Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sugarcane Quality Analysis
2.3. Acquisition of Spectral Data
2.4. Spectral Preprocessing
2.5. Multivariate Analysis
- Null hypothesis (H0): RMSEPsample type 1 = RMSEPsample type 2 (accuracy is similar);
- Alternative hypothesis (H1): RMSEPsample type 1 ≠ RMSEPsample type 2 (accuracy is not similar).
3. Results and Discussion
3.1. Overview of Sugarcane Quality Reference Data and vis-NIR Spectral Measurements of Different Sample Types
3.2. Prediction Performance of Models Based on Different Sugarcane Sample Types
3.3. Variable Influence on the Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variety | # Samples | Variety | # Samples | Variety | # Samples |
---|---|---|---|---|---|
CT96-1007 | 12 | CTC 9001 | 1 | RB966928 | 7 |
CT96-3346 | 7 | CTC 9005 | 2 | RB975201 | 1 |
CTC 11 | 19 | CV 6654 | 3 | RB975952 | 2 |
CTC 14 | 10 | IACSP95-5000 | 1 | RB985476 | 1 |
CTC 15 | 12 | RB855002 | 3 | SP80-3280 | 9 |
CTC 17 | 7 | RB855156 | 33 | SP83-2847 | 31 |
CTC 2 | 19 | RB855536 | 4 | SP83-5073 | 2 |
CTC 20 | 26 | RB867515 | 9 | RB965621 | 1 |
CTC 22 | 2 | RB935621 | 4 | SP91-1049 | 1 |
CTC 4 | 34 | RB965621 | 1 | Various | 26 |
CTC 7 | 1 | RB965902 | 12 |
References
- Sexton, J.; Everingham, Y.; Donald, D.; Staunton, S.; White, R. Investigating the identification of atypical sugarcane using NIR analysis of online mill data. Comput. Electron. Agric. 2020, 168, 105111. [Google Scholar] [CrossRef]
- Phetpan, K.; Udompetaikul, V.; Sirisomboon, P. An online visible and near-infrared spectroscopic technique for the real-time evaluation of the soluble solids content of sugarcane billets on an elevator conveyor. Comput. Electron. Agric. 2018, 154, 460–466. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Magalhães, P.S.G.; Franco, H.C.J. Soil attributes and leaf nitrogen estimating sugar cane quality parameters: Brix, pol and fibre. Precis. Agric. 2013, 14, 270–289. [Google Scholar] [CrossRef]
- Ramírez-Morales, I.; Rivero, D.; Fernández-Blanco, E.; Pazos, A. Optimization of NIR calibration models for multiple processes in the sugar industry. Chemom. Intell. Lab. Syst. 2016, 159, 45–57. [Google Scholar] [CrossRef]
- Cortés, V.; Blasco, J.; Aleixos, N.; Cubero, S.; Talens, P. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci. Technol. 2019, 85, 138–148. [Google Scholar] [CrossRef]
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biol. Technol. 2020, 168, 111246. [Google Scholar] [CrossRef]
- Workman, J., Jr.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439875261. [Google Scholar]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Taira, E.; Ueno, M.; Kawamitsu, Y. Automated quality evaluation system for net and gross sugarcane samples using near infrared spectroscopy. J. Near Infrared Spectrosc. 2010, 18, 209–215. [Google Scholar] [CrossRef]
- Sorol, N.; Arancibia, E.; Bortolato, S.A.; Olivieri, A.C. Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice. A test field for variable selection methods. Chemom. Intell. Lab. Syst. 2010, 102, 100–109. [Google Scholar] [CrossRef]
