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Abstract: Recent research works on intelligent traffic signal control (TSC) have been mainly focused
on leveraging deep reinforcement learning (DRL) due to its proven capability and performance. DRL-
based traffic signal control frameworks belong to either discrete or continuous controls. In discrete
control, the DRL agent selects the appropriate traffic light phase from a finite set of phases. Whereas
in continuous control approach, the agent decides the appropriate duration for each signal phase
within a predetermined sequence of phases. Among the existing works, there are no prior approaches
that propose a flexible framework combining both discrete and continuous DRL approaches in
controlling traffic signal. Thus, our ultimate objective in this paper is to propose an approach
capable of deciding simultaneously the proper phase and its associated duration. Our contribution
resides in adapting a hybrid Deep Reinforcement Learning that considers at the same time discrete
and continuous decisions. Precisely, we customize a Parameterized Deep Q-Networks (P-DQN)
architecture that permits a hierarchical decision-making process that primarily decides the traffic light
next phases and secondly specifies its the associated timing. The evaluation results of our approach
using Simulation of Urban MObility (SUMO) shows its out-performance over the benchmarks. The
proposed framework is able to reduce the average queue length of vehicles and the average travel
time by 22.20% and 5.78%, respectively, over the alternative DRL-based TSC systems.

Keywords: traffic signal control; traffic optimization; parameterized deep reinforcement learning;
P-DQN; hybrid action space

1. Introduction

Traffic congestion is one of the biggest issues in most of today’s cities causing sig-
nificant delays and subsequent economic losses [1]. To tackle this issue, several research
efforts in the transportation field attempted to develop intelligent transportation systems
(ITS) aiming to overcome traffic congestion and improve traffic flow. Traffic signal control
systems (TSCs) are one of the key research areas of intelligent transportation systems (ITS)
made to control the traffic flow at intersections aiming to reduce traffic congestion [2].

Recently, various research works have leveraged reinforcement learning (RL) to re-
place the traditional traffic signal control systems [3–5]. In contrast with the standard
traffic control approaches, RL and Deep RL (DRL) techniques can adapt to diverse traffic
situations and conditions. In its recent application to TSC, DRL showed a higher perfor-
mance over traditional traffic light management techniques [6,7]. In DRL-based traffic light
controllers, the objective of the DRL agent is to decide the optimal action which yields
improving the TSCs performance. Commonly, the action selection process is based on two
strategies. In the first strategy, the DRL agent selects any phase from a finite set of phases
without being limited to a predefined sequence of phases [8]. This strategy makes use of
the discrete DRL architectures such as Deep Q-Nnetworks (DQN) [9], Double-DQN [10]
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and Dueling-DQN [11]. However, this strategy lacks the ability to predict the duration of
the selected signal phase restricting it from choosing more optimal behavior. Whereas, in
the second strategy, the agent’s actions are continuous instead, where the agent decides the
duration of the next phase within a predefined cycle of traffic light phases [6]. The latter
strategy belongs to the continuous type of DRL algorithms like Deep Deterministic Policy
Gradient DDPG [12] and Normalized Advantage Function (NAF) [13]. Unfortunately,
these two paths for controlling traffic signals lack flexibility and have not yet used jointly
discrete and continuous DRL. Therefore, our ultimate objective, in this paper, is to bridge
this gap and propose an approach that takes the potential advantage of combining the two
strategies of applying DRL. Our approach is aimed to optimize traffic signal control by
deciding simultaneously the proper phase and its associated duration. Hence, we propose
a DRL based not only on employing discrete or continuous action spaces exclusively but
combines them at the same time. Precisely, being inspired by DRL with parameterized
actions [14], our contribution resides in tailoring a Parameterized Deep Q-Networks (P-
DQN) architecture [15] that permits a hierarchical decision-making process that primarily
decides the traffic light next phases and secondly specifies its associated timing.

This design variant of DRL makes use of a hybrid architecture that combines discrete
actions with continuous parameters. Subsequently, the learning agent within the DRL
structure chooses at each decision step both the appropriate action and the parameter value
associated with that action.

The proposed framework is evaluated by establishing an experimental study that is
conducted on the commonly used traffic Simulation of Urban MObility (SUMO) environ-
ment. The performance of the proposal as well as the benchmarks are assessed according
to the common metrics used for TSC approaches evaluation such as the average travel
time, the queue length and the average waiting time of vehicles [8,16]. Remarkably, the
evaluation results of our proposed approach show considerable improvements of the TSC
performance when compared to the benchmarks.

