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Abstract: Authentication methods using personal identification number (PIN) and unlock patterns
are widely used in smartphone user authentication. However, these authentication methods are
vulnerable to shoulder-surfing attacks, and PIN authentication, in particular, is poor in terms of
security because PINs are short in length with just four to six digits. A wide range of research
is currently underway to examine various biometric authentication methods, for example, using
the user’s face, fingerprint, or iris information. However, such authentication methods provide
PIN-based authentication as a type of backup authentication to prepare for when the maximum set
number of authentication failures is exceeded during the authentication process such that the security
of biometric authentication equates to the security of PIN-based authentication. In order to overcome
this limitation, research has been conducted on keystroke dynamics-based authentication, where
users are classified by analyzing their typing patterns while they are entering their PIN. As a result, a
wide range of methods for improving the ability to distinguish the normal user from abnormal ones
have been proposed, using the typing patterns captured during the user’s PIN input. In this paper,
we propose unique keypads that are assigned to and used by only normal users of smartphones to
improve the user classification performance capabilities of existing keypads. The proposed keypads
are formed by randomly generated numbers based on the Mersenne Twister algorithm. In an attempt
to demonstrate the superior classification performance of the proposed unique keypad compared to
existing keypads, all tests except for the keypad type were conducted under the same conditions in
earlier work, including collection-related features and feature selection methods. Our experimental
results show that when the filtering rates are 10%, 20%, 30%, 40%, and 50%, the corresponding equal
error rates (EERs) for the proposed keypads are improved by 4.15%, 3.11%, 2.77%, 3.37% and 3.53%
on average compared to the classification performance outcomes in earlier work.

Keywords: authentication; keystroke dynamics; machine learning; smartphone; unique keypad

1. Introduction

Smartphones not only play an important role as IoT devices in our everyday life, but
also will do as crowdsensing entities for the future of smart cities. The more smartphones
contribute to, the more they need security and privacy protection. As security solutions for
smartphones, authentication methods that use a personal identification number (PIN) and
unlock patterns are widely employed for smartphone user authentication. However, these
authentication methods are vulnerable to shoulder-surfing attacks, and PIN authentication,
in particular, is poor in terms of security because PINs are short in length with just four to
six digits. As a way to overcome this limitation, various biometric recognition methods
have been developed which are capable of authenticating a normal user based on their
unique biometric information. Biometric recognition technology refers to methods that
allow the smartphone to learn data that is unique to its user, such as the user’s face [1],
fingerprint [2], or iris [3] information. However, if the user fails to enter his or her biometric

Sensors 2021, 21, 2242. https://doi.org/10.3390/s21062242 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0969-8735
https://doi.org/10.3390/s21062242
https://doi.org/10.3390/s21062242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062242
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062242?type=check_update&version=2


Sensors 2021, 21, 2242 2 of 19

recognition information properly, or exceeds the set maximum number of authentication
attempts, PIN-based authentication is then required as the final authentication step. If, by
any chance, an intruder knows the user’s PIN, the smartphone in question will permit the
intruder access during the PIN input stage.

To prevent such attacks by intruders, research has been conducted on keystroke
dynamics-based authentication, where users are classified by analyzing their typing pat-
terns as they enter their PIN. Furthermore, in an effort to improve the user classification
performance of these methods, there have been various studies conducted on diversifying
the features that can be extracted from typing patterns, by applying artificial rhythms to
facilitate the user classification, or employing a suitable classifier for binary classification.

Unlike existing methods, the method proposed in the present study was designed
to improve user classification performance by assigning a unique keypad to the normal
user during the user classification process. Using the feature selection algorithm presented
in [4], the data collected from the unique keypad was subject to feature selection and
then preprocessing, followed by user classification tests using three types of classifiers:
Linear support vector machine (SVM), One-Class SVM, and Manhattan distance-based
classifiers. The test results obtained using the unique keypad were then compared with
those obtained using a conventional keypad. The results confirmed that the user classifica-
tion performance was better in both analytical and practical aspects when the proposed
unique keypad was employed.

The organization: In Section 2, previous studies on keystroke dynamics-based authen-
tication and keystroke dynamics-based user classification using keypads are reviewed. In
Section 3, feature data collection and extraction-related features, which are employed for
improved classification performance, are described. Section 4 reviews the development
process and principles of the designed unique keypad. In Section 5, test results obtained
from the proposed unique keypad are presented, and these results are further compared
and analyzed in terms of performance. Finally, in Section 6, the major experimental findings
are discussed along with future research directions.

2. Related Work

In this section, previous studies on keystroke dynamics-based authentication, as
well as the papers that have been published on user classification for authentication,
are discussed.

