
sensors

Article

A UAV Maneuver Decision-Making Algorithm for Autonomous
Airdrop Based on Deep Reinforcement Learning

Ke Li 1 , Kun Zhang 1,2,*, Zhenchong Zhang 1, Zekun Liu 1, Shuai Hua 1 and Jianliang He 2

����������
�������

Citation: Li, K.; Zhang, K.; Zhang, Z.;

Liu, Z.; Hua, S.; He, J. A UAV

Maneuver Decision-Making

Algorithm for Autonomous Airdrop

Based on Deep Reinforcement

Learning. Sensors 2021, 21, 2233.

https://doi.org/10.3390/s21062233

Academic Editor: Arturo

Sanchez-Azofeifa

Received: 19 February 2021

Accepted: 20 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China;
keli_iat@mail.nwpu.edu.cn (K.L.); connor_zhang@mail.nwpu.edu.cn (Z.Z.);
lzk_nwpu@mail.nwpu.edu.cn (Z.L.); huas@mail.nwpu.edu.cn (S.H.)

2 Science and Technology on Electro-Optic Control Laboratory, Luoyang 471009, China;
hejianlian_457@163.com

* Correspondence: kunzhang@nwpu.edu.cn

Abstract: How to operate an unmanned aerial vehicle (UAV) safely and efficiently in an interactive
environment is challenging. A large amount of research has been devoted to improve the intelligence
of a UAV while performing a mission, where finding an optimal maneuver decision-making policy
of the UAV has become one of the key issues when we attempt to enable the UAV autonomy. In this
paper, we propose a maneuver decision-making algorithm based on deep reinforcement learning,
which generates efficient maneuvers for a UAV agent to execute the airdrop mission autonomously in
an interactive environment. Particularly, the training set of the learning algorithm by the Prioritized
Experience Replay is constructed, that can accelerate the convergence speed of decision network
training in the algorithm. It is shown that a desirable and effective maneuver decision-making policy
can be found by extensive experimental results.

Keywords: UAV; maneuver decision-making; autonomous airdrop; deep reinforcement learning;
prioritized experience replay

1. Introduction

With the development of the control and electronic techniques in recent years, the
performance of unmanned aerial vehicle (UAV) has been improved rapidly in all aspects.
The UAV has been applied to assisting, replacing people to complete difficult missions due
to high mobility, great flying height, and low cost [1]. Thus, it is necessary to improve the
autonomy of UAV while performing some special airdrop tasks without risking human
lives, such as delivery of relief supplies [2], extinguishing by UAV, and so on. Consequently,
how to improve the autonomous flight capability of UAV becomes the research focus of
researchers in various countries [3].

At present, the airdrop tasks are typically implemented incorporating with path
panning [4], which is a method for searching an optimal path from start point to end point
while avoiding obstacles in the environment. Conventional path planning algorithms for
UAVs include Visibility Graph [5,6]; randomly sampling search algorithms, like Rapidly-
exploring Random Tree [7], Probabilistic Roadmap [8]; heuristic algorithms, such as A-
Star [9], Sparse A-Star (SAS) [10], and D* [11]; and genetic algorithms [12]. Then, a UAV
can fly to target point by following the planned route, where various trajectory tracking
algorithms are proposed [13,14]. However, this kind of schemes have some disadvantages.
For example, an optimal route relies on a priori knowledge about the environment, in
which the data of terrain and obstacles is usually difficult to obtain, limiting our capability
of environment modelling. Moreover, when the environment becomes dynamic, involving
moving obstacles, these schemes are not flexible enough to alter their control strategies
immediately. A replan of paths have to be scheduled to adapt to the changes in the
environment. Therefore, it is desired to design an end-to-end algorithm that can manipulate
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a UAV to flight autonomously in a dynamic environment without path planning and
trajectory tracking.

A promising direction is inspired by the AlphaGo developed by Google based on
deep reinforcement learning, which can play Atari games using a kind of end-to-end
decision-making algorithm, called Deep Q Network (DQN) [15]. The performance of this
algorithm reached human level after an extensive training, which shows the potential
of the reinforcement learning-based methods combined with deep learning in solving
practical problems. Meanwhile, in order to solve the dimension explosion caused by the
continuity of action space, the Deep Deterministic Policy Gradient (DDPG) was proposed
in Reference [16], and the experience replay is used in these Deep Reinforcement Learning
(DRL)-based algorithms and allow agents to remember and learn from historical data. The
DDPG overcomes the dimension explosion issue caused by continuous action space and
state space. However, it forms training set by taking samples from data memory with the
Uniform Experience Replay (UER), which does not fully exploit the diversity of historical
data. Moreover, the UER usually has a low convergence rate of neural network and even
divergence in training neural networks. Therefore, the Prioritized Experience Replay (PER)
was proposed to improve the efficiency of learning from experiences [17]. In this paper, we
construct a new priority of each experience based on Double Q-Learning [18], which could
overcome convergence fluctuation caused by over estimate compared with Reference [19].

In the present work, we aim to tackle the challenges mentioned above and focus on
the UAV maneuver decision-making for airdrop task. The main works presented in this
paper are summarized as follows:

• The UAV Maneuver Decision-Making Model for airdrop tasks is built based on
Markov Decision Processes (MDPs). Particularly, we design the flight state space,
the flight action space, and the reward functions. Among the components of model,
we devote our air-to-ground drop theory to designing and constructing the UAV
maneuver decision-making model for airdrop tasks.

• We propose the Maneuver Decision-Making Algorithm for autonomous airdrop based
on DDPG with PER sampling method (PER-DDPG) to train a UAV for generating
efficient maneuver under target point constraint refined from the model we designed
in an interactive environment. Specially, we design the decision-making function by
deep neural network and construct the training set sampling method based on PER.