- Valderrama, P.; Braga, J.W.B.; Poppi, R.J. Validation of multivariate calibration models in the determination of sugar cane quality parameters by near infrared spectroscopy. J. Braz. Chem. Soc. 2007, 18, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Taira, E.; Ueno, M.; Furukawa, N.; Tasaki, A.; Komaki, Y.; Nagai, J.I.; Saengprachatanarug, K. Networking system employing near infrared spectroscopy for sugarcane payment in Japan. J. Near Infrared Spectrosc. 2013, 21, 477–483. [Google Scholar] [CrossRef]
- Taira, E.; Ueno, M.; Saengprachatanarug, K.; Kawamitsu, Y. Direct sugar content analysis for whole stalk sugarcane using a portable near infrared instrument. J. Near Infrared Spectrosc. 2013, 21, 281–287. [Google Scholar] [CrossRef]
- Phuphaphud, A.; Saengprachatanarug, K.; Posom, J.; Maraphum, K.; Taira, E. Non-destructive and rapid measurement of sugar content in growing cane stalks for breeding programmes using visible-near infrared spectroscopy. Biosyst. Eng. 2020, 197, 76–90. [Google Scholar] [CrossRef]
- Phuphaphud, A.; Saengprachatanarug, K.; Posom, J.; Maraphum, K.; Taira, E. Prediction of the fibre content of sugarcane stalk by direct scanning using visible-shortwave near infrared spectroscopy. Vib. Spectrosc. 2019, 101, 71–80. [Google Scholar] [CrossRef]
- Nawi, N.M.; Chen, G.; Jensen, T. In-field measurement and sampling technologies for monitoring quality in the sugarcane industry: A review. Precis. Agric. 2014, 15, 684–703. [Google Scholar] [CrossRef] [Green Version]
- Bramley, R.G.V. Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application. Crop Pasture Sci. 2009, 60, 197–217. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Panitz, J.H.; Jensen, T.A.; Baillie, C.P. Within block spatial variation in CCS—Another potentially important consideration in the application of precision agriculture to sugarcane production. Int. Sugar J. 2013, 115, 1–8. [Google Scholar]
- Corrêdo, L.d.P.; Canata, T.F.; Maldaner, L.F.; de Lima, J.J.A.; Molin, J.P. Sugarcane Harvester for In-field Data Collection: State of the Art, Its Applicability and Future Perspectives. Sugar Tech 2020, 22, 1–14. [Google Scholar] [CrossRef]
- Nawi, N.M.; Chen, G.; Jensen, T.; Mehdizadeh, S.A. Prediction and classification of sugar content of sugarcane based on skin scanning using visible and shortwave near infrared. Biosyst. Eng. 2013, 115, 154–161. [Google Scholar] [CrossRef]
- Nawi, N.M.; Chen, G.; Jensen, T. Visible and shortwave near infrared spectroscopy for predicting sugar content of sugarcane based on a cross-sectional scanning method. J. Near Infrared Spectrosc. 2013, 21, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Udompetaikul, V.; Phetpan, K.; Sirisomboon, P. Development of the partial least-squares model to determine the soluble solids content of sugarcane billets on an elevator conveyor. Meas. J. Int. Meas. Confed. 2021, 167, 107898. [Google Scholar] [CrossRef]
- Maraphum, K.; Chuan-Udom, S.; Saengprachatanarug, K.; Wongpichet, S.; Posom, J.; Phuphaphud, A.; Taira, E. Effect of waxy material and measurement position of a sugarcane stalk on the rapid determination of Pol value using a portable near infrared instrument. J. Near Infrared Spectrosc. 2018, 26, 287–296. [Google Scholar] [CrossRef]