2.1. Keystroke Dynamics-Based Authentication

Keystroke dynamics-based authentication is a common behavioral biometric approach,
in which users are identified based on their typing patterns and rhythms, which are
collected as they use PC keyboards or smartphone touchscreens. The concept of keystroke
dynamics, which is a user authentication method based on behavioral patterns, i.e., their
keyboard typing patterns, first appeared in 1975 [5]. Based on this keystroke concept, it
was demonstrated in 1985 that a false rejection rate (FRR) of 12% and a false acceptance
rate (FAR) of 6% could be achieved in classification tests [6]. The authentication tests used
the difference in time between each keystroke, which was measured and extracted from
the subjects’ inputs in the keyboard.

In 2009, a study verified that the number of training data and how the collected
data were normalized were very important for improving the keystroke data-based user
classification performance [7]. 30 test subjects inputted 10 characters 20 times each, and
these data were then subjected to both user-dependent score normalization and user-
independent score normalization methods. Each classification test was conducted while
varying the number of training data (5 to 10 data points out of the 20 collected data for each
subject). It was found that the results were best when the number of training data sets for
each subject was set to 10, with an equal error rate (EER) of 14.46% and 16.21%, respectively.
This keystroke dynamics concept has been used for user authentication applications not
only in a PC environment but also in a mobile environment. In a smartphone-based
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authentication study in 2002, keystroke dynamics were employed to classify four-digit
PINs and fixed 11-digit mobile phone numbers [8]. The average time taken to complete
the set key inputs, the standard deviation of the time, and the delay time between each
keystroke were used as data features. As a result, the EER was calculated to be 15% for the
four-digit PINs and 15% for the fixed 11-digit mobile phone numbers.

In a 2018 study, with more advanced smartphone technology, there was an attempt
to classify users using the data measured by a motion sensor built into a smartphone [9].
These results were compared with the existing results obtained without using motion data.
An acceleration sensor, angular velocity sensor, and rotation-vector sensor were used as the
motion sensors. The mean, root mean square, sum of positive numbers, sum of negative
numbers, and standard deviation of the data measured by each sensor were calculated,
and suitable features for classification were selected accordingly. The EER for existing user
classification results obtained without motion sensor data was measured to be 8.94%. That
figure decreased by 1.05% to 7.89% when the mean feature was applied, among the motion
sensor-based features. The mean feature was the best performance among the motion
sensor-based features. These results demonstrated that it was possible to improve user
classification performance by employing feature data extracted from motion sensor data.

Recently, several studies have applied keystroke dynamics-based authentication in
various environments. These include studies based on keystroke dynamics from free text, in
contrast to other work that utilized fixed length elements, such as passwords or PINs [10,11],
as well as research that continuously classifies the user’s keystroke dynamics [11–13] and
studies that consider various typing positions, such as sitting, walking, and relaxing
positions [14].

In addition to keystroke dynamics-based authentication, user authentication research
based on various biometric factors has been very active. Biometric authentication methods
based on face [1], fingerprint [2], and iris [3] information are widely used, and recently,
authentication methods based on information such as that generated by electroencephalo-
gram (EEG) [15] and electrocardiogram (ECG) [16] are attracting attention as part of the
effort to resolve the vulnerabilities of existing biometric authentication approaches, such as
the forgery of biometric information.

2.1.1. Random Keypad

As smartphones become more embedded in our daily lives, sensitive user informa-
tion (such as bank account passwords, smartphone PINs, and text messages) are being
increasingly stored in them. In an attempt to secure and protect such sensitive information
from various attacks, research has been conducted on the PIN input method using random
keypads, rather than existing conventional keypads. In a 2010 study, the time taken to
complete four-digit and eight-digit numbers was measured using a random keypad in a
mobile environment [17]. The number of keystroke errors was also measured, and all these
results were compared with those obtained using a normal keypad. In the case of four-digit
numbers, when using the random keypad, the keystroke completion time was over 1 s
longer, but the error rate was 0.01% lower, showing improved performance, compared to
using the normal keypad. In the case of eight-digit numbers, the keystroke completion
time was over 3 s longer, and the error rate was 0.03% higher. These results verified the
usability of a random keypad for short PINs, such as four-digit ones.

Various other methods were proposed to improve the vulnerability of using a normal
keypad, which are vulnerable to side-channel keystroke inference attacks, for example [18].
These included changing the arrangement and size of the keypad buttons. In the study,
effective protective measures against side-channel keystroke inference attacks were pro-
posed, as follows: row randomization (RR) where the position of the numbers in the four
rows of the 4 × 3 keypad is changed, column randomization (CR) where the position of the
numbers in the three columns is changed, individual key randomization (IKR) where the
position of the keypad buttons is randomly changed, gray-scale IKR where each button of
the IKR keypad is colored differently, key size randomization (KLR) where the size of the
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keypad buttons is changed, and keypad location randomization (KLR) where the keypad
is divided into a 7 × 6 grid, and some of these grid points are selected and arranged to
form a 4 × 3 keypad.