• Simulation results show that the algorithm we proposed could improve the autonomy
of a UAV during the airdrop task and the PER is able to accelerate the efficiency of
learning from experiences. Moreover, we find that the winning rate of the PER-based
algorithm exceeds the UER-based algorithm 2–4%.

This paper is organized as follows: Section 2 describes the background knowledge
of all the methods used to design UAV maneuver decision-making model and algorithm.
Section 3 presents the details of experimentations we designed, comparison of learning
rate and winning rate under UER and PER sampling methods separately. Section 4 shows
the conclusion of our work and looks forward to the future of our research.

2. Methodology

The UAV has been used to help people finish some dangerous and repetitive missions,
such as crop protection, wildlife surveillance, traffic monitoring, electric power inspection,
search, and rescue operations. A need for more advanced and simple UAV autonomous
flight solution has emerged. As mentioned above, traditional solution of real time obstacle
avoidance for manipulators and UAVs is that algorithm plans an optimal path and then
UAV follows path by trajectory tracking method. In this paper, we redefined the process of
UAV autonomous flight and constructed the UAV Maneuver Decision-Making Model for
Airdrop Task based on MDPs [20]. On the other hand, we proposed a novel UAV Maneuver
Decision-Making algorithm based on Deep Reinforcement Learning [21].

As shown in Figure 1, we construct the UAV Maneuver Decision-Making Model
for Airdrop Task Based on MDPs firstly. Among this model, we design the flight action
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space, the flight state space and flight assessment function that are used to demonstrate
the characteristics of UAV autonomous flight during airdrop. Moreover, we design and
realize the UAV Maneuver Decision-Making Algorithm, including the UAV maneuver
decision-making network, prioritized experience replay used to sample training data from
historical experiences, and network optimizer applied to train networks.

Environment

The UAV Maneuver Decision-Making Model for Airdrop Task

Flight State 

Generator

Flight Assessment 

Function

Maneuver 

Action Actuator

Algorithm

The UAV Maneuver Decision-Making Networks

Prioritized Experience Replay Network Optimizer

rs
a

Figure 1. The structure of unmanned aerial vehicle (UAV) Maneuver Decision-Making Algorithm.

2.1. The UAV Maneuver Decision-Making Model for Airdrop Task Based on Mdps
2.1.1. Markov Decision Processes

During the process of performing airdrop task, UAV maneuver decision-making could
be regarded as a sequential decision process. Moreover, while selecting optimal action for
UAV, the controller usually considers current information from environment. Thus, we
can think that this decision process is Markovian and could use MDPs to model the UAV
maneuver decision-making model for airdrop task.

MDPs can be described by a quintuple

{T, S, A(s), P(·|s, a), R(s, a)}, (1)

where T represents the decision time, S represents the system state space, A(s)represents
the system action space, and the transition probability P(·|s, a) represents the probability
distribution of the system at the next moment when the system used the action a ∈ A(s) in
the state s ∈ S. The reward function R(s, a) represents the benefit that the decision-maker
gets when the action a ∈ A(s) is taken in the state s ∈ S. Based on the MDPs, we can define
a complete mathematical description of the UAV Airdrop Task.

As shown in Figure 2, MDPs can be summarized as follows: the initial state s0 of
the system is that the decision-maker chooses action a0 and executes it, system moves
to next state s1 according to a certain transition probability P(·|s0, a0), and so on. In this
process, the decision-maker earned rewards sequence (r0, r1, · · · ). Among this process,
the decision-maker is stimulated by external rewards, and rewards are maximized by
constantly updating policy. The action adopted by decision-maker is a = µ(s), where µ(s)
is effective policy, and the utility function (at state s ∈ S, the expected reward obtained by
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adopting the policy µ) is v(s, µ). When current policy is the optimal policy, Equation (2)
should be satisfied.

v(s) = sup
µ

v(s, µ), s ∈ S. (2)

Based on the characteristics of UAV maneuver decision-making for airdrop, we use
infinite stage discount model as utility function, as shown in Equation (3).

v(s, π) =
∞

∑
t=0

γtEs
µ[R(st, at)], s ∈ S. (3)

In the equation above, γ ∈ [0, 1] is the future reward discount factor. E[·] represents
mathematical expectation; thus, Equation (3) indicates that the expected objective of dis-
count model is the sum of expectation of reward multiplied by a discount factor at every
decision moment t. Thereby, the optimal policy under the discount model can be obtained
by lots of iterations.

In the following, we will demonstrate the problems definition among Airdrop Task
firstly. Then, state space S, action space A(s), transition probability model P(·|s, a), and
reward function R(s, a) will be designed.

……r0

s0

a0

s0

a0

s0

a0

r1

s1

a1

s1

a1

s1

a1

Figure 2. The structure of finite Markov Decision Processes (MDPs).

2.1.2. Problems Definition among Airdrop Task

Before we start running a Reinforcement Learning (RL)-based algorithm, we should
construct a simulation model of problems to be solved. Thus, we define two problems
that usually occur during airdrop task. Generally, when the UAV prepares to perform
airdrop task, it should turn nose towards target area firstly, and then fly to target position by
following the UAV maneuver decision-making policy, as shown in Figure 3. In Figure 3a, N
and E represent North and East directions, and ~Vf and ψUAV are the velocity and azimuth
of UAV separately. Moreover, the dashed line between UAV and Target Area indicates the
expected azimuth of UAV, that is expressed by ψLOS. Figure 3b, the drop position of UAV
is a solid point, and ~DLOS and δψLOS represents Line of Sight (LOS) and azimuth of LOS
between UAV and Target Position. Therefore, two problems involved in the airdrop task:

• Turn round problem: UAV flies from a random starting point and turns to the direction
of target area demanded. During this process, pilots usually manipulate UAVs and
controls the azimuth of UAVs towards target direction.