- Phuphaphud, A.; Saengprachatanarug, K.; Posom, J.; Wongpichet, S.; Maraphum, K.; Taira, E. Effects of waxy types of a sugarcane stalk surface on the spectral characteristics of visible-shortwave near infrared measurement. Eng. J. 2019, 23, 13–24. [Google Scholar] [CrossRef]
- Cardozo, N.P.; Sentelhas, P.C. Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Sci. Agric. 2013, 70, 449–456. [Google Scholar] [CrossRef] [Green Version]
- CONSECANA National Concill of Sugarcane Producers of São Paulo State. Instruction Manual, 6th ed.; CONSECANA-SP: Piracicaba, SP, Brazil, 2015; 81p. (In Portuguese) [Google Scholar]
- Franceschini, M.H.D.; Demattê, J.A.M.; Kooistra, L.; Bartholomeus, H.; Rizzo, R.; Fongaro, C.T.; Molin, J.P. Effects of external factors on soil reflectance measured on-the-go and assessment of potential spectral correction through orthogonalisation and standardisation procedures. Soil Tillage Res. 2018, 177, 19–36. [Google Scholar] [CrossRef]
- Oliveri, P.; Malegori, C.; Simonetti, R.; Casale, M. The impact of signal pre-processing on the final interpretation of analytical outcomes—A tutorial. Anal. Chim. Acta 2019, 1058, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Bart, J.; Van Manen, H.J.; Van Den Heuvel, E.R.; Buydens, L.M.C. Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments. Anal. Chem. 2015, 87, 12096–12103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valderrama, P.; Braga, J.W.B.; Poppi, R.J. Variable selection, outlier detection, and figures of merit estimation in a partial least-squares regression multivariate calibration model. A case study for the determination of quality parameters in the alcohol industry by near-infrared spectroscopy. J. Agric. Food Chem. 2007, 55, 8331–8338. [Google Scholar] [CrossRef]
- The American Society for Testing and Materials (ASTM). ASTM E1655-17 Standard Practices for Infrared Multivariate Quantitative Analysis; ASTM Annual Book of Standards: West Conshohocken, PA, USA, 2017; Volume 5, 30p. [Google Scholar]
- Van der Voet, H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 1994, 25, 313–323. [Google Scholar] [CrossRef]
- Santana, F.B.; Giuseppe, L.O.; Souza, A.M.; Poppi, R.J. Removing the moisture effect in soil organic matter determination using NIR spectroscopy and PLSR with external parameter orthogonalization. Microchem. J. 2019, 145, 1094–1101. [Google Scholar] [CrossRef]
- Olivieri, A.C. Practical guidelines for reporting results in single- and multi-component analytical calibration: A tutorial. Anal. Chim. Acta 2015, 868, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Pagani, V.; Stella, T.; Guarneri, T.; Finotto, G.; van den Berg, M.; Marin, F.R.; Acutis, M.; Confalonieri, R. Forecasting sugarcane yields using agro-climatic indicators and Canegro model: A case study in the main production region in Brazil. Agric. Syst. 2017, 154, 45–52. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, T.; Yang, B.; Zhang, S. Sucrose Metabolism and Regulation in Sugarcane. J. Plant Physiol. Pathol. 2017, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.C.; Leite, D.C.; Perecin, D.; Bidóia, M.A.P.; Xavier, M.A.; Landell, M.G.A.; Pinto, L.R. Characterization of the Genetic Variability of a Sugarcane Commercial Cross Through Yield Components and Quality Parameters. Sugar Tech 2012, 14, 119–125. [Google Scholar] [CrossRef]