In a 2019 study, the test subjects were asked to input fixed PINs using a random
keypad that was designed to change every round [19]. User classification performance
was measured and analyzed based on the collected data. More specifically, the 30 test
subjects entered fixed 10-digit PINs using a random keypad set for ten rounds. Based on
the entered data, 32 features (including the time taken to press and release a single button,
the time between consecutively inputted keys, the range of area touched by the fingertips
when pressing each button, and the gender) were collected, and a random forest classifier
was applied. As a result, the EER was measured to be 10%.

Unlike our study, which provides a keypad that collects unique features that represent
only normal users, the aforementioned studies based on random keypad techniques [17,19]
cannot readily collect data pertaining to unique features well enough to classify normal
users effectively, as they provide keypads that are not familiar to everyone, including
normal users. In addition, in one study [18], the authors focused on evaluating the usability
of randomized keypads to prevent keystroke inference attacks by malicious attackers. Here,
on the other hand, we focus on verifying how normal users are better classified relative to
abnormal users through the provision of unique keypads.

2.1.2. Feature Selection

There was a study on feature selection for keystroke data, which can be used to classify
normal and abnormal users in a smartphone environment. In a 2003 study, 21 participants
were asked to enter the four-digit key “abcd”, and, as a result, time vector data were
obtained, which were composed of the duration time and interval time [20]. The data were
then subjected to a genetic algorithm, and based on this result, feature selection methods
were examined to improve the classification performance. In a 2007 study, time vector data
composed of duration time and interval time was collected while 24 participants entered the
four-digit key “abcd”, and was subjected to PSO (particle swarm optimization) [21]. Feature
selection methods were examined in an attempt to improve the classification performance.

In 2009, data were collected from 27 test subjects who had different passwords from
each other [22]. Based on the collected data, the duration time, latency time, and digraph
were extracted as data features, and the mean and standard deviations of the extracted
data were determined. Using the measured values, they attempted to apply the ant colony
optimization (ACO) as a way to improve user classification performance. In 2010, based on
the data collected from 27 participants, the duration time, latency time, and digraph were
set as data features, while various feature selection methods, including particle swarm
optimization, genetic algorithm, and ant colony optimization, were applied to measure
and compare the classification performance [23]. The respective accuracies were measured
to be 88.9%, 86.6%, and 92.8%, while the EER was 0.063%, 0.078%, and 0.059%, respectively.

In 2011, an attempt was made to classify users by various methods, including the
most frequently typed n-graph selection, quickly-typed n-graph selection, time-stability
typed n-graph selection, and time-variant typed n-graph selection [24]. The results showed
that the user classification performance was the best when the most frequently typed
n-graph selection method was applied. In a 2020 study, based on the trimmed mean and
variation coefficients of the collected data, feature scores were determined and compared [4].
Features with low scores were discarded to improve classification performance.

3. Keystroke Dynamics

Keystroke dynamics refers to the typing patterns or action types that are generated
when a user entering keys on a PC or smartphone. The method of classifying users based
on the unique typing patterns generated by each user is called keystroke dynamics-based
authentication. In a smartphone environment, a wide range of data can be extracted during
the authentication process, as the user repeatedly presses and releases the smartphone
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screen. Data can include the time interval between each keystroke and the next one,
the time taken to press and release a single key, and the movement of the smartphone
while the keys are being pressed. Keystroke dynamics-based authentication can be enabled
based on these collected keystroke data. Keystroke data can be largely divided into touch
data and motion data, and these are extracted according to various criteria.

3.1. Touch Data

Touch data are generally recorded at the moment the user touches the smartphone
screen (keyDown) and then removes the finger from the screen (keyUp). Three collection
features are involved here: the time between each touch on the smartphone screen, the pres-
sure applied by the finger when touching the screen, and the position of the finger both
when pressing and releasing the smartphone key.

3.1.1. Time

• DT (dwell time)
The DT refers to the time difference between the keyUp and keyDown when entering
a single key, as shown in Figure 1. Based on the collected keyDown and keyUp data,
the DT can be calculated using Equation (1).

A.keyUp− A.keyDown = DTA (1)

• FT (flight time)
The FT is a feature extracted from the keyDown and keyUp data when two keys
are entered. Figure 1 shows four FT features, while Equation (2) is an equation that
calculates the FT for each feature, which is the target data to be extracted.

FT1 =B.keyDown− A.keyUp

FT2 =B.keyUp− A.keyUp

FT3 =B.keyDown− A.keyDown

FT4 =B.keyUp− A.keyDown

(2)

Figure 1. Time feature structure.