The rest of this paper is organized as follows. in Section 2, we review the works
proposing DRL based solutions for TSC. Section 3 provides preliminaries and theoretical
backgrounds needed by hybrid DRL-based TSC solutions. Our approach, as well as the
proposed methodology behind it, are described in Section 4. In Section 5, we detail the
experimental evaluation of our proposal and discuss the obtained results. Finally, in
Section 6, we draw the conclusion and present the potential future works.

2. Literature Review

Reinforcement Learning (RL) decision making approach has been widely used in
many fields and applications (e.g., transportation, health and energy management) [17–19].
In the literature of DRL-based traffic signal control research, transportation engineers and
researchers take advantage of deep reinforcement learning to provide optimal TSC systems.
Essentially, DRL-based contributions to TSCs focus on improving some of the four main
elements of the DRL framework, namely, the state definition, the reward design, the action
space and the architecture of the agent. In the following, we narrow the scope of the
literature review with a focus on works contributing to improve the action space definition
and the architecture of the agent. These works are the closest to our proposal.

2.1. Action Space Definitions

The action space embraces the set of possible decisions the agent can take during
interaction with the surrounding environment. In DRL-based TSCs, the action space is
generally defined according to the preferred way of controlling the traffic lights. First, the
action space can be in a binary form where the agent chooses either to maintain the ongoing
phase or to skip into the following phase in a predefined sequence of phases [7,16]. The
second action space is composed of all possible traffic light phases from which the agent is
permissible to select the most appropriate phase at each decision time step [8,20,21]. A third
type of action space is rather in the form of a continuous bounded time range, allowing the
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agent to control the time length of subsequent phases of traffic lights [6,22]. A novel type
of action space in DRL-based TSCs encompasses both the discrete and continuous action
spaces. This hybrid action space comes in the form of hierarchical discrete-continuous
spaces allowing the agent to decides the next phase of the traffic lights and its associated
phase timing simultaneously. In this work, beyond the action spaces found in the literature,
we will exploit the hybrid action space structure for controlling both the phase selection
and timing.

2.2. Agent Architecture Specifications

In deep reinforcement learning, the deep neural network is the core element of the
agent. The main function of the agent’s network is to learn the optimal policy, mapping
input states into optimal output actions. The selection of agent’s network structure de-
pends on the preferred type of action space. When the action space is discrete (e.g., phase
selection action type), Deep Q-network (DQN)[9,23] and its extensions (Double-DQN [10],
Dueling-DQN [11]) are the popular choices for the agent’s network. The objective of the
DQN network is to learn Q-values of actions and decide the optimal action based on the
predicted Q-values. On the other side, when the action space is continuous (e.g., phase
timing prediction), Policy gradient methods such as Deep Deterministic Policy Gradients
(DDPG) [12], Advantage Actor-Critic (A2C) [24] and Soft Actor-Critic (SAC) [25] are most
commonly used. However, a more complex action space such as the hybrid action space
requires more sophisticated agent’s network structure. Specifically, various architectures
have been proposed for the hybrid action structure such as deep reinforcement learning
with parameterized action space which is defined as a finite set of discrete actions where
each action has an associated continuous parameter value. In the parameterized action
space literature, Hausknecht and Stone [26] were first to successfully use deep neural
networks in structured (parameterized) action space based on DDPG architecture. Further-
more, Xiong et al. [15] proposed a novel Hybrid framework, known as Parameterized deep
Q-network (P-DQN) which comes as a modified version of DDPG architecture showing an
improved performance over the previous Hausknecht and Stone framework. On the same
trend, Bester et al. [27] fixed some issues found in the P-DQN and proposed a more refined
version called as Multi-Pass DQN (MP-DQN). Both P-DQN and MP-DQN structures will
be explained and discussed in Section 3 on Backgrounds.

