Dorsolateral prefrontal cortex [450], when stimuli deviate from expectations. | 89 | |
Inferior temporal area at around 170 ms [451] in visual art. | 16 | ||
Insula [452]. | 67 | ||
Judgement | General impression (at around 300 ms): greater negativity in the event-related potentials of stimuli judged as not being beautiful ([370]. Generated by, among others, the right lateral orbitofrontal cortex [398] and the medial rostral prefrontal cortex [453,454]. | 286, 46 | |
Deep evaluation (at around 600 ms): hemispheric lateralisation to the right-hand side of the brain, especially positive when looking at something beautiful [370]. | |||
Prefrontal area [455]. | 22 | ||
Left prefrontal dorsolateral cortex, between 400 ms and 1000 ms [455]. | 90 | ||
Orbitofrontal cortex [456] and its lateral subregion [457,458] for ugly stimuli [459]. Related to reward evaluation [460] and the taking of morality-related decisions [461]. | 685, 286 | ||
Connection between the orbitofrontal cortex, anterior insula, rostral cingulate, and ventral basal ganglia [441]; suggestive of exteroceptive and interoceptive information comparisons. | 685, 97, 363, 35 | ||
Medial orbitofrontal cortex [462]. Activated together with the perceptual area specialised in the specific stimulus mode [454]. | 685 | ||
Anterior medial prefrontal cortex [463]. | 55 | ||
Motor cortex [464]. While observing sculptures [452]. | 214 | ||
Left parietal cortex [464] and its subdivision, known as the precuneus [465]. Concordant with the highest amplitude found in the P3 electrode [466]. | 83, 171 | ||
Left cingulate sulcus, bilateral occipital poles, and fusiform gyri, with greater activation when looking at preferred pictures [467]. | 4, 26, 62 | ||
Occipito-temporal cortex [468]. | 178 | ||
Right primary visual cortex [469]. | 311 | ||
Anterior cingulate cortex [464]. | 8 | ||
Right anterior insula [441]. | 454 | ||
Right para-hippocampal cortex [470]. | 132 | ||
Caudate nucleus [454], specifically the right-hand side [453]. | 39 | ||
Putamen [454]. | 38 | ||
Putamen and claustrum [471]. | 38,181 | ||
Globus pallidus [471]. | 113 | ||
Amygdala [256,471]. | 36 | ||
Connection between the frontal cortex, the precuneus, and the posterior cingulate cortex [472]. | 18, 171, 5 | ||
Default mode network, showing increased activation while viewing highly pleasing images [463]. | |||
Emotion | Orbito-frontal cortex, and its medial subdivision, in different sensorial modes. Taste: [473]; Smell: [474]; somatosensory: [374]; vision: [464]. | 685, 285 | |
Medial temporal lobe [475]. | 218 | ||
Fusiform gyri when looking at smiling faces [476]. | 62 | ||
Striatum [470]. | 37 | ||
Nucleus accumbens [477]. | 245 | ||
Hippocampus [478]. | 40 | ||
Amygdala [479]. | 36 |
Aspect/Variable | Neurobehavioural Effect/Related Neurophysiological Activity | WOROI |
---|---|---|
Wayfinding | Posterior parietal, premotor, and frontal areas, greater activation when the subject uses an egocentric frame of reference [528]. | 21, 217, 18 |
Occipito and temporal area, greater activation when the subject uses an allocentric frame of reference [528]. | 26, 15 | |
Parietal zone with desynchronised alpha band, in environments where orientation is difficult [529]. | 290 | |
Occipital area, processes visual features important for landmark recognition [530]. | 26 | |
Medial temporal area, related to allocentric representations [531]. | 136 | |
Right lingual sulcus, participates in perception of buildings [532]. | 167 | |
Posterior cingulate cortex, and occipital lobe, involved in navigation and perception from different perspectives [533]. | 5, 26 | |
Anterior midcingulate cortex, greater activation in closed spaces, possibly generating avoidance decisions [534]. | 8 | |
Entorhinal cortex, relating memory, and navigation data to create a cognitive map of events [535]. | 66 | |
Retro-splenial complex retrieves landmark-related spatial and conceptual information [530]. | 310 | |
Hippocampus, right posterior parietal, and posterodorsal medial parietal cortex, related to the retrieval of spatial context [531]. | 40, 290, 21 | |
Right hippocampus participates in remembering locations [536]. | 108 | |
Left hippocampus participates in remembering autobiographical events [537]. | 107 | |
Hippocampus, with higher activation in the theta band, hypothetically related to sensorimotor integration during navigation [538]. | 40 | |
Para-hippocampus codes landmark identity [530]. | 65 | |
Para-hippocampus participates in the spatial processing of scenes [539,540]. | 65 | |
Para-hippocampus responds, in general, to rectilinear features [541]. | 65 | |
Alpha band, with increased activation in occipital electrodes, is associated with familiar streetscape images [542]. | 26 | |
Beta band, with increased activation in frontal electrodes, positively correlated with RMS (root-mean-square) statistics and fractal dimensions [542]. | 18 | |
Alpha and beta bands indicate that the first three minutes of walking has the greatest cognitive effects on users [543]. | ||
Theta band, with increased activation, is associated with increased navigation performance in women and decreased navigation performance in men [544]. | ||
Theta/alpha ratio related to higher cognition and memory [158]. | ||