3.1.2. Pressure

Pressure data are recorded by measuring the finger pressure when the user touches the
screen and removes the finger from the screen. The data corresponding to when the user is
touching the screen with a finger are the downPressure, while the data corresponding to
when the finger is removed from the screen are the upPressure.
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3.1.3. Coordinate

Coordinate data is recorded by measuring the x and y coordinates of each touch on
the screen when the user presses the screen and removes the finger from the screen. The
features collected when the user presses the screen are the downX and downY, while those
collected when the user removes the finger from the screen are the upX and upY.

3.2. Motion Data

Motion data are collected by measuring the movement of the smartphone while the
user is entering the keys on the screen. The motion data are measured based on the three-
dimensional coordinates of the x-, y-, and z-axes. As shown in Figure 2, the x-axis represents
the left and right movement of the smartphone, while the y- and z-axes represent the up
and down movement and the back and forth movement of the smartphone, respectively.
The motion data are divided into acceleration, angular velocity, and rotation vectors.

Figure 2. Smartphone reference axis for motion data.

3.2.1. Accelerometer

An acceleration sensor is mainly used to determine the inclination of an object or the
degree of vibration, and the values measured by this sensor basically include the effect of
gravitational acceleration. The acceleration is measured using this characteristic. Given that
the smartphone is affected by gravity even while it is not in use, the acceleration needs
to be extracted in the form of linear acceleration by removing the effect of gravitational
acceleration. Here, acceleration is indicated as the accelerometer (acc), while the linear
acceleration is referred to as the linear accelerometer (lacc).

3.2.2. Angular Velocity

The angular velocity sensor is used to measure the angle at which an object rotates per
hour around a specific axis. The angular velocity can be measured using this characteristic.
Here, the angular velocity is expressed as the gyroscope (gyr).

3.2.3. Rotation Vector

The rotation vectors refer to the angle at which the smartphone has been rotated
relative to each axis. The orientation of the smartphone is measured using a geomagnetic
sensor. With a geomagnetic sensor, the measured rotation vectors are affected by the north
pole. In order to eliminate the effect of the north pole, rotation vectors are estimated as
game rotation vectors, instead of using the values collected by the geomagnetic sensor. The
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data collected from the accelerometer and gyroscope are used, just as in determining the
acceleration and angular velocity. The rotation vectors are indicated as the rotation (rot),
while the game rotation vectors are expressed as the game rotation (grot).

4. Unique Keypad

In keystroke dynamics-based authentication in a smartphone environment, users are
classified by analyzing the PIN input data of the normal user, training the system with the
analyzed data, and then allowing the system to classify users who attempt authentication.
Here, we denote a legitimate user as a normal user and imposters as abnormal users.
This user classification process requires the input data to be unique and consistent. In this
regard, the collected data must include the unique feature data that exclusively represent
the normal user and the feature data that consistently occur only for the normal user.
The features obtained based on these principles are called uniqueness and consistency.

In most previous studies on keystroke dynamics-based authentication, conventional
keypads which were familiar to every user were employed. Given that both normal
and abnormal users used the same keypad, the features obtained from the collected data
failed to exhibit the uniqueness and consistency of just the normal user. For that reason,
in other studies investigating ways to improve exiting keypad-based user classification
performance, various measures have been proposed, such as a feature selection method
suitable for the user [5], a method of improving the quality of collected data using artificial
rhythmic cues [25], and a suitable classification method for the features extracted from
a mobile environment [26]. However, these papers were involved several problems, for
example, there was difficulty finding the optimal number of features to classify a normal
user, errors occurred when using complex rhythmic cues, and the use of unoptimized
classifiers. In an attempt to overcome these limitations, in the present study, a unique
keypad is proposed to extract data that identifies the uniqueness and consistency of the
normal user only.

4.1. The Proposed Unique Keypads

We employed the Mersenne twister [27] to assign a unique keypad to each user, in
which 10-digit random numbers were created while using each number from 0–9 only
once, and then these random numbers were accordingly assigned to the keypad. The
normal users for each smartphone were asked to enter their PINs using a unique keypad
assigned to them. Each smartphone was trained with the input data and then to try and
classify users.

Unlike the data obtained using a conventional keypad, the data obtained in the present
study were found to be unique and consistent because each normal user was assigned a
unique keypad that was familiar to them but not to the others. Thus, it was possible to
extract the feature data that were unique to the normal user, and yet were also consistent.
Even if other users attempted to enter the same PIN, the user classification performance
would still be better.