3. Background and Preliminaries

In reinforcement learning literature, the problem being tackled is usually formu-
lated as a Markovian Decision Process (MDP) [28], which is characterized by the tuple
< S ,P ,A,R, γ >. The state space is denoted by S , P is the Markov probability of transi-
tion, A is the action space,R is the reward and γ is the discount factor. At the time-step t,
the agent observes the environment state st ∈ S and selects an action at ∈ A according to
its policy π. The agent then receives an immediate rewardRt from the environment and
observes the next state st+1 ∼ P(st+1|st, at). The agent’s policy π can be either stochastic
or deterministic. When the policy π is deterministic, π(a|s) maps each state st to a specific
action at. Whereas in the stochastic policy, π(a|s) maps each state to a probability distribu-
tion over the action space A. The agent’s goal is to derive a policy π which maximizes the
cumulative discounted reward Gt = ∑n

k=0 γkRt+k starting from the time-step t [28].

RL for Hybrid Action Space

A common type of action space in real-life applications consists of both discrete and
continuous action spaces (hybrid action space in short). A related work in hybrid action
space literature includes the parameterized action space, which is defined as a finite set
of actions, where each action is parameterized by a continuous value [15]. We consider
formulating our decision problem as a Markovian Decision Process with a parameterized
hybrid action space A as in the proposed P-DQN architecture by Xiang et al. [15]. The
action space is defined as:
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A = {(k, xk)|xk ∈ Xk for all k ∈ [K]}, (1)

where (k, xk) is a joint action in the action space A that follows a hierarchical structure
when choosing an action. Hence, we have a primary action k chosen from a discrete set
K (k ∈ K = {1, ..., K}), and a subaction consists in determining a continuous parameter
xk ∈ Xk from a continuous action space. The action space Xk defines the domain of the
parameters associated with primary actions k. Given the new action space, the Q-value
function is denoted Q(s, k, xk) instead of Q(s, a), where s ∈ S , a ∈ A, k ∈ [K] and xk ∈ Xk.
Therefore, at the time-step t, The Bellman equation of Q-function is given as:

Q
(
st, kt, xkt

)
= Est+1 [Rt + γmax

k∈[K]
sup

xk∈Xk

Q(st+1, k, xk)|s, k, xk]. (2)

Like in the DDPG [12], the x∗k = argsup Q
xk∈Xk

(st+1, k, xk) can be viewed as a function

xQ
k : S → Xk, mapping the state space to the continuous domain of action parameters.

Consequently, two mappings are needed to select the action and its parameter; the Q-
function becomes:

Q
(
st, kt, xkt

)
= Est+1 [Rt + γmax

k∈[K]
Q(st+1, k, xQ

k (st+1))|st = s]. (3)

Similarly to DQN and DDPG, both discrete and continuous mappings take advantage
of deep neural networks to approximate the Q(s, k, xk) and xQ

k mappings. In particular,
Q(s, k, xk; ω) with network weights ω approximates Q(s, k, xk) and xk(·; θ) with network
weights θ approximates xQ

k mapping. Similar to Q-learning, the target yt is defined as:

yt = Rt + γmax
k∈[K]

Q(st+1, k, xk(st+1; θt); ωt), (4)

The loss functions for updating the parameters ω and for updating the θ are respec-
tively defined as:

`Q
t (ω) =

1
2
[Q(st, k, xk); ωt)− yt]

2, and (5)

`Θ
t (θ) = −

K

∑
k=1

Q(st, k, xk(st; θ); ωt)

One issue the P-DQN architecture suffers from is the the joint action-parameters
input to the Q-network, where each Q-value of an action k depends not only its associated
action-parameter xk but instead all the action-parameters (x1, . . . , xK) are engaged. This
invalidates the P-DQN theoretical foundations claimed by Xiang et al. [15]. As a solution
to this issue, Bester et al. [27] proposed a modified variant to P-DQN, namely, Multi-
Pass DQN (MP-DQN), by separating each xk action-parameter with its associated action
k. The MP-DQN involves performing multiple forward passes to the network, once per
action k, with the state s and action-parameter vector xek as input to the MP Q-Network
(see Figure 1). Notice that the vector xek = (0, . . . , 0, xk, 0, . . . , 0) is the standard basis for
dimension k. Introducing the vector xek solves the P-DQN issue and makes Qk dependent
only on the associated xk where:

Q(s, k, xek) u Q(s, k, xk). (6)
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Figure 1. Structure of MP-DQN architecture.

4. Parameterized Deep Reinforcement Learning Approach for TSC

In this section, we discuss the proposed approach to control the traffic signals using a
specific reinforcement learning framework called Parameterized-DQN to generate both the
appropriate phase P of the traffic signals and its corresponding duration dP.

