Application of the TDR Sensor and the Parameters of Injection Irrigation for the Estimation of Soil Evaporation Intensity
Abstract
:1. Introduction
2. Material and Methods
- —function approximating evaporation intensity on the basis of parameters of injection irrigation,
- —function approximating evaporation intensity on the basis of weighted mean of volumetric moisture of surface horizon of soil,
- —dose of water applied during injection irrigation (cm3),
- HI—depth of injection (cm).
2.1. Experiment
2.2. Calculations
3. Results and Discussion
3.1. Evaporation Intensity in Relation to Injection Depth and Dose ()
3.2. Evaporation Intensity in Relation to the Volumetric Moisture of the Surface Horizon of Soil ()
3.3. Evaluation of the Models and
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cassardo, C.; Jones, J.A.A. Managing Water in a Changing World. Water 2011, 3, 618–628. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Berger, B.; Filiberto, D.; Newton, M.; Wolfe, B.; Karabinakis, E.; Clark, S.; Poon, E.; Abbett, E.; Nandagopal, S. Water resources: Agricultural and environmental issues. BioScience 2007, 54, 183–200. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Bierkens, M.F.P. Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Gliński, J.; Horabik, J.; Lipiec, J. Encyclopedia of Agrophyscis; Springer: Berlin, Germany, 2011. [Google Scholar]
- Brutsaert, W. Evaporation into the Atmosphere: Theory, History and Applications. Springer Science & Business Media: Dordrecht, The Netherlands, 2013; Volume 1. [Google Scholar]
- Filho, J.F.D.C.L.; Ortiz, B.V.; Damianidis, D.; Balkcom, K.S.; Dougherty, M.; Knappenberger, T. Irrigation Scheduling to Promote Corn Productivity in Central Alabama. J. Agric. Sci. 2020, 12, 34. [Google Scholar] [CrossRef]
- Denisov, Y.M.; Sergeev, A.I.; Bezborodov, G.A.; Bezborodov, Y.G. Moisture evaporation from bare soils. Irrig. Drain. Syst. 2002, 16, 175–182. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Zhang, Z.; Wang, Z.; Wang, Q.; Zhao, M.; Gong, C. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China. Hydrogeol. J. 2018, 26, 1693–1704. [Google Scholar] [CrossRef]
- Lehmann, P.; Merlin, O.; Gentine, P.; Or, D. Soil Texture Effects on Surface Resistance to Bare-Soil Evaporation. Geophys. Res. Lett. 2018, 45, 10398–10405. [Google Scholar] [CrossRef]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Mupangwa, W.; Twomlow, S.; Walker, S.; Hove, L. Effect of minimum tillage and mulching on maize (Zea mays L.) yield and water content of clayey and sandy soils. Phys. Chem. Earth 2007, 32, 1127–1134. [Google Scholar] [CrossRef]
- Fu, Q.; Yan, P.; Li, T.; Cui, S.; Peng, L. Effects of straw mulching on soil evaporation during the soil thawing period in a cold region in northeastern China. J. Earth Syst. Sci. 2018, 127, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mcmillen, M. The Effect of Mulch Type and Thickness on the Soil Surface Evaporation Rate. 2013. Available online: https://digitalcommons.calpoly.edu/hcssp/22/ (accessed on 24 March 2021).