• Guidance problem: UAV starts from a random position and flies to a drop position
given by commander. If the pilot want to manually finish this work, it will take lots
of energy because the pilot should plan an effective path and manipulate the UAV
following it.
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Target Area
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Figure 3. Problems Description among UAV Airdrop Task: (a) the UAV should turn its nose towards target area firstly;
(b) after adjustment of azimuth, the UAV could follow the guidance of UAV maneuver decision-making policy until reaching
target position.

If we want to simulate this process described above, a dynamical model of UAV should
be constructed. We adopted a dynamical model describing airdrop task based on 3-DoF
kinematic model of UAV [22]. When the position and attitude of UAV are confirmed at t, we
can obtain the state of UAV at t+1 by solving the model we designed. Therefore, we think
that the transition probability of UAV maneuver decision-making model is P(·|s, a) = 1,
which belongs to deterministic model.

Based on the 3-DoF kinematic model of UAV, the flight state is defined as (x, z, v, ψc),
where (x, z) is the horizontal coordinates of the UAV in the geographical coordinate system,
and ψc is the flight path azimuth Angle of the UAV. On the other hand, the steering
overload of UAV is defined as Ns ∈

[
−Nmax

y , Nmax
y

]
, where Nmax

y represents the max
normal acceleration of UAV in the body coordinate system. During the simulation process,
algorithm outputs the current optimal maneuver control Ns and the next state (x, z, v, ψc)

′

of UAV is calculated combined with the current state (x, z, v, ψc) according to the flight
simulation model of UAV.

2.1.3. State Representation and Action Design

Based on the problems’ definition among airdrop task, we can design the state space
of two problems mentioned above separately. Specifically, action space is the same for both
problems because the core kinematic model is all realized based on the 3-DoF kinematic
model of UAV.

(1) State Space of Turn Round Problem

Considering that turn round problem is related to the azimuth of UAV and the relative
direction of relative orientation between UAV and target area, we designed the state space
of turn round problem, that is defined as

S =
{

δψLOS , Ns
}

, (4)

where δψLOS is the relative azimuth between LOS and nose direction of UAV, and Ns
represents the steering overload of UAV. δψLOS could be calculated by

δψLOS = ψLOS − ψUAV , (5)

where ψLOS is the azimuth of LOS relative to North, and ψUAV is the azimuth of UAV
relative to North. Two symbols are all in [0, 2π] and satisfy the right-hand rule.
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(2) State Space of Guidance Problem

For the guidance problem of airdrop task, we can define its state space as

S =
{

dLOS, δψLOS , Ns
}

, (6)

where dLOS indicates the distance between UAV and drop position. Moreover, if we
define ~XUAV as the position of UAV and ~XTGT as the drop position, we will calculate the
symbols by 

dLOS =
∥∥∥~DLOS

∥∥∥
2
=
∥∥∥~XTGT − ~XUAV

∥∥∥
2

δψLOS = arccos
(

~Vf ·~DLOS

|~Vf |·|~DLOS|

) , (7)

where ‖·‖2 represents the 2-norm of vector.

(3) Action Space of both Problems

Based on the flight simulation model of UAV we constructed, we can establish the
action space as below.

A(s) = {Ns}. (8)

2.1.4. Reward Function Based on Potential-Based Reward Shaping

In MDPs, the reward function determines the direction of policy iteration and directly
reflects the agent’s intention. The termination condition of turn round problem can be
defined as follows: ∣∣∣δt

ψLOS

∣∣∣ ≤ δmin
ψ , (9)

where δt
ψLOS

is δψLOS at decision moment t, and δmin
ψ is the minimum error of δψLOS . This

termination condition means that, when the UAV heads to the target area with an error
under certain tolerance, we could think that the turn round problem has been solved.
Analogously, the termination condition of guidance problem could be also obtained as∥∥∥~Dt

LOS

∥∥∥
2
≤ dmin

LOS, (10)

where ~Dt
LOS is ~DLOS at decision moment t, and dmin

LOS is the minimum error of the distance
between the UAV and the required drop position.

Therefore, the reward function R(s, a) of the problems could be defined as

R(s, a) =
{

1.0, Satisfy Termination Condition
0.0, Not Satisfy Termination Condition

. (11)

Equation (11) indicates that if UAV’s state satisfies termination condition of problems,
R(s, a) will return 1.0, otherwise 0.0.

The algorithm we proposed could search the optimal policy according to this kind
of episodic reward, but there is a serious fault that is possible to influence the efficiency
of policy convergence because the rewards environment returned are too sparse to learn
useful experience, such as those samples whose reward is not zero. Thus, some researchers
proposed the potential-based reward shaping [23,24] (PBRS) method to solve the problem
brought by “sparse” reward. PBRS provides a guidance signal for improving the speed of
policy convergence by adding a new reward shaping function F(s, a, s′) to original reward
function. Generally, F(s, a, s′) should satisfy

F
(
s, a, s′

)
= γΦ

(
s′
)
−Φ(s), (12)

where γ ∈ [0, 1] is a discount factor, and s ∈ S, a ∈ A(s), and s′ indicate the current state,
the current action, and the next state, respectively. Moreover, Φ(s) is a kind of potential



Sensors 2021, 21, 2233 7 of 25

energy function. If agent’s action help it approach termination condition, it will receive a
positive reward, otherwise negation. In summary, traditional MDPs can be rewritten as{

T, S, A(s), P(·|s, a), R
(
s, a, s′

)}
, (13)

and new reward function is defined as

R
(
s, a, s′

)
= R(s, a) + F

(
s, a, s′

)
. (14)

In the following, we present the shaping function for each individual problem.