Our framework is depicted in Figure 2 showing the overall structure of our proposal.
At every time-step t, the current state st of the intersection environment represented as
a vector is being observed by the learning agent. Then, the latter maps the state vector
to actions π : S → A, using its latest policy π : of controlling the TSC. The joint action
at = (Pt, dPt) ∈ A consists of selecting the primary action, the appropriate phase P,
and at the same time its associated subaction (i.e., the phase duration dP). As a result
of applying these actions at two levels of the traffic light settings, the agent receives,
from the environment, a reward Rt as well as the next state st+1 after a lapse of time
tP proportional to dP. The resulting experience is stored at every time-step as a tuple
< st, at = (Pt, dPt),Rt, st+1 > in the agent’s memory M for further replay during the
agent’s training process. By considering a Parameterized MDP setting, some RL elements
should be defined, namely, the state space, the action space, the reward function and the
agent architecture.

Reward Rt

Action ( Pt , dPt)

State st

P
a
r
a
m
t
e
r
i
z
e
d

D
Q
N

State st

( Pt , dPt )

 
Agent

Q(ω), x(θ)

       
Environment

Figure 2. Overview of the framework structure for traffic signal control with Phase and Duration control.
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4.1. State Space

For an intersection environment, we define the state vector st as the queue length
of vehicles ql in each lane l at time step t, in addition to the current phase of signals Pt.
Queuing vehicles in the environment are those vehicles with speed less than 0.1 m/s during
the simulation. We consider the total number of lanes L = 16, in addition to the current
phase of signals Pt represented by an integer in {0, 1, 2, 3}. Figure 3 shows an example of
the acquired vector state from a real time traffic intersection.

Let st be the state vector at a given time step t where st ∈ RL+|P|, and |P| = 1 is the
dimension of the phase vector. Thus, the vector st is formulated as:

st(q) =



q0t
q1t
.
.

qL−1t
Pt

 (7)

3 0 0 0 . . . 1 2 2 1 . . . . Pt

Figure 3. Example of the state vector extracted from the intersection environment.

4.2. Reward Function

The reward function r : S× A→ R maps the joint-actions at = (P, dP) ∈ A and states
st ∈ S into a scalar valueRt ∈ R. The immediate rewardRt evaluates how good the taken
joint-action at in the current state st is. Along with the above state definition, we define the
reward function as the negative sum of queuing vehicles at time-step t stated as follows:

Rt = −
L−1

∑
l=0

ql = −
L−1

∑
l=0

st+1(q) (8)

4.3. Action Space

The most important part of this setup involves controlling the traffic signals’ behavior
by selecting the appropriate actions at each time-step. The action space is built-up of
two hierarchical subspaces, respectively, of traffic light phases and the associated phase
durations. Therefore, an action a = (P, dP) is a joint action with a hierarchical structure,
where P is the primary action which indicates a phase of the traffic signals and dP is the
secondary parameter indicating the duration of the phase P. In this work, we define the
first subspace as a set of four phases ∈ {0, 1, 2, 3} and the second subspace as the domain of
phase duration, a continuous time interval, where dP ∈ [tmin, tmax]. Thus, the action space
is defined as A = {{0, 1, 2, 3} ∪ {[tmin, tmax]}}. An example of the joint action is illustrated
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in Figure 4 where the phase P constitutes a set of nonconflicting signals ("G" for green, "r"
for red and "y" for yellow) to control each traffic movement, and the duration dP falls in
the interval [0 s, 45 s].

( Pt   ,  dPt )

Phase Duration

0 s , 45 s 

Phase:

"GGGrrrrrGGGrrrrr"

Figure 4. Example of the agent’s action that is applied to the traffic light.