4.1.1. Uniqueness and Consistency

A keystroke dynamics-based authentication method which collects data using a con-
ventional keypad is also capable of extracting consistent data from the collected user data.
However, this conventional keypad is also familiar to users other than the normal user,
and thus the data extracted from them may be quite similar to those extracted from the
normal user. By using a unique keypad that is assigned to and used by only the normal
user, more unique and consistent data of the normal user can be collected, as compared
to collecting data using a conventional keypad. Additionally, even if users other than the
normal user happen to know the correct PIN, they will be asked to enter the PIN using a
unique keypad that is not familiar to them. Therefore, there will be an obvious difference
in the data collected from the normal user and any others. By training the smartphone
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using data collected from the normal user with this method, it is possible to improve its
ability to classify abnormal users.

4.1.2. Keypad Configuration

We employed the Mersenne twister [27] to assign a unique keypad to each user. We
generated 10-digit random numbers while using each number from 0 to 9 only once.
Following that, these random numbers were accordingly assigned to the keypad. The seed
value used for the random number generation was set to the time when the corresponding
unique keypad was generated. Each of the newly generated random numbers was assigned
one by one to each of the keypad buttons, except for the INITIALIZATION and CONFIRM
buttons, from the first row to the last one and from left to right in each row. The newly
generated keypad was assigned to the corresponding smartphone, and the user was asked
to enter the PIN using the keypad. While doing so, the user becomes accustomed to his
or her own typing patterns. This process allows the smartphone to learn from the input
data collected from the normal user. If random users enter the PIN using the same keypad,
the smartphone can tell them from the normal based on the collected data. Figure 3 shows
the initial keypad arrangement devised to generate a unique keypad, and Figure 4 shows
the four keypads used for the tests in the present study.

Figure 3. Initial keypad.

Figure 4. Unique keypad.
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5. Experimental Methods and Results

Tests were conducted to compare the data collected using the proposed unique keypad
with those obtained using a conventional keypad, to demonstrate that user classification
performance could be improved using the proposed method. The tests were performed as
follows. First, data features used for user classification were selected based on the collected
data. The selected data features were normalized, and the user classification results were
confirmed through classifiers.

This section describes the data collection process for the tests, how data features were
selected, data normalization, details about classifiers, and the test results.

5.1. Experimental Method
5.1.1. Data Collection and Extraction

Data collection was conducted using the unique keypad and four Nexus 5X devices,
which were assigned different six-digit PINs (“766420”, “843229”, “192763”, and “708196”).
A total of 13 participants were asked to use one smartphone. The number of participants
is a sufficient number, verified as 13 participants in one study [28] and 10 participants in
another [29]. Among them, one person was designated as the normal user, while the other
12 were abnormal users. As mentioned in Section 4.1.1, as the unique keypad was assigned
to and used by one normal user, in an experiment with one unique keypad, only one user
was a normal user. The remaining 12 users were abnormal users. A total of 120 data were
collected from the normal user, and a total of 60 data were collected from the abnormal
users, i.e., five data for each. In an attempt to increase the classification performance,
the first 10 data of the normal user were considered to have been acquired during the
adaptation period of the unique keypad, and thus discarded. Therefore, the total number
of normal user data used for the tests was 110. Table 1 shows the data collection method,
the number of participants, and the elements of the collected data.

Table 1. Collection data element.

Data Collection

Method Nexus 5X Device with an Android Application

Subject 1 Legitimate User and 12 Impostors
per Smartphone

Element

Touch Sensor - Time, Pressure, Coordinate
Accelerometer Sensor—Acc

Gyro Sensor—Gyr
Software-based Sensor Value—Lacc, Rot, Grot

Time (DT, FT1, FT2, FT3, FT4), pressure (downPressure, upPressure), and coordinate
(downX, downY, upX, upY) were used as the data features. Table 2 presents the 62 touch
data features used in the present study.

Table 2. The number of touch data features.

Time Pressure Coordinate

DT FT1 FT2 FT3 FT4 downPressure upPressure downX downY upX upY

6 5 5 5 5 6 6 6 6 6 6

62 Touch Data Features

Given that the motion data were continuously collected until the user finished en-
tering the PIN, the number of motion data for each data feature was not constant. The
varying number of data points for each data feature made it difficult to compare overall
results. The mean, root mean square (rms), sum, sum of positive numbers (pos), sum of
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negative numbers (neg), and standard deviation (std) of each vector’s axis data values
were calculated and applied, and in this way suitable data feature values were extracted
for the normalization of the motion data points varying in number. Six equations, shown
below as Equations (3)–(8), were applied to the motion data. These six equations were
applied to the data obtained for each of the x-, y-, and z-axes for each of the collected data
features, including the acc, lacc, gyr, rot, and grot. As a result, a total of 18 data features
were extracted. Table 3 shows the 90 motion data features collected by applying the six
equations above.