(1) The Shaping Function for Turn Round Problem

Based on the definition of turn round problem, we can obtain the shaping function for
turn round problem as shown in Equation (15).

F
(
s, a, s′

)
= ωδψLOS

·
π −

∣∣δψLOS

∣∣
π

+ ωNs ·
(

1−
∣∣∣∣∣
(Nmax

y − Ns

Nmax
y

+1
)/

2−
2π −

(
δψTGT + π

)
2π

∣∣∣∣∣
)

. (15)

In Equation (15), ωδψLOS
∈ [0, 1] is the coefficient of azimuth error factor, and ωNs ∈

[0, 1] is the coefficient of maneuver factor.

(2) The Shaping Function for Guidance Problem

As shown in Equation (16), the definition of the shaping function of guidance problem
is given.

F
(
s, a, s′

)
= ωδdT

·
(

δdLOS

vmax · T
+ 1
)/

2 + ωNs ·
(

1−
∣∣∣∣∣
(Nmax

y − Ns

Nmax
y

+1
)/

2−
2π −

(
δψLOS + π

)
2π

∣∣∣∣∣
)

. (16)

In the equation, δdLOS is distance that UAV approaches drop position after one simula-
tion step, ωδdLOS

∈ [0, 1] is the coefficient of distance factor. Moreover, T is simulation step,
vmax is the maximum speed of UAV. The symbol δdLOS could be calculated by

δdLOS = dt
LOS − dt+1

LOS, (17)

where dt
LOS is the distance between UAV and drop position at t-th decision step.

2.2. The UAV Maneuver Decision-Making Algorithm for Autonomous Airdrop Based on
Per-DDPG
2.2.1. The Framework of Per-DDPG

The Deep Deterministic Policy Gradient (DDPG) is a model-free, off-policy, and DRL-
based algorithm based on Actor-Critic architecture. It can effectively solve problems
belonging to MDPs with continuous state space and action space.

Although DDPG can avoid the dimensional explosion problem brought by continuous
state space and action space, it does not consider the diversity of data and does not utilize
historical experience fully. This results in the low convergence speed of DDPG’s policy
and poor stability of the convergence result. Meanwhile, because the episode of UAV
maneuver decision-making is short, while the task process lasts a long time, the changing
of reward is not obvious. Thus, the value density of historical experience is low. That is the
reason why we use PER to generate training data [17], which can improve the utilization
of the potential value of historical experiences, thereby increasing convergence speed and
enhancing the stability of training results.

Figure 4 shows the block diagram of the PER-DDPG’s structure. At each decision-
making step, the actor network outputs action with noise for exploring according to state,
and the current state, action, reward, and next state are packaged and stored in experience
memory D. During the process of storing experience, samples bind with probability used
for PER sampling. And then, the training data is sampled from D by PER, and every
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sampled data’s TD-error [25] between current Q(s, a) and target value is calculated for
updating the priority of data and being cumulated for updating network’s parameters with
importance sampling (IS) weights. Finally, the parameters of main networks Q(s, a; θQ)

and µ(s; θµ) are updated, and the parameters of target networks Q(s, a; θQ′) and µ(s; θµ′)
are also updated smoothly because of stability of network training.

Calculate 

TD-Errors

Update 

Priority

PER Sampling

Calculate IS

jp

j i

ip

Experience Memory D

Main Network

Policy 

Gradient

Update

Critic 

Network

Actor 

Network

Main Network

Policy 

Gradient

Update

Critic 

Network

Actor 

Network

Target Network

Actor 

Network

Critic 

Network

Target Network

Actor 

Network

Critic 

Network

Update

Figure 4. The diagram of Prioritized Experience Replay-Deep Deterministic Policy Gradient (PER-DDPG)’s framework.

At each moment, the algorithm gives action by

at = µ(st), (18)

where st ∈ S is the current state, and at is the resulting output by the actor function µ(s).
During the training process, the critic function Q(s, a) evaluates current action given by
actor function, and the evaluation is used for the basis of updating µ(s).

2.2.2. The UAV Maneuver Decision-Making Network

As mentioned above, DDPG is a kind of deep reinforcement learning algorithm based
on the Actor-Critic framework. During the training process, the actor network outputs
action a ∈ A(s) according to state s ∈ S generated by environment. Meanwhile, TD-error
is used to optimize the critic network and update its parameters. Similarly, the actor
network’s parameters are optimized according to max Q(s, a). Therefore, we must design
the structure of actor and critic networks, respectively, on the basis of DL.

(1) Actor Network

The actor network µ(s; θµ) is mainly used to output action in real-time decision
according to state. The input vector of the network is the current state s ∈ S, and the output
vector of the network is the current action a ∈ A(s) calculated by µ(s; θµ). Considering the
definition of state space, the dimension of network input is dim (S), and the dimension
of output is dim (A). As shown in Figure 5, it is the normal structure of actor network
µ(s; θµ).



Sensors 2021, 21, 2233 9 of 25

……State s

1 dim
, ,

S
s s

Action a

1 dim
, ,

A
a a

Input Layer Output Layer

Dense Layer

Figure 5. The structure of actor network.

(2) Critic Network

The critic network Q(s, a; θQ) is used to evaluate the advantage of current action
a ∈ A(s) output by µ(s; θµ). The network input is [s, a], and the network output is Q(s, a).
According to state space and action space defined above, the dimension of network input
is dim (S) + dim (A), and the dimension of network output is 1. As shown in Figure 6, it is
the normal structure of critic network Q(s, a; θQ).