4.4. Agent’s Architecture

Following the hybrid nature of the defined action space above, most appropriate
architectures that fit our proposal fall in the family of reinforcement learning with pa-
rameterized action space architectures (e.g., Paramterized Q-Network [15], Multi-Pass
Q-Networks [27]). Multi-Pass-DQN is notably a well performing agent’s architecture that
has been proposed recently by Bester C. et al. [27] as a modified version of the P-DQN made
to deal with hierarchical hybrid action spaces. In MP-DQN as adopted in our approach,
two neural networks are employed, one for approximating the value based Q-function
to select the high-level discrete action P denoted by Q(s, P, dP; ω), we call it the Actor
network. The second network is used to approximate the policy based mapping xdP to
predict the low-level continuous duration, denoted as xdP(s; θ), we call it the ParamActor
network. For stability purpose, both networks are accompanied with target networks that
are used in predicting target values yt and updating the main networks. The architecture
of the Actor neural network Q(ω) is composed of an input layer of size 16 + 1 + 4 (where
4 is the number of action-parameters), a hidden layer of 256 neurons with Relu activation
function, and an output of size 4 to approximate the Q-values of discrete actions. For
the network architecture of the ParamActor x(θ), we use an input layer of size 16 + 1, a
hidden layer of 256 neurons with Relu activation function and an output of size 4 neurons
to predict the continuous action-parameters associated with the discrete Actor actions.
Figure 5 illustrates a dynamic flow of the proposed framework composed of mainly five
iterative processes. By setting up the simulation configurations and the learning param-
eters, the agent iteratively perceives traffic state, performs the joint action and observes
the new traffic condition along with the obtained reward. These processes are stored
in the agent’s memory. The update of the agent’s policy starts when the content of the
memory exceeds a certain threshold, and continue, in every time step until a termination
condition (i.e., reaching a Maximum number of episodes E). Algorithm 1 as well provides
a pseudocode of the training operation of the proposed framework, Traffic Signal Control
Using Parameterized Deep RL. Initially, the essential parameters ({lrQ, lrx}, ε, B, ζ, ω0, θ0)
are initialized to begin the simulation and the training operation of the framework. For a
range of E episodes and for each time-step t in every episode, the agent observes the traffic
state st and selects a joint action at = (Pt, dPt) according to ε-greedy policy,

at =

a sample from ζ with probability ε,
(Pt, dPt) Pt = argmax

P
Q(st, P, dPt; ωt) 1-ε, (9)

where ζ is a uniform random distribution over a bounded continuous interval [tmin, tmax].
The joint action at = (Pt, dPt) is applied to the traffic signal settings and the resulting traffic
state st+1 is obtained as well as the rewarding signal Rt. Each resulting experience i.e.,
< st, (Pt, dPt),Rt, st+1 > is stored in a memory M for further replay. After collecting an



Sensors 2021, 21, 2302 8 of 15

enough number of experiences exceeding the initial memory threshold, a random batch of
size B is sampled from the memory to compute target value yt. The target value yt, state st

and action at are used to calculate the gradients ∇ω`
Q
t (ωt) and ∇θ`

Q
t (θ) which in turn are

utilized besides the learning rates {lrQ, lrx} to update ω and θ weights.

Start

Set Simulation Configurations

Set Agent Parameters

Start Traffic Simulation 

Sense Environment
State

Perform joint action

Get new state and calculate
reward

Store experience into
memory

Yes
No memory size >=

threshold

Start training / Update policy

SUMO traffic
environment

SUMO Traffic
Simulator

Environment

Interfacing

YesNo # of episodes> 
E

End

Figure 5. Flow diagram describing the dynamic of the proposed framework.

Algorithm 1 Traffic Signal Control Using Parameterized Deep RL.

1: Initialize: Learning rates {lrQ, lrx}, exploration parameter ε, minibatch size B, a proba-
bility distribution ζ, flow configurations, network weights ω0 and θ0.

2: for episode e = 1, . . . E do
3: Start simulation, observe initial state s0 and take initial joint action a0.
4: for t = 1, . . . T do
5: Compute action parameters dPt ← xdP(st; θt).
6: Select action at = (Pt, dPt) according to ε-greedy policy.

at =

a sample from ζ with probability ε,
(Pt, dPt) Pt = argmax

P
Q(st, P, dPt; ωt) 1-ε.

7: Perform at, observe next state st+1 and getRt.
8: Store < st, at,Rt, st+1 > in memory M.
9: Sample random B experiences from M.

10:

yt =

{
Rt if t = T,
Rt + max

P
γQ(st+1, P, xdP(st+1; θ); ωt) otherwise.

11: Compute ∇ω`
Q
t (ωt) and ∇θ`

Q
t (θ) using {yt, st, at}.

12: update weights ωt+1 ←− ωt − lrQ∇ω`
Q
t (ωt) and θt+1 ←− θt − lrx∇θ`

Q
t (θ).