- Solomon, S. Post-harvest deterioration of sugarcane. Sugar Tech 2009, 11, 109–123. [Google Scholar] [CrossRef]
- Bazar, G.; Kovacs, Z.; Tsenkova, R. Evaluating spectral signals to identify spectral error. PLoS ONE 2016, 11, e0146249. [Google Scholar] [CrossRef] [PubMed]
- Steidle Neto, A.J.; Lopes, D.C.; Toledo, J.V.; Zolnier, S.; Silva, T.G.F. Classification of sugarcane varieties using visible/near infrared spectral reflectance of stalks and multivariate methods. J. Agric. Sci. 2018, 156, 537–546. [Google Scholar] [CrossRef]
- da Costa, M.V.A.; Fontes, C.H.; Carvalho, G.; de Moraes Júnior, E.C. UltraBrix: A Device for Measuring the Soluble Solids Content in Sugarcane. Sustainability 2021, 13, 1227. [Google Scholar] [CrossRef]
- Uys, L.; Botha, F.C.; Hofmeyr, J.H.S.; Rohwer, J.M. Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 2007, 68, 2375–2392. [Google Scholar] [CrossRef]
- Wang, J.; Nayak, S.; Koch, K.; Ming, R. Carbon partitioning in sugarcane (Saccharum species). Front. Plant Sci. 2013, 4, 201. [Google Scholar] [CrossRef] [Green Version]
- Inarkar, M.B.; Lele, S.S. Extraction and Characterization of Sugarcane Peel Wax. ISRN Agron. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.; Everingham, Y.; Donald, D.; Staunton, S.; White, R. A comparison of non-linear regression methods for improved on-line near infrared spectroscopic analysis of a sugarcane quality measure. J. Near Infrared Spectrosc. 2018, 26, 297–310. [Google Scholar] [CrossRef]
- Roger, J.M.; Boulet, J.C. A review of orthogonal projections for calibration. J. Chemom. 2018, 32, 1–16. [Google Scholar]
- Osborne, B.G. Near-Infrared Spectroscopy in Food Analysis. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Steidle Neto, A.J.; Toledo, J.V.; Zolnier, S.; Lopes, D.C.; Pires, C.V.; Silva, T.G.F. Prediction of mineral contents in sugarcane cultivated under saline conditions based on stalk scanning by Vis/NIR spectral reflectance. Biosyst. Eng. 2017, 156, 17–26. [Google Scholar] [CrossRef]
- Golic, M.; Walsh, K.; Lawson, P. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature. Appl. Spectrosc. 2003, 57, 139–145. [Google Scholar] [CrossRef]
- Pomares-Viciana, T.; Martínez-Valdivieso, D.; Font, R.; Gómez, P.; del Río-Celestino, M. Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy. J. Sci. Food Agric. 2018, 98, 1703–1711. [Google Scholar] [CrossRef]
- Bázár, G.; Romvári, R.; Szabó, A.; Somogyi, T.; Éles, V.; Tsenkova, R. NIR detection of honey adulteration reveals differences in water spectral pattern. Food Chem. 2016, 194, 873–880. [Google Scholar] [CrossRef] [PubMed]
Parameter | unit | Mean ± SD | Median | Range | p25 | p75 | SEL |
---|---|---|---|---|---|---|---|
All samples (n = 302) | |||||||
Brix | % | 18.95 ± 1.71 | 18.99 | 13.08–23.42 | 17.80 | 20.01 | 0.03 |
Pol | % | 16.67 ± 1.90 | 16.66 | 10.78–21.20 | 15.41 | 17.95 | 0.01 |
Fibre | % | 13.29 ± 1.79 | 12.90 | 7.22–20.08 | 12.07 | 14.33 | 0.07 |
Pol of cane | % | 13.80 ± 1.56 | 13.91 | 8.40–17.56 | 12.92 | 14.78 | 0.01 |
TRS | kg Mg−1 | 137.66 ± 14.48 | 138.66 | 86.94–173.80 | 129.75 | 146.84 | 1.12 |
Calibration set (n = 227) | |||||||