- Gabrieli, P.; Lambert, S.C.F.C. Micromechanical modelling of erosion due to evaporation in a partially wet granular slope. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 918–943. [Google Scholar] [CrossRef]
- McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Hutchinson, M.F.; Mu, X.M.; Liu, Z.H. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol. 2007, 338, 196–220. [Google Scholar] [CrossRef]
- Burt, C.M.; Mutziger, A.J.; Allen, R.G.; Howell, T.A. Evaporation Research: Review and Interpretation. J. Irrig. Drain. Eng. 2005, 131, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Or, D.; Lehmann, P.; Shahraeeni, E.; Shokri, N. Advances in Soil Evaporation Physics—A review. Vadose Zo. J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Beysens, D.; Muselli, M.; Nikolayev, V.; Narhe, R.; Milimouk, I. Measurement and modelling of dew in island, coastal and alpine areas. Atmos. Res. 2005, 73, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Muselli, M.; Beysens, D.; Mileta, M.; Milimouk, I. Dew and rain water collection in the Dalmatian Coast, Croatia. Atmos. Res. 2009, 92, 455–463. [Google Scholar] [CrossRef]
- Zhang, S.; Erickson, P.J.; Foster, J.C.; Holt, J.M.; Coster, A.J.; Makela, J.J.; Noto, J.; Meriwether, J.W.; Harding, B.J.; Riccobono, J.; et al. Thermospheric poleward wind surge at midlatitudes during great storm intervals. Geophys. Res. Lett. 2015, 5132–5140. [Google Scholar] [CrossRef] [Green Version]
- Bryś, K.; Bryś, T. Multi-annual variability of global solar radiation in the agricultural part of Lower Silesia (SW Poland) and its relationship to the North Atlantic Oscillation. Meteorol. Hydrol. Water Manag. 2019, 7, 13–25. [Google Scholar] [CrossRef]
- Davarzani, H.; Smits, K.; Tolene, R.M.; Illangasekare, T. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resour. Res. 2014, 50, 661–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, R.; Parker, A.; Rushton, K. Evaporation from bare soil: Lysimeter experiments in sand dams interpreted using conceptual and numerical models. J. Hydrol. 2018, 564, 909–915. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Kazempour, R.; Chau, K.W.; Shamshirband, S.; Ghazvinei, P.T. Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in talesh, northern iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 724–737. [Google Scholar] [CrossRef]
- Rothfuss, Y.; Biron, P.; Braud, I.; Canale, L.; Durand, J.L.; Gaudet, J.P.; Richard, P.; Vauclin, M.; Bariac, T. Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions. Hydrol. Process. 2010, 24, 3177–3194. [Google Scholar] [CrossRef]
- Dawid, M. Methods of determination of water infiltration from the atmosphere in non-rainfall periods. Acta Agrophysica 2018, 25, 145–162. [Google Scholar] [CrossRef]
- Pütz, T.; Fank, J.; Flury, M. Lysimeters in Vadose Zone Research. Vadose Zone J. 2018, 17, 180035. [Google Scholar] [CrossRef] [Green Version]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Chaney, N.W.; Wood, E.F. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteorol. 2014, 187, 46–61. [Google Scholar] [CrossRef]
- Wang-Erlandsson, L.; Van Der Ent, R.J.; Gordon, L.J.; Savenije, H.H.G. Contrasting roles of interception and transpiration in the hydrological cycle—Part 1: Temporal characteristics over land. Earth Syst. Dyn. 2014, 5, 441–469. [Google Scholar] [CrossRef] [Green Version]
- Wang-Erlandsson, L.; Bastiaanssen, W.G.M.; Gao, H.; Jägermeyr, J.; Senay, G.B.; Van Dijk, A.I.J.M.; Guerschman, J.P.; Keys, P.W.; Gordon, L.J.; Savenije, H.H.G. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 2016, 20, 1459–1481. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Schellekens, J.; Yebra, M.; Beck, H.E.; Renzullo, L.J.; Weerts, A.; Donchyts, G. Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation. Hydrol. Earth Syst. Sci. 2018, 22, 4959–4980. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Shirgure, P.S.; Rajput, G.S. Evaporation modeling with neural networks – A Research review. Int. J. Res. Rev. Soft Intell. Comput. 2011, 1, 37–47. [Google Scholar]
- Żarnowiec, W.; Policht-Latawiec, A.; Ostrowski, K. Assessment of the possibility of estimating water evaporation from the roof surfaces on the basis of selected empirical formulas. Acta Sci. Pol. Form. Circumiectus 2016, 15, 17–28. [Google Scholar]
- Hu, S.; Zhao, R.; Tian, C.; Song, Y. Empirical models of calculating phreatic evaporation from bare soil in tarim river basin, Xinjiang. Environ. Earth Sci. 2009, 59, 663–668. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [PubMed] [Green Version]
- Allen, R.G.; Pereira, L.S. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Nations, F.-F., Ed.; FAO-Food; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Torres, E.A.; Calera, A. Evaporation du sol nu sous demande évaporatoire élevée. Une proposition de modification du modèle FAO-56. Hydrol. Sci. J. 2010, 55, 303–315. [Google Scholar] [CrossRef]
- Smits, K.M.; Ngo, V.V.; Cihan, A.; Sakaki, T.; Illangasekare, T.H. An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions. Water Resour. Res. 2012, 48, 1–15. [Google Scholar] [CrossRef]
- Janik, G.; Walczak, A.; Dawid, M.; Pokładek, R.; Adamczewska-Sowińska, K.; Wolski, K.; Sowiński, J.; Gronostajski, Z.; Reiner, J.; Kaszuba, M.; et al. Innovative conception of irrigation and fertilization—section in monography. Innov. Methods Resour. Water Manag. Agric. 2013. [Google Scholar]
- E-TEST Sp. z o.o. Innovative Measurement Techniques for Environment and Soil Science. Available online: https://www.e-test.eu/ (accessed on 20 January 2021).