• mean

S(mean) =
s1 + s2 + · · ·+ sn

n
(3)

• rms

S(rms) =

√
s2

1 + s2
2 + · · ·+ s2

n
n

(4)

• sum

S(sum) =
n

∑
i=1

si (5)

• pos

S(pos) =
n

∑
i=1

si (where si > 0) (6)

• neg

S(neg) =
n

∑
i=1

si (where si < 0) (7)

• std

S(std) =

√
∑n

i=1(si − S)2

n
(where S is mean of S) (8)

Table 3. The number of motion data features.

6 Features per Each Axis of x, y, z
(mean, rms, sum, pos. neg, std)

acc lacc gyr rot grot

18 18 18 18 18

90 Motion Data Features

5.1.2. Feature Selection

In the present study, the same feature selection method used in [4] was employed to
improve classification performance, based on the extracted data. More specifically, the data
features were filtered according to the calculated feature ranking: first, those in the lower
10% group were filtered, and then those in the lower 20% group were filtered. In similar
fashion, the ratio went up to 50% in 10% increments. The collected data were divided into
training data and test data at a ratio of 8:2. Here, the training data were used for feature
selection and scaling. Classification test results obtained from these data were used to
estimate the EER.
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Feature selection is a process of selecting a set of sub-features related to the collected
data, which is used to implement machine-learning classification. If there are too many
data features, overfitting may occur. Thus, it is necessary to select some features that may
be helpful to improve the ability of the system to classify normal and abnormal users who
attempt authentication. In the present study, the feature scoring method used in [4] was
selected as a feature selection method. The 152 features collected in the present study were
ranked according to the values obtained using the feature scoring method proposed in [4].
The feature scoring equation in [4] can be expressed as Equation (9), which corresponds to
the difference between the variation coefficient of the abnormal user data (i_cv( fi)) and the
variation coefficient of the normal user data (u_cv( fi)) divided by the variation coefficient
of the normal user data (u_cv( fi)).

In this method, one reference value was set as the variation coefficient to compare the
scores of features that have different values. The variation coefficient was calculated by
dividing the standard deviation of the data by their mean value. By using this coefficient,
it was possible to compare two or more data groups when their mean values were different
from each other. In calculating the variation coefficient with the calculation method
described in [4], the trimmed mean was used to reduce the effect of the standard deviation
and outliers, as proposed in [4].

f eature_score( fi) =
i_cv( fi)− u_cv( fi)

u_cv( fi)
(9)

5.1.3. Normalization

When data were collected by various sensors, there was a possibility that each data
type may have a different unit, and thus they should be weighted accordingly. To prevent
this, a normalization process was required. For data normalization, a standard scaling
technique was used. Standard scaling refers to a method of converting the given data into
one whose mean and standard deviation were 0 and 1, respectively. This data scaling was
conducted using the following Equation (10). In Equation (10), xi denotes each datum of
the data set X, X denotes a mean of the X, and std(X) denotes a standard deviation of
the X.

standardized_value =
xi − X
std(X)

(10)

5.1.4. Classifiers

Three classifiers were applied to determine whether it was possible to classify normal
and abnormal users based on the data collected using the unique keypad. The Linear SVM,
One-Class SVM, and distance-based classifiers were used as classifiers for the tests.

• Linear SVM
The linear SVM is designed to learn both normal and abnormal user data to create a
linear decision boundary that can best classify normal and abnormal users. Once pre-
separated data are entered, the linear SVM classifies the data to determine which user
it would correspond to. This decision boundary is determined by the normalization
parameters. Cost(c), a parameter that adjusts the overfitting during learning, is set to
the default (1.0) value.

• One-Class SVM
Unlike the linear SVM, the One-Class SVM learns only the normal user data and
creates a suitable decision boundary for it. When pre-separated data are entered,
the One-Class SVM classifies the data as corresponding to the normal user or not. In
the tests, the One-Class SVM was trained with only the normal user data, and then
used to classify abnormal user data. The parameter nu and gamma values used in this
classifier can be changed. The nu, which represents the regression analysis precision,
is set considering the misclassification cost range. The gamma is used to adjust the
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shape of the decision boundary curve that has been determined by the nu. The nu
and gamma values were set to default (1.0) and 0.005, respectively.

• Distance-based Classifier
The distance-based classifier is designed to measure the distance of each data with its
own features for user classification. This classifier is sensitive when judging anomaly
values, and data normalization is an important factor when it is applied. In the
present study, only the normal user data were used to determine the threshold for
the distance between the mean vector value of the normal user data and the training
data. Any data exceeding the threshold were classified as corresponding to the
abnormal users. The threshold was set according to the method presented in [4]. The
distance between data points was calculated using the Manhattan distance metric.
The Manhattan distance metric is used to determine the shortest distance between two
points in n-dimensions as shown in Equations (11) and (12). The Manhattan distance
is calculated using the following Equation (13).