Brix | % | 18.86 ± 1.66 | 18.80 | 13.08–23.42 | 17.79 | 19.98 | - |
Pol | % | 16.54 ± 1.86 | 16.55 | 10.78–21.20 | 15.38 | 17.78 | - |
Fibre | % | 13.31 ± 1.89 | 12.83 | 7.22–20.08 | 12.05 | 14.41 | - |
Pol of cane | % | 13.69 ± 1.52 | 13.79 | 8.40–17.56 | 12.83 | 14.60 | - |
TRS | kg Mg−1 | 136.65 ± 14.07 | 137.01 | 86.94–173.80 | 128.99 | 145.19 | - |
Validation set (n = 75) | |||||||
Brix | % | 19.24 ± 1.85 | 19.59 | 13.55–23.05 | 18.06 | 20.61 | - |
Pol | % | 17.06 ± 1.98 | 17.33 | 11.24–20.90 | 15.73 | 18.54 | - |
Fibre | % | 13.23 ± 1.44 | 13.02 | 10.49–17.15 | 12.24 | 14.16 | - |
Pol of cane | % | 14.14 ± 1.64 | 14.34 | 8.96–17.14 | 13.27 | 15.47 | - |
TRS | kg Mg−1 | 140.76 ± 15.36 | 142.59 | 92.16–169.02 | 132.35 | 152.44 | - |
Attribute | Sample Type | LV | RMSEC a | RMSECV a | RMSEP a | R2c | R2p | RPIQ |
---|---|---|---|---|---|---|---|---|
Brix | SS | 9 | 0.92 | 1.10 | 1.29 | 0.64 | 0.48 | 1.98 |
CSS | 6 | 0.95 | 1.04 | 1.38 | 0.62 | 0.41 | 1.85 | |
DF | 7 | 0.67 | 0.75 | 0.84 | 0.81 | 0.80 | 3.05 | |
RJ | 8 | 0.64 | 0.83 | 0.75 | 0.85 | 0.85 | 3.39 | |
Pol | SS | 8 | 1.09 | 1.26 | 1.42 | 0.60 | 0.48 | 1.98 |
CSS | 6 | 1.09 | 1.19 | 1.44 | 0.61 | 0.44 | 1.95 | |
DF | 7 | 0.82 | 0.93 | 0.87 | 0.79 | 0.83 | 3.24 | |
RJ | 7 | 0.80 | 0.97 | 0.90 | 0.82 | 0.81 | 3.12 | |
Fibre | SS | 10 | 1.02 | 1.29 | 0.87 | 0.59 | 0.65 | 2.22 |
CSS | 4 | 1.45 | 1.50 | 1.27 | 0.24 | 0.23 | 1.51 | |
DF | 5 | 0.93 | 1.04 | 0.82 | 0.69 | 0.69 | 2.36 | |
RJ b | - | - | - | - | - | - | - | |
Pol of cane | SS | 7 | 0.95 | 1.07 | 1.13 | 0.52 | 0.46 | 1.94 |
CSS | 5 | 1.01 | 1.09 | 1.27 | 0.52 | 0.31 | 1.73 | |
DF | 7 | 0.73 | 0.84 | 0.72 | 0.76 | 0.81 | 3.04 | |
RJ | 7 | 0.71 | 0.85 | 0.72 | 0.78 | 0.81 | 3.07 | |
TRS | SS | 9 | 8.57 | 10.27 | 10.86 | 0.60 | 0.50 | 1.85 |
CSS | 5 | 9.49 | 10.17 | 11.86 | 0.50 | 0.32 | 1.69 | |
DF | 7 | 6.50 | 7.51 | 6.71 | 0.76 | 0.82 | 2.99 | |
RJ | 7 | 6.38 | 7.95 | 6.79 | 0.78 | 0.81 | 2.96 |
Binary Combination (Sample Types) | Sugarcane Quality Parameters | ||||
---|---|---|---|---|---|
Brix | Pol | Fibre | Pol of cane | TRS | |
SS vs. CSS | 0.104 | 0.116 | <0.001 | 0.036 | 0.008 |
SS vs. DF | 1.00 | 1.00 | 0.667 | 1.00 | 1.00 |
SS vs. RJ | 1.00 | 1.00 | - | 1.00 | 1.00 |
CSS vs. DF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
CSS vs. RJ | 1.00 | 1.00 | - | 1.00 | 1.00 |
DF vs. RJ | 0.879 | 0.344 | - | 0.606 | 0.502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrêdo, L.d.P.; Maldaner, L.F.; Bazame, H.C.; Molin, J.P. Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy. Sensors 2021, 21, 2195. https://doi.org/10.3390/s21062195
Corrêdo LdP, Maldaner LF, Bazame HC, Molin JP. Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy. Sensors. 2021; 21(6):2195. https://doi.org/10.3390/s21062195
Chicago/Turabian StyleCorrêdo, Lucas de Paula, Leonardo Felipe Maldaner, Helizani Couto Bazame, and José Paulo Molin. 2021. "Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy" Sensors 21, no. 6: 2195. https://doi.org/10.3390/s21062195
APA StyleCorrêdo, L. d. P., Maldaner, L. F., Bazame, H. C., & Molin, J. P. (2021). Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy. Sensors, 21(6), 2195. https://doi.org/10.3390/s21062195