- Skierucha, W.; Wilczek, A.; Szypłowska, A.; Sławiński, C.; Lamorski, K. A TDR-based soil moisture monitoring system with simultaneous measurement of soil temperature and electrical conductivity. Sensors 2012, 12, 13545–13566. [Google Scholar] [CrossRef]
- Skierucha, W.; Wilczek, A.; Alokhina, O. Calibration of a TDR probe for low soil water content measurements. Sens. Actuatorsa Phys. 2008, 147, 544–552. [Google Scholar] [CrossRef]
- Skierucha, W. Accuracy of soil moisture measurement by TDR technique. Int. Agrophysics 2000, 14, 417–426. [Google Scholar]
- RADWAG Wagi Elektroniczne Witold Lewandowski Radwag Balances and Scales—Analytical Balance, Moisture Analyzer, Radwag Scales. Available online: https://radwag.com/en/ (accessed on 1 March 2021).
- Garg, A.; Leung, A.K.; Ng, C.W.W. Comparisons of soil suction induced by evapotranspiration and transpiration of S. Heptaphylla. Can. Geotech. J. 2015, 52, 2149–2155. [Google Scholar] [CrossRef] [Green Version]
- Lejcuś, K.; Dąbrowska, J.; Garlikowski, D.; Kordas, L. Water Loss from Soil and Water Absorbing Geocomposite Krzysztof. Int. Proc. Chem. Biol. Environ. Eng. 2015, 84, 123–127. [Google Scholar]
- Janik, G. Spatial variability of soil moisture as information on variability of selected physical properties of soil. Int. Agrophysics 2008, 22, 35–43. [Google Scholar]
- García-Gaines, R.A.; Frankenstein, S. USCS and the USDA Soil Classification System, Development of a Mapping Scheme. Uprm Erdc Educ. Res. Internsh. Progr. 2015, 37. [Google Scholar]
- Ryzak, M.; Bieganowski, A.; Bartminski, P. Methods for determination of particle size distribution of mineral soils. Acta Agrophysica. Rozpr. I Monogr. 2009, 175, 1–84. [Google Scholar]
- Kaczyński, P.; Kaszuba, M.; Dworzak, Ł.; Hawryluk, M. Iniektor do Nawadniania Gruntu W.128720; Polish Patent Office: Warszawa, Poland.