……

State s

1 dim
, ,

S
s s

State s

1 dim
, ,

S
s s

Action a

1 dim
, ,

A
a a

Input Layer

Output Layer

,Q s a

Dense Layer

Figure 6. The structure of critic network.

In addition, before state and action are entered into network, the value of input
vector should be normalized for eliminating the influence of data’s physical meaning.
Moreover, the structure of target networks µ′(s; θµ′) and Q′(s, a; θQ′) is similar to µ(s; θµ)
and Q(s, a; θQ), and only the method of parameters updating is distinguished.

2.2.3. The Training Procedure of UAV Maneuver Decision-Making Algorithm

Based on MDPs, the key issue of searching optimal UAV maneuver decision-making
policy is to solve an optimization problem defined as

max
π

Q(s, a) = Eµ[v(s, π)], (19)

where v(s, µ) is defined in Equation (3). In this paper, we use Double Q-Learning [18] to
update the Q(s, a), as defined in Equation (20).

Q(s, a) = Q(s, a) + σ

[
r + γQ′

(
s′, arg max

a
Q
(
s′, a

))
−Q(s, a)

]
. (20)
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In the equation above, s ∈ S is current state, a ∈ A(s) is current action, r = R(s, a, s′)
is current reward, s′ ∈ S is next state, and σ ∈ [0, 1] is the learning rate of the algorithm. As
shown in Equation (21), it is loss function L(θQ) of critic network Q(s, a; θQ).

L
(

θQ
)
= E(s,a,r,s′)j

[
δj

2
]
. (21)

The symbol δj is TD-error based on Double Q-Learning of j-th data sampling from
memory D. TD-error describes the difference between Q(s, a; θQ) and optimal goal, and it
is defined as

δj = yj −Q
(

sj, aj; θQ
)

, (22)

where yj is the optimal goal of Q(sj, aj; θQ), (s, a, r, s′)j is j-th training data, and sj and aj are
current state and action in (s, a, r, s′)j, respectively. The symbol yj could be calculated by

yj =

{
rj, ifsj is Termination State

rj + γQ′
(

sj+1, µ′
(

sj+1; θµ′
)

; θQ′
)

, Otherwise
, (23)

where rj and sj+1 are current reward and next state in (s, a, r, s′)j. Thus, we can obtain the
gradient of loss function L(θQ) as shown below considering Equations (21) and (22).

∇θQ L
(

θQ
)
= E(s,a,r,s′)j

[
δj · ∇θQ Q

(
sj, aj; θQ

)]
. (24)

At the same time, we define the loss function L(θµ) of actor network µ(s; θµ) in order
to update the parameters of µ(s; θµ).

L(θµ) = Es

[
Q
(

s, µ(s; θµ); θQ
)]

. (25)

Thereby, we can obtain the gradient of L(θµ) according to deterministic policy gradient
theorem [26], as shown in Equation (26).

∇θµ L(θµ) = Es

[
∇θµ µ(s; θµ)∇a Q

(
s, a; θQ

)∣∣∣
a=µ(s;θµ)

]
. (26)

During the process of training networks, we use the PER method to sample training
data from D in order to utilize the diversity of experiences fully. Usually, the training data
is sampled by selecting a batch of data from D uniformly, which means the probability P(i)
of each sample selected in D is equal. On the contrary, P(i) of PER is not same, as defined
as Equation (27).

P(i) =
pα

i
∑
k

pα
k .

(27)

In the equation above, pi is the priority of i-th sample in D, and α is a hyperparameter.
When α = 0, it is pure UER. pi is defined based on TD-error, as shown in Equation (28).

pi = |δi|+ ε. (28)

Among the equation above, δi is TD-error of i-th sample in D. Moreover, a minimum
ε ≤ 0.0001 is introduced to prevent pi from being 0.

Although PER improves the availability of experiences, the distribution error of train-
ing data sampled by PER occurs compared with UER’s, and this problem also reduces the
diversity of training samples. Therefore, importance sampling (IS) weights are introduced
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to correct the distribution error of training data caused by PER. The IS weight ωj is defined
as Equation (29).

ωj =

(
1
N
· 1

P(j)

)β

. (29)

In the equation above, N is the size of D. When β = 1, the distribution error of training
set is fully compensated. When δj is calculated, the actual updating target is ωj · δj and
it’s used to replace δj in Equation (24). Therefore, the final gradient ∆ of Q(sj, aj; θQ) is
calculated by

∆ = ∑
j

ωj · δj · ∇θQ Q
(

sj, aj; θQ
)

. (30)

In order to ensure the stable convergence of the network, ωj is normalized by ωi
max

j
ωj

.

Thereby, the actual IS weight ωj could be defined as

ωj =

min
i

P(i)

P(j)

β

. (31)

At the same time, in the early stage of training, the distribution error caused by PER is
not big. Thus, we define an initial β0 ∈ (0, 1), and it gradually increases to 1 with training
going on.