13: end for
14: end for
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5. Experiments

In this section, we present our empirical study to evaluate our proposed framework
using simulation based traffic. We first present the experiment setup, parametric settings
and the performance evaluation metrics. Then, we describe a set of baseline approaches
which serve as benchmarks for comparison. Finally, we present and discuss the simulation
results of the proposed approach considering different scenarios and performances of
benchmarks.

5.1. Experiment Setup

In our experimental study, we utilize the open source Simulation of Urban MObility
(SUMO) simulator [29] to simulate the intersection environment and traffic. SUMO has
been widely used in several recent works [5,7,30] and provides an API package called TraCI
to interface with Python programming language. For the agent architecture, we adopt
and customize the implementation of the MP-DQN inspired by Bester et al. [27] which is
available online (https://github.com/cycraig/MP-DQN, accessed on 22 August 2020).

We consider a typical 4-way geometry (i.e., East, West, North, South) for the structure
of the intersection with each incoming/outgoing road having 4 lanes. All the lanes are
of 750 m length with maximum lane speed set to 13.89 m/s (i.e., the urban areas speed
limit [31]). They also have the same priority and the same width. The left-most lane
is dedicated for turning left solely and the rest of lanes can be occupied by straight or
right-turn vehicle-movements. A yellow phase follows the green phase and lasts 3 s for
safety reasons.

The traffic flow simulation is generated using custom scripts to simulate realistic traffic
flows. In particular, the traffic begins with a low number of cars, increases during the rush
hours to its peak value, then, it decays back to a low number of vehicles. We simulate such
a scenario (i.e., low, high and low) for a time window of three hours (10,800 s) by having
approximately one hour of nonuniform low flow followed by a second hour of nonuniform
high flow, then a third hour of nonuniform low flow. Each vehicle of the flow has an Origin
point (O) and a Destination point (D) and follows the route OD (i.e., from O to D). The
vehicle routes include going straight movements (North-South and East-West) and turning
movements (Left-turns and Right-turns). We set the traffic generation in a way to estimate
that 75% of the vehicles are moving straight and 25% are turning right or left. Detailed
about simulated traffic flow are presented in Table 1.

Table 1. Simulated traffic flow.

Distribution Type Configuration Generated Flow Start Time End Time
(Vehicles) (s) (s)

Weibull Dist

C1

C2

C3

1500

4000

C1-C2-C1

0 s

0 s

0 s

3800 s

3800 s

11,000 s

Normal Dist

C4

C5

C6

1500

4000

C4-C5-C4

0 s

0 s

0 s

3800 s

3800 s

11,000 s

5.2. Parameters and Training Settings

A number of parameters need to be set to leverage the performance of our proposed
approach. After several runs within different scenarios, the adopted hybrid architecture
has been tuned and its parameters are empirically determined. In particular, the number
of training episodes N is set to 301 with an episode duration of 3800 s (extra 200 s to
free up the late inserted vehicles to the simulation). Our agent is set in order to follow
ε− greedy discrete policy with random uniform continuous action selection. Such a policy

https://github.com/cycraig/MP-DQN
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is shown empirically to perform better than the common Ornstein–Uhlenbeck noise (which
was recommended by the original DDPG’ authors for the sake of action exploration).
The exploration parameter ε is decreased linearly from 1 to 0.01 during 270 episodes
where the agent explores new actions. The size of the replay memory is set to 20,000.
Our agent starts learning and updating its policy when the memory content reaches 128
experiences (Memory Training threshold, called Tr_threshold). At every time step, the
training set for the agent is a mini-batch of b = 64 experiences, where an experience is
a tuple of < st, at = (Pt, dPt),Rt, st+1 >. Our set of parameters also includes those of
the agent learning networks, where the number of nodes in hidden layer is set to 256,
and RMSProp [32] stochastic gradient decent method is used for updating both Actor
and ParamActor networks weights with a learning rate of lrQ = 0.001 and lrx = 0.00001
respectively. While γ discounting factor, set to 0.95, is used for updating the Q-values. A
gradient clipping method for the gradients is applied with a value of 1 which accelerates
the training of the networks. Equally, as suggested by Hausknecht and Stone [26], the
inverting gradients method is used to keep the action parameters in their bounded region.
Table 2 summarizes various parameters used with their associated values.

Table 2. Parameters Setting for Agent Training.