X = {x1, x2, · · · , xn} (11)

Y = {y1, y2, · · · , yn} (12)

dist(X, Y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn|

=
n

∑
i=1
|xi − yi|

(13)

The Manhattan distance between each normal user data point and the mean value
of the normal user data points was calculated. In order to allow most data (i.e.,
about 95% data) of the normal user to be classified as data from the normal user,
the sum of the mean of the calculated values above, mean_distance, and their standard
deviation, std_distance, multiplied by 2 was set as the threshold. The threshold value
was calculated using the following Equation (14).

threshold = mean_distance + (std_distance× 2) (14)

5.2. Experimental Results

The test results were compared based on the classification performance of the data
collected using the unique keypad, as well as the results reported in [4]. A Manhattan
distance-based classifier was implemented to have the same conditions as the one used
in [4] so as to compare the results of the present study with those reported in [4]. The
Linear SVM and the One-Class SVM were also applied to compare the data classification
results obtained using the unique keypad. The results were compared by calculating the
EER, an index that evaluates the data classification performance. An EER is a point where
the FAR and FRR intersects. The FRR is the possibility that the system incorrectly classifies
the normal user as being abnormal, whereas the FAR is the possibility that the system
incorrectly classifies an abnormal user as being normal. The EER can be calculated using
Equation (15). Figure 5 illustrates the concept of EER, which represents a point where the
FAR and FRR become equal.

EER =
FRR + FAR

2
(15)
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Figure 5. Equal Error Rate (EER).

5.2.1. Classification Results for Removing the Lower 10 % Features

Figure 6 shows the graph used to calculate the EER with the data features in the lower
10% group removed. Table 4 summarizes the calculated EER values. First, the results
obtained using the Manhattan distance-based classifier were examined to compare the
EER values of the unique keypad-based collected data and the conventional keypad-based
collected data. When the unique keypad was used, the EER was 11.42%, 11.70%, 12.45%,
and 12.82% for padA, padB, padC, and padD, respectively. When the conventional keypad
was used, the EER was 16.25%. The difference in the EER was 4.83%, 4.55%, 3.8%, and
3.43%, respectively, and the average difference was 4.15%.

Figure 6. EER for removal of the lower 10% features.

Table 4. EER for removal of the lower 10% features.

Pad Linear SVM Manhattan Distance-Based One-Class SVMClassifier

PadA 12.48% 11.42% 12.70%

PadB 13.28% 11.70% 12.83%

PadC 12.76% 12.45% 13.62%

PadD 11.88% 12.82% 11.97%

5.2.2. Classification Results for Removing the Lower 20 % Features

Figure 7 presents the graph used to calculate the EER with the data features in the
lower 20% group removed. Table 5 summarizes the calculated EER values. In the same
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way as above, the Manhattan distance-based classifier was used for comparison. When
the unique keypad was used, the EER was 10.91%, 11.24%, 12.23%, and 12.59% for padA,
padB, padC, and padD, respectively. When the conventional keypad was used, the EER
was 14.85%. The difference in the EER was 3.94%, 3.61%, 2.62%, and 2.26%, respectively,
and the average difference was 3.1%.

Figure 7. EER for removal of the lower 20% features.

Table 5. EER for removal of the lower 20% features.

Pad Linear SVM Manhattan Distance-Based One-Class SVMClassifier

PadA 12.04% 10.91% 11.85%

PadB 12.56% 11.24% 11.12%

PadC 12.23% 12.23% 13.10%

PadD 11.25% 12.59% 11.56%

5.2.3. Classification Results for Removing the Lower 30 % Features

Figure 8 presents the graph used to calculate the EER with the data features in the
lower 30% group removed. Table 6 summarizes the calculated EER values. Additionally,
the Manhattan distance-based classifier was used for comparison. When the unique keypad
was used, the EER was 10.23%, 10.34%, 11.47%, and 11.52% for padA, padB, padC, and
padD, respectively. When the conventional keypad was used, the EER was 13.66%. The
difference in the EER was 3.43%, 3.32%, 2.19%, and 3.14%, respectively, and the average
difference was 3.01%.

Table 6. EER for removal of the lower 30% features.

Pad Linear SVM Manhattan Distance-Based One-Class SVMClassifier

PadA 11.71% 10.23% 11.13%

PadB 12.11% 10.34% 10.97%

PadC 11.54% 11.47% 12.27%

PadD 10.97% 11.52% 11.35%
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Figure 8. EER for removal of the lower 30% features.

5.2.4. Classification Results for Removing the Lower 40 % Features

Figure 9 presents the graph used to calculate the EER with the data features in the
lower 40% group removed. Table 7 summarizes the calculated EER values. When the
unique keypad was used, the EER was 10.01%, 10.12%, 11.13%, and 10.20% for padA, padB,
padC, and padD, respectively. When the conventional keypad was used, the EER was
13.73%. The difference in the EER was 3.72%, 3.61%, 2.6%, and 3.53%, respectively, and the
average difference was 3.36%.