- Laska, M.; Blankenbach, J. DeepLocBox: Reliable Fingerprinting-Based Indoor Area Localization. Sensors 2021, 21, 2000. [Google Scholar] [CrossRef]
- Dawid, M.; Janik, G. Atmospheric water infiltration intensity in non-rainfall periods under conditionsof varied soil moisture. Int. Agrophysics 2018, 32, 305–312. [Google Scholar] [CrossRef]
- Janik, G.; Wolski, K.; Daniel, A.; Albert, M.; Skierucha, W.; Wilczek, A.; Szyszkowski, P.; Walczak, A. TDR technique for estimating the intensity of evapotranspiration of turfgrasses. Sci. World J. Hindawi 2015, 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Bejan, A.; Lorente, S. The constructal law origin of the logistics S curve. J. Appl. Phys. 2011, 110, 2–5. [Google Scholar] [CrossRef]
- Kucharavy, D.; De Guio, R. Application of S-shaped curves. Procedia Eng. 2011, 9, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Karssenberg, D.; de Jong, K.; van der Kwast, J. Modelling landscape dynamics with Python. Int. J. Geogr. Inf. Sci. 2007, 21, 483–495. [Google Scholar] [CrossRef]
- Nagpal, A.; Gabrani, G. Python for data analytics, scientific and technical applications. In Amity International Conference on Artificial Intelligence (AICAI); Institute of Electrical and Electronics Engineering: Dubai, United Arab Emirates, 2019; pp. 140–145. [Google Scholar]
- Merlin, O.; Stefan, V.G.; Amazirh, A.; Chanzy, A.; Ceschia, E.; Er-Raki, S.; Beringer, J. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach. J. Am. Water Resour. Assoc. 2016, 52, 3663–3684. [Google Scholar] [CrossRef] [Green Version]
- Chanzy, A.; Bruckler, L. Significance of soil surface moisture with respect to daily bare soil evaporation. Resour. Res. 1993, 24, 1113–1125. [Google Scholar] [CrossRef]
- Assouline, S.; Narkis, K. Evaporation from Soil Containers with Irregular Shapes. Water Resour. Res. 2017, 53, 8795–8806. [Google Scholar] [CrossRef]
- Merz, S.; Andreas Pohlmeier, A.; Vanderborght, J.; van Dusschoten, D.; Vereecken, H. Moisture profiles of the upper soil layer during evaporation monitored by NMR. Water Resour. Res. 2014, 50, 5375–5377. [Google Scholar] [CrossRef] [Green Version]
- Tollenaar, R.N.; van Paassen, L.A.; Jommi, C. Small-scale evaporation tests on clay: Influence of drying rate on clayey soil layer. Can. Geotech. J. 2018, 55, 437–445. [Google Scholar] [CrossRef]
- Śpitalniak, M.; Lejcuś, K.; Dabrowska, J.; Garlikowski, D.; Bogacz, A. The influence of a water absorbing geocomposite on soil water retention and soil matric potential. Water 2019, 11, 1731. [Google Scholar] [CrossRef] [Green Version]
Injection Depth (HI) | Water Dose (DI) | |||
---|---|---|---|---|
250 cm3 | 450 cm3 | 750 cm3 | 1000 cm3 | |
5 cm | 1.60 | 3.88 | 6.03 | 7.68 |
10 cm | 1.40 | 2.37 | 4.30 | 6.82 |
15 cm | 0.64 | 0.83 | 1.08 | 3.57 |
Injection Depth (HI) | ||||
---|---|---|---|---|
(cm) | (cm3·cm−3) | (mm) | (mm) | (mm) |
5 cm | 16.7 | 4.79 | 5.20 | 4.24 |
10 cm | 12.5 | 4.20 | 2.89 | 1.43 |
15 cm | 12.1 | 1.33 | 1.16 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walczak, A.; Lipiński, M.; Janik, G. Application of the TDR Sensor and the Parameters of Injection Irrigation for the Estimation of Soil Evaporation Intensity. Sensors 2021, 21, 2309. https://doi.org/10.3390/s21072309
Walczak A, Lipiński M, Janik G. Application of the TDR Sensor and the Parameters of Injection Irrigation for the Estimation of Soil Evaporation Intensity. Sensors. 2021; 21(7):2309. https://doi.org/10.3390/s21072309
Chicago/Turabian StyleWalczak, Amadeusz, Mateusz Lipiński, and Grzegorz Janik. 2021. "Application of the TDR Sensor and the Parameters of Injection Irrigation for the Estimation of Soil Evaporation Intensity" Sensors 21, no. 7: 2309. https://doi.org/10.3390/s21072309
APA StyleWalczak, A., Lipiński, M., & Janik, G. (2021). Application of the TDR Sensor and the Parameters of Injection Irrigation for the Estimation of Soil Evaporation Intensity. Sensors, 21(