Parameter Description Value

N Number of training episodes 301

M Replay Memory 20,000

Tr_threshold Memory Training threshold 128

b Mini-batch size 64

lrQ Actor Learning rate 0.001

lrx ParamActor Learning rate 0.00001

γ Gamma factor 0.95

eps_min minimum value of epsilon 0.01

epsilon episodes Number of epsilon episodes 270

yellow duration Yellow phase duration 3 s

5.3. Performance Evaluation Metrics

Following the literature, traffic signal control approaches are evaluated using three
main metrics [8,16], (1) Average Travel Time (ATT), (2) the queue length (QL) and (3) the
average waiting time of vehicles (AWT).

5.3.1. Average Travel Time (ATT).

It is defined as the total travel time of all vehicles divided by the number of vehicles,
formally expressed by the following equation:

ATT =
1

Nveh

Nveh

∑
j=0

tj,start − tj,end (10)

where Nveh is the total number of vehicles, tj_start is the time the vehicle j enters the
environment and tj_end is the time the vehicle j exited the environment.

5.3.2. Average Waiting Time (AWT).

This metric corresponds to the average waiting time spent by the vehicles. A vehicle
is considered as waiting if its speed is less than 0.1 m/s since the last time it was faster than
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0.1 m/s , otherwise the waiting time counter is reset to 0 (i.e., as it starts moving with a
speed >0.1 m/s). The formula for the average waiting time is given by:

AWT =
1

Nveh

Nveh

∑
j=0

WTj, (11)

where WTj is the total waiting time of a vehicle j during an episode.

5.3.3. Queue Length (QL).

The queue length of a lane is the total number of vehicles queuing on a lane. The
queuing vehicles are those with a speed less than 0.1 m/s on the given lane (known in
SUMO as vehicle in ‘halting’ state). We consider the sum of queues lengths over all lanes:

QL =
L

∑
l=0

ql , (12)

where L is the total number of lanes and ql is the queue length on lane l.

5.4. Benchmarks

To evaluate of the performance of the proposed framework, we compare it to the tra-
ditional Fixed-Time as well as the DQN discrete action space approach and the continuous
action space DDPG approach.

5.4.1. Fixed Time Approach

It is the simplest traffic control approach that uses fixed phase duration with fixed
cycle length and fixed order [33]. The duration of green phases is set to 30 s and the yellow
phase duration is 3 s.

5.4.2. Discrete Approach

There are several proposals in the literature which use the deep reinforcement learning
DQN approach for traffic signal control [5,7,8]. The DQN agent predicts solely the next
phase from a set of phases with a fixed phase duration. We consider the implementation
which makes use of the Double-DQN (DDQN) with Prioritized Experience Replay Memory
(PER) as the agent’s architecture. For the state and reward definitions we use the queue
length for both the state and reward formulae.

5.4.3. Continuous Approach

This approach takes advantage of the continuous DRL architecture to control the
traffic signals [6]. It only predicts the duration of the next phase where the sequence of the
phases is kept fixed. We use the DDPG continuous architecture for the agent. The state and
reward are defined as the latter discrete based approach.

5.5. Results and Discussion

We train the agent on the simulation setup using the training parameters discussed
earlier. The resulting smoothed training curves of the proposed framework are illustrated
in the Figure 6. It can be noticed from the learning curves that the training undergoes
what is known as a ‘’cold start” [34] problem at early stages due to the exploration of the
unfamiliar environment where the agent randomly applies decision actions. The agent
subsequently optimizes its performance after grasping enough experience batches.

Figure 7 shows the learning performance comparison against the Discrete and Contin-
uous baselines. Remarkably, the Discrete approach exhibits fast initial learning but plateaus
at lower performance than the Hybrid framework. It initially learns faster due to the fact
that it already has a fixed phase timing and needs only to select the more suitable phase.
The Continuous approach curve swings until it reaches a better performance but still worse
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than the rest. On the other hand, the Hybrid approach curve exhibits a linear-like decaying
until it crosses the baselines’ curves where it outperforms the benchmarks’ performance.