In addition, because of stability of target networks’ training, the parameters of µ′(s; θµ′)

and Q′(s, a; θQ′) are updated by “Soft” updating similar to smooth updating, as shown in
Equation (32). {

θQ′ = τθQ + (1− τ)θQ′

θµ′ = τθµ + (1− τ)θµ′ . (32)

In the equation above, the symbol τ ∈ (0, 1) is a hyperparameter involved in the “Soft”
updating. Moreover, a kind of random noise is used to improve the exploration ability of
deterministic policy involved in algorithm, as shown in Equation (33).

at = µ(st; θµ) +N (t). (33)

Among the equation,N (t) is a kind of time-variant noise. Because the UAV maneuver
decision-making satisfies the Markovian condition and the changing of state is inertial
process, an autocorrelation noise model called Ornstein Uhlenbeck (OU) process [27] is
used for action exploration. The iterative formula of N (t) is shown in Equation (34).

xt+∆t = xt + κ · (µ− xt) · ∆t + dWt, dWt ∼ N
(

0, σ2∆t
)

. (34)

In the equation above, xt and xt+∆t are current and next value of noise separately. µ
and κ indicate the mean value and regression rate of noise, respectively. Moreover, ∆t is
the step of noise, and dWt represents the Wiener process.

Finally, the training procedure of UAV maneuver decision-making algorithm is given
in Algorithm 1.
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Algorithm 1 The UAV Maneuver Decision-Making Algorithm for Airdrop Task.

Input:
The hyperparameters of training networks: the size of minibatch k, networks’ learn-
ing rate η;
The hyperparameters of updating policy: policy’s learning rate σ, learning period K,
memory capacity N, “Soft” updating τ;
The hyperparameters of sampling: the availability exponent of PER α, IS exponent β;
The control parameters of simulation: maximum period M, maximum step per period
T.

Output:
Actor network Q(sj, aj; θQ) and its target network Q′(s, a; θQ′);
Critic network µ(s; θµ) and its target network µ′(s; θµ′).

1: Initialize Q(sj, aj; θQ), µ(s; θµ) and their target networks Q′(s, a; θQ′), µ′(s; θµ′).
2: for m = 1 to M do
3: Reset environment and read the initial state s0.
4: Output a0 according to Equation (18).
5: for t = 1 to T do
6: Observe current state st and reward rt of environment and calculate current action

at according to Equation (18).
7: Save current transition (st, at, rt, st+1) into experiences memory D.
8: if t mod K ≡ 0 then
9: Reset the gradient ∆ = 0 of Q(sj, aj; θQ) with IS.

10: for j = 0 to k do
11: Sample traing data j ∼ P(j) according to Equation (27)
12: Calculate IS weight ωj according to Equation (31)
13: Calculate TD-error δj of training data according to Equation (22) and update

its priority according to Equation (28)
14: Accumulate ∆ according to Equation (30).
15: end for
16: Update the parameters of Q(sj, aj; θQ) according to ∆ with learning rate η.
17: Update the parameters of µ(s; θµ) according to Equation (26).
18: Update the parameters of target networks Q′(s, a; θQ′) and µ′(s; θµ′) according

to Equation (32)
19: end if
20: end for
21: end for

3. Results and Analysis

According to content aforementioned, we design some experiments to verify the
availability of the algorithm we proposed and compare PER with UER in terms of the
efficiency of policy optimization. In the following, we will explain the setting of simulation
environment, training results, and results of Monte-Carlo (MC) test experiments, as well as
their analysis.

3.1. The Settings of Simulation Environment

In the experiments we designed, the drop area and UAV are restricted to 100 km × 100 km
airspace at the height of 5000 m. For each simulation experiment, the UAV’s initial state is
randomly generated, and the UAV might start from arbitrary position in flight airspace. In
order to make simulation closer to real environment, we decide to make T = 0.5 s because
UAV’s control input is usually updated by human pilot every 0.5 s ∼ 1 s.

Moreover, because each dimension of state space has different physical units, the state
and action should be normalized before it’s input into Q(s, a; θQ) and µ(s; θµ). As shown in
Table 1, the details of data are explained. Thereby, we can normalize parameters according
to their physical meanings.
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Table 1. The details of data input into networks.

Parameter Range Meaning

δψLOS [0, 2π) The relative azimuth between LOS and nose of UAV.
Ns

[
−Nmax

y , Nmax
y

]
The steering overload of UAV.

dLOS
[
0, Dmax

LOS
]

The distance between UAV and drop position.

3.2. The Simulation Results and Analysis of Turn Round Problem
3.2.1. The Parameters Setting of Algorithm

According to the training procedure of algorithm, before we start training, some pa-
rameters should be assigned. As shown in Table 2, there are some parameters assignments
of algorithm. Moreover, we design the structure of networks µ(s; θµ) and Q(s, a; θQ) shown
in Tables 3 and 4, respectively, according to the state space and action space of turn round
problem. In this paper, the networks are all designed by fully-connected neural network,
which means the layers are dense layers.

Table 2. The parameters assignment of algorithm.

Parameter Value Meaning

M 1000 The number of simulation episodes.
T 300 The maximum of steps per episode.
K 32 The training episode of algorithm.
k 32 The size of training batch.

Dsize 5000 The size of experiences memory D.
α 0.5 The availability exponent of PER.
β0 0.4 The initial exponent of IS.

βinc 0.0001 The increment of exponent of IS.

Table 3. The structure of critic network Q(s, a; θQ).

Layers
Layer Structure

Units Activation Function

Input layer 3 -
Hidden layer 1 32 ReLU
Hidden layer 2 64 ReLU
Output layer 1 -

Table 4. The structure of actor network µ(s; θµ).

Layers
Layer Structure

Units Activation Function

Input layer 2 -
Hidden layer 1 32 tanh
Hidden layer 2 64 tanh
Output layer 1 tanh

3.2.2. The Analysis of Simulation Results

Based on the setting above, we finished the training of networks successfully and the
loss diagrams of critic networks involved in UER-DDPG and PER-DDPG over time are
shown in Figure 7, respectively. We could find that the loss of PER-DDPG converges faster
than UER-DDPG. Moreover, the loss of PER-DDPG becomes stable after converging to
minimum. On the contrary, when UER-DDPG converges, the loss fluctuated greatly at
1000th episode, and its convergence costs more time.