Stress | Middle frontal gyrus, middle and inferior temporal gyrus, insula, inferior parietal lobe, and cuneus with higher activation in highly restorative potential environments [513]. | 148, 126, 67, 183, 3 |
Superior frontal gyrus, precuneus, para-hippocampal gyrus, and posterior cingulate with higher activation in low restorative potential environments [513]. | 70, 171, 65, 5 | |
Alpha band with higher activation in the frontal lobe in non-stressful environments [514]. | 18 | |
High-beta band with higher activation in the temporal lobe in stressful environments [514]. | 15 | |
A combination of multisensory design variables produces a synergistic effect, which reduces stress. Measured through EDA, HRV, and EEG [15]. | ||
Illumination | White light modulates mood and sleep rhythms [545]. | |
Spaces illuminated above 7500 K increase blood pressure [546]. | ||
Arousal differences demonstrated (measured using EEG) in spaces illuminated at 5000 K and 3000 K [547]. | ||
Blue light accelerates post-stress relaxation [548]. | ||
Direct/indirect lighting makes subjects feel cooler and more pleasant, compared to direct lighting. It also generates more activity in electrodes F4, F8, T4, and TP7. Under these circumstances, the theta band of the F8 electrode correlated with a “cool” self-assessment [549]. | 91, 296, 130, 123 | |
Difference between cold and neutral colour temperature, at the level of alertness, fatigue, cognitive functioning, HRV and EDA [550]. | ||
Colour | Red coloured spaces increase arousal measured through EEG metrics [551]. | |
Contours and ornaments | Anterior cingulate cortex, greater activation when looking at curvilinear spaces [552]. | 8 |
Anterior cingulate cortex with theta band, related to certain spatial characteristics [533] | 8 | |
Frontal lobes with event-related potentials of higher positive amplitude, between 300 and 600 ms, when viewing architectural ornaments [553].Susceptible to cultural modulation [554]. | 18 | |
Curved geometric spaces are preferred over angled geometric spaces [552]. | ||
Curved geometric spaces are preferred by non-design expert subjects, and sharp-angled spaces by expert subjects [555]. | ||
Angled geometry is not avoided, but curved geometric spaces prompt approach (rather than avoidance) behaviours [556]. | ||
Amygdala with greater activation when viewing sharp than curved contours, and images of landscapes and healthcare objects. However, when viewing images of hospital interiors and exteriors, there is greater activation with curved contours. it is hypothesised that, in stress-associated environments, curved contours may not be desirable [557]. | 36 | |
Open-office arrangements generate more physical activity, and less stress, measured through HRV (SDNN) [558]. | ||
Thigmotaxis plays a role in spatial learning, depending on the phase [559].Human predisposition for walls: people are thigmotactic [560]. | ||
Windows | The existence of openings can reduce stress, measured by electrocardiogram (HR, and HRV-HF, and T-wave amplitude), and cortisol. However, this depends on the stressor type [561]. | |
The geometry of façades, and the lighting that passes through them into interiors, affects physiological (at an HRV level) and psychological responses in different ways. Among others, there is deceleration of the heart rate with irregular designs, in comparison to blinds, because they attract greater attention [176,562]. | ||
Aesthetic judgement | Left frontal areas with more theta band activity when viewing pleasant interior spaces [563]. | 81 |
Fusiform face area, involved in fine-grained neural encoding of architectural scenes [564]. | 343 | |
Theta band increased across the frontal area, in familiar and comfortable environments [565]. | 18 | |
Alpha band increased in left-central parietal and frontal areas in pleasant environments [565]. | 83, 18 | |
Mu band desynchronised in left motor areas, in pleasant and comfortable environments [565]. | 350 | |
Nature | Views of nature have positive effects on emotional and physiological states [566]. | |
Natural vistas (in videos) produce significantly higher HR than urban vistas [567]. | ||
The absence of vegetation generates a more oppressive environment, which affects the judgment of distance and generates greater arousal measured through EDA [568]. | ||
Similar brain patterns between positive images and open sky multisensory simulations measured through fMRI. The latter also generate activity related to spatial cognition and space expansion [569]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuera-Trujillo, J.L.; Llinares, C.; Macagno, E. The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors 2021, 21, 2193. https://doi.org/10.3390/s21062193
Higuera-Trujillo JL, Llinares C, Macagno E. The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors. 2021; 21(6):2193. https://doi.org/10.3390/s21062193
Chicago/Turabian StyleHiguera-Trujillo, Juan Luis, Carmen Llinares, and Eduardo Macagno. 2021. "The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches" Sensors 21, no. 6: 2193. https://doi.org/10.3390/s21062193
APA StyleHiguera-Trujillo, J. L., Llinares, C., & Macagno, E. (2021). The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors, 21(6), 2193. https://doi.org/10.3390/s21062193