In Table 3, we observe the average travel time scores of the Fixed-Time, Discrete and
Continuous benchmarks versus the proposed framework with C1-C6 are the simulation
configurations listed in Table 1. Notably, the Fixed Time approach is far behind the other
approaches due to its static behavior as opposed to the dynamic characteristics of the traffic
flow. On the other side, one can remark that the deep reinforcement learning frameworks
show noticeable results as they are more capable of dealing with dynamic conditions. Out
of the DRL approaches, the proposed Hybrid actions framework outperforms the rest of the
approaches in all simulated experiments. This is due to the fact that the Hybrid framework
controls the TSC more flexibly by selecting the appropriate phase as well as its duration
simultaneously. Further evaluations are shown in Figure 8 where we compare the queue
length performance of the three deep RL approaches during one simulation episode. Similar
to travel time performance results, the performance of the proposed approach surpasses
the baselines by keeping the queue length lower throughout the traffic simulation.
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Figure 6. Learning curves of the proposed framework for (a) Average Travel Time, (b) Average Waiting Time and (c)
Average Queue Length over episodes.
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Figure 7. Travel Time Training Curves Comparison of Hybrid Framework Against Discrete and
Continuous Benchmarks.
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Figure 8. Queue Length performance comparison of Hybrid approach versus Discrete and Continu-
ous baselines during traffic simulation.

Table 3. Performance comparison of our framework to others with respect to average travel time (s).

C1 C2 C3 C4 C5 C6

Fixed-Time 164.94 254.01 217.10 165.45 255.64 223.92

Discrete approach 142.07 149.5 147.28 139.10 147.86 145.97

Continuous approach 148.46 167.02 160.95 137.03 160.63 154.25

Hybrid approach 133.61 141.05 138.33 130.59 138.98 136.89
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6. Conclusions and Future Work

In this work, we have addressed the traffic signal control dual problem involving next
phase determination and its duration. We aim to solve such a problem by leveraging the
state of the art of a hybrid reinforcement learning variant. Specifically, we tailor the hybrid
parameterized Deep Q-Networks, namely, Multi-Pass DQN, to dually control the TSC
phase and its associated timing jointly. We conducted a simulation that allowed a series
of controlled experiments for evaluating and demonstrating our framework performance.
Moreover and for the sake of validity, we compared our framework to Deep RL benchmarks
during training and taking decision at the intersection. The evaluation of the performance
of our approach made use of the average travel time and the vehicle queue length as
practical metrics. The results proved that our hybrid DRL variant outperformed the
baselines in all the simulated experiments. A significant reduction of the average queue
length of vehicles and the average travel time by 22.20% and 5.78%, respectively. The
potential advantage of our framework is its hybrid nature, which allowed the TSC to
control the phase selection as well as its duration. Our future works are twofold. Indeed,
we would like to extend the scope of our hybrid DRL in order to cover more than one
intersection in different ways, e.g., centralized and decentralized. In the second extension,
we will direct our further simulations and experiments using real data from real world
traffic intersections.

Author Contributions: This paper is a collaborative work of all authors. Conceptualization, S.B. and
A.C.; Methodology, S.B. and A.C.; Software, A.C.; Validation, S.B., A.C. and A.O.; Data Curation,
A.F.; Writing—Original Draft Preparation, A.C., S.B., and A.O.; Writing—Review and Editing, S.B.,
A.C., and A.O.; Supervision, S.B.; Project Administration, S.B.; Funding Acquisition, S.B. and A.O.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Roadway Transportation and Traffic Safety Research
Center (RTTSRC) of the United Arab Emirates University (grant number 31R225) and by Abu Dhabi
Department of Education and Knowledge (ADEK award number AARE18-114 grant 21T52).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Synthetic Data and Codes that support the findings of this study are
openly available at https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control,
accessed on 22 August 2020.

Acknowledgments: This work was supported by the Roadway Transportation and Traffic Safety
Research Center (RTTSRC) of the United Arab Emirates University (grant number 31R225) and by
Abu Dhabi Department of Education and Knowledge (ADEK award number AARE18-114 grant
21T052).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. INRIX Scoreboard 2019. PRESS RELEASES. Available online: https://inrix.com/press-releases/2019-traffic-scorecard-uk/

(accessed on 9 February 2021).
2. Haydari, A.; Yilmaz, Y. Deep Reinforcement Learning for Intelligent Transportation Systems: A Survey. arXiv 2020,

arXiv:2005.00935.
3. Lin, Y.; Dai, X.; Li, L.; Wang, F.Y. An Efficient Deep Reinforcement Learning Model for Urban Traffic Control. arXiv 2018,

arXiv:1808.01876.
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