Figure 8 is the winning rate of algorithms based on different experience replay methods
over simulation episode during the training process. We can find that all the winning
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rates are more than 80% and maintain stably. It is shown that DDPG with PER method
could achieve the same result compared with UER-DDPG. But the training process of
PER-DDPG is much stabler than UER-DDPG because the winning rate of UER-DDPG
fluctuates violently at the beginning of training. Meanwhile, the curve of episode rewards
further demonstrates that PER-DDPG is much steadier than UER-DDPG from Figure 9.

(a) (b)

Figure 7. The comparison of critic networks’ training loss involved in Uniform Experience Replay (UER)-DDPG and
PER-DDPG over training episode. (a) The training loss of critic network of UER-DDPG. (b) The training loss of critic
network of PER-DDPG.

(a) (b)

Figure 8. The winning rate of algorithms based on UER-DDPG and PER-DDPG over simulation episode. Winning rate
means a rate of finishing mission successfully. (a) The comparison of winning rate based on UER-DDPG and PER-DDPG.
(b) The top figure is the winning rate of algorithm based on UER-DDPG, and the figure at the bottom is the winning rate of
algorithm based on PER-DDPG.

After training, we run a group of Monte-Carlo experiments for trained results of
UER-DDPG and PER-DDPG, and the number of MC experiments for each result is 1000.
As shown in Table 5, the training result’s performance of PER-DDPG is better than UER-
DDPG’s because the winning rate of PER-DDPG’s is more than about 3% than UER-DDPG’s.
Meanwhile, we visualize some typical test results from MC experiments, and Figures 10–13
is the flight trajectory of UAV and some parameters, including azimuth, reward, and action,
over simulation step.
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(a) (b)

Figure 9. The episode rewards of algorithms based on UER-DDPG and PER-DDPG over simulation episode. (a) The
comparison of episode rewards based on UER-DDPG and PER-DDPG. (b) The top figure is the episode rewards of algorithm
based on UER-DDPG, and the bottom figure is the episode rewards of algorithm based on PER-DDPG.

(a) (b)

(c) (d)

Figure 10. The flight trajectory from Monte-Carlo (MC) experiments for the trained result of UER-DDPG: (a) the flight
trajectory of 1st experiment; (b) the flight trajectory of 2nd experiment; (c) the flight trajectory of 3rd experiment; (d) the
flight trajectory of 4th experiment.
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(a) (b)

(c) (d)

Figure 11. The parameters curve from MC experiments for the trained result of UER-DDPG. (a) The parameters curve of 1st
experiment; (b) the parameters curve of 2nd experiment; (c) the parameters curve of 3rd experiment; (d) the parameters
curve of 4th experiment.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. The flight trajectory from MC experiments for the trained result of PER-DDPG: (a) the flight trajectory of 1st
experiment; (b) the flight trajectory of 2nd experiment; (c) the flight trajectory of 3rd experiment; (d) the flight trajectory of
4th experiment.

(a) (b)

(c) (d)

Figure 13. The parameters curve from MC experiments for the trained result of PER-DDPG: (a) The parameters curve of 1st
experiment. (b) The parameters curve of 2nd experiment. (c) The parameters curve of 3rd experiment. (d) The parameters
curve of 4th experiment.
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Table 5. The analysis of MC experiments for the trained results of UER-DDPG and PER-DDPG.

Sampling Method Winning Rate

UER 92.9%
PER 95.3%

In Figures 10 and 12, the red solid line represents the flight trajectory of UAV, and the
red dashed line and the blue dash dot line indicate the termination azimuth of UAV and
the required azimuth of LOS. In Figures 11 and 13, the 1st row each figure is azimuth of
UAV over simulation step, the 2nd row each figure is action of UAV over simulation step,
and the 3rd row each figure is reward of UAV received over simulation step.

We can find that the algorithm based on PER-DDPG we proposed solves the turn
round problem involved in airdrop task, and its performance is more than UER-DDPG. In
summary, not only is the training process of algorithm based on PER-DDPG stabler than
UER-DDPG’s, but also the trained result of algorithm based on PER-DDPG is much more
effective than UER-DDPG’s.

3.3. The Simulation Results and Analysis of Guidance Problem
3.3.1. The Parameters Setting of Algorithm

Based on content above, there are some parameters assignments of algorithm for
guidance problem shown in Table 6. Moreover, according to the state space and action
space of guidance problem, the structure of networks Q(s, a; θQ) and µ(s; θµ) is shown in
Tables 7 and 8, respectively.

Table 6. The parameters assignment of algorithm.

Parameter Value Meaning

M 6000 The number of simulation episodes.
T 1000 The maximum of steps per episode.
K 64 The training episode of algorithm.
k 64 The size of training batch.

Dsize 10, 000 The size of experiences memory D.
α 0.5 The availability exponent of PER.
β0 0.4 The initial exponent of IS.

βinc 0.0001 The increment of exponent of IS.

Table 7. The structure of critic network Q(s, a; θQ).

Layers
Layer Structure

Units Activation Function

Input layer 3 -
Hidden layer 1 32 ReLU
Hidden layer 2 64 ReLU
Hidden layer 3 64 ReLU
Hidden layer 4 64 ReLU
Output layer 1 -

Table 8. The structure of actor network µ(s; θµ).