Figure 9. EER for removal of the lower 40% features.

Table 7. EER for removal of the lower 40% features.

Pad Linear SVM Manhattan Distance-Based One-Class SVMClassifier

PadA 10.50% 10.01% 10.98%

PadB 10.97% 10.12% 10.65%

PadC 10.67% 11.13% 11.95%

PadD 10.02% 10.20% 10.50%

5.2.5. Classification Results for Removing the Lower 50 % Features

Figure 10 presents the graph used to calculate the EER with the data features in the
lower 50% group removed. Table 8 summarizes the calculated EER values. When the
unique keypad was used, the EER was 9.67%, 9.77%, 10.58%, and 9.64% for padA, padB,
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padC, and padD, respectively. When the conventional keypad was used, the EER was
13.44%. The difference in the EER was 3.77%, 3.67%, 2.86%, and 3.8%, respectively, and the
average difference was 3.52%.

Figure 10. EER for removal of the lower 50% features.

Table 8. EER for removal of the lower 50% features.

Pad Linear SVM Manhattan Distance-Based One-Class SVMClassifier

PadA 10.10% 9.67% 10.47%

PadB 10.73% 9.77% 10.53%

PadC 10.44% 10.58% 11.57%

PadD 9.67% 9.64% 10.13%

5.2.6. Analysis of the Experimental Results

The classification performance results obtained using the unique keypad were com-
pared with those obtained using a conventional keypad in [4] to determine the effect of
the keypad type on the classification performance. When the Manhattan distance-based
classifier was used, the EER was 11.42%, 11.70%, 12.45%, and 12.82% for padA, padB,
padC, and padD, respectively, with the data features in the lower 10% group removed.
When compared to 16.25% reported in [4], the EER was 3.43 to 4.82% lower. It was found
that, as the filtering process proceeded further, the measured EER continued to decrease.
With the data features in the lower 50% group removed, the EER was 9.67%, 9.77%, 10.58%,
and 9.64%. When the data features in the lower 50% group were removed, the EER was
13.44% in [4]. The difference in the EER ranged from 2.86% to 3.8%. These results indicated
that the classification performance increased with increasing feature selection ratio. This
also showed that the unique keypad-based collected data contributed to improving the
ability of the system to classify the normal user.

The user classification performance of the four unique keypads was compared to
determine the optimum classifier for the keypads. The tests were conducted while varying
the feature removal ratio from the lower 10% to the lower 50%. The results showed
that the best performance was achieved when the data features in the lower 50% group
were removed. When the data features in the lower 50% group were removed, which
provided the best performance, the EER was the lowest when the Manhattan distance-
based classifier was used among the three classifiers (the Linear SVM, Manhattan distance-
based classifier, and One-Class SVM) at 9.67%, 9.77%, and 9.64% for padA, padB, and
padD, respectively. padC exhibited the lowest EER at 10.44% when the Linear SVM was
employed. These results confirmed that the Manhattan distance-based classifier, which
classifies subjects based on a threshold, was the optimal option for user classification.
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6. Conclusions

In the present study, a unique keypad assigned only to the normal user was proposed
to improve user classification performance for a keystroke dynamics-based smartphone
user authentication process. Based on the Mersenne twister algorithm, randomly generated
numbers were used to form a keypad that is familiar only to the normal user. User classifi-
cation tests were conducted using the proposed unique keypad to confirm that the unique
keypad exhibited the uniqueness and consistency that represented the normal user only,
while providing better user classification performance than conventional keypads.

The data collected using the unique keypad were compared with those collected using
a conventional keypad to compare their data classification performance. Additionally, three
classifiers were tested using the unique keypad-based collected data to determine their
user classification performance. For the proper comparison of classification performance
with conventional keypads, the data features collected through the smartphone and feature
selection methods were all set the same. As a result, it was found that the classification
performance was better when the unique, rather than the conventional keypad, was
used. Additionally, four different unique keypads exhibited the best data classification
performance when the Manhattan distance-based classifier was employed. This confirmed
that the Manhattan distance-based classifier was the most suitable for data classification.
Based on the major findings of the present study, the data collection method using the
unique keypad proposed in this study has a high potential for application as one of the
data collection methods for keystroke data-based authentication systems.

Based on the results of the present study, our future study will focus on developing
the different data features of keypads, such as the button size, character addition, efficient
arrangement, and user classification. This will help generate a unique keypad for every
user, which will contribute to improving the user classification performance, because it
will collect features that can only be collected from the normal user. Even if a smartphone
user’s PIN, as the ultimate password, has been hacked, there will be no need to worry
because this technology will help protect their private information in an even safer way.
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