Layers
Layer Structure

Units Activation Function

Input layer 2 -
Hidden layer 1 32 tanh
Hidden layer 2 64 tanh
Hidden layer 3 64 tanh
Output layer 1 tanh
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3.3.2. The Analysis of Simulation Results

Similarly, we also analyzed the training loss, the winning rate, and the episode
rewards generated during the training process of algorithms. In Figure 14, we could
find that the convergence speed of PER-DDPG is more than UER-DDPG’s due to high
utilization of experiences, and PER-DDPG becomes much stabler than UER-DDPG because
the fluctuation of PER-DDPG is less than UER-DDPG.

(a) (b)

Figure 14. The comparison of critic networks’ training loss involved in UER-DDPG and PER-DDPG over training episode.
(a) The training loss of critic network of UER-DDPG. (b) The training loss of critic network of PER-DDPG.

In Figure 15, the winning rate of algorithms based on different experience replay
methods over simulation episode during the training process is shown. We can find that
the winning rate curves of UER-DDPG and PER-DDPG are stable after some simulation
episodes and maintain a high value. And the winning rate of PER-DDPG is much more
than UER-DDPG after fluctuation. Meanwhile, the comparison of episode rewards could
demonstrate that PER-DDPG is much steadier than UER-DDPG because the fluctuation of
episode rewards of PER-DDPG is clearly less than UER-DDPG from Figure 16.

(a) (b)

Figure 15. The winning rate of algorithms based on UER-DDPG and PER-DDPG over simulation episode. Winning rate
means a rate of finishing mission successfully. (a) The comparison of winning rate based on UER-DDPG and PER-DDPG.
(b) The figure in 1st row is the winning rate of algorithm based on UER-DDPG, and the figure in 2nd row is the winning
rate of algorithm based on PER-DDPG.
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(a) (b)

Figure 16. The episode rewards of algorithms based on UER-DDPG and PER-DDPG over simulation episode. The legends
of figure are the same to Figure 9. (a) The comparison of episode rewards based on UER-DDPG and PER-DDPG. (b) The
figure in 1st row is the episode rewards of algorithm based on UER-DDPG, and the figure in 2nd row is the episode rewards
of algorithm based on PER-DDPG.

After training, we finished a set of Monte-Carlo experiments for trained results of UER-
DDPG and PER-DDPG, and the number of it for each result is 1000. As shown in Table 9,
the winning rate of PER-DDPG is more than approximately 3.5% than PER-DDPG, and we
can think that the training result’s performance of PER-DDPG is better than UER-DDPG’s.

Table 9. The analysis of Monte-Carlo (MC) experiments for the trained results of UER-DDPG and
PER-DDPG.

Sampling Method Winning Rate

UER 93.2%
PER 96.8%

Moreover, we visualize some typical test results from MC experiments in order to
make our analysis more convincing. Figures 17–20 is the flight trajectory of UAV and some
parameters, including reward and action over simulation step. In Figures 17 and 19, the
red solid line represents the flight trajectory of UAV, and the blue dashed circle represents
the maximum range of drop area. The red solid point and green solid point indicate start
position and drop position. In Figures 18 and 20, the top figure is the action of UAV over
simulation step, the bottom figure is the reward of UAV received over simulation step.

According to results and analysis above, we could find that the algorithm based
on PER-DDPG we proposed solves the guidance problem involved in airdrop task, and
its performance is more than UER-DDPG. Similarly, not only is the training process of
algorithm based on PER-DDPG stabler than UER-DDPG’s, but also the trained result of
algorithm based on PER-DDPG is much more effective than UER-DDPG’s, while solving
the guidance problem.



Sensors 2021, 21, 2233 21 of 25

(a) (b)

(c) (d)

Figure 17. The flight trajectory from MC experiments for the trained result of UER-DDPG: (a) The flight trajectory of 1st
experiment. (b) The flight trajectory of 2nd experiment. (c) The flight trajectory of 3rd experiment. (d) The flight trajectory
of 4th experiment.

(a) (b)

Figure 18. Cont.
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(c) (d)

Figure 18. The parameters curve from MC experiments for the trained result of UER-DDPG. (a) The parameters curve of 1st
experiment. (b) The parameters curve of 2nd experiment. (c) The parameters curve of 3rd experiment. (d) The parameters
curve of 4th experiment.

(a) (b)

(c) (d)

Figure 19. The flight trajectory from MC experiments for the trained result of PER-DDPG: (a) The flight trajectory of 1st
experiment. (b) The flight trajectory of 2nd experiment. (c) The flight trajectory of 3rd experiment. (d) The flight trajectory
of 4th experiment.
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(a) (b)

(c) (d)

Figure 20. The parameters curve from MC experiments for the trained result of PER-DDPG: (a) The parameters curve of 1st
experiment. (b) The parameters curve of 2nd experiment. (c) The parameters curve of 3rd experiment. (d) The parameters
curve of 4th experiment.

4. Conclusions

Aiming at the airdrop task, we refined and described two key issues, including
turn round problem and guidance problem. Based on the definitions of problems, we
designed the UAV maneuver decision-making model for airdrop task based on MDPs and
constructed the state space, the action space, and the reward function based on PBRS. Then,
we proposed the UAV maneuver decision-making algorithm for autonomous airdrop based
on Deep Reinforcement Learning. Particularly, we used Prioritized Experience Replay to
improve the availability of experiences during training process. Meanwhile, the results
showed that the algorithm we proposed could be able to solve the turn round problem and
guidance problem after training successfully. And the convergence of PER-DDPG is faster
and stabler than UER-DDPG and the trained result performance of PER-DDPG is also
better than UER-DDPG. In the future, we will investigate the solution of UAV autonomous
flight when state is partially observed. And we will extend the algorithm we proposed
to manipulate the real UAV to improve the autonomy of UAV, while performing special
missions in the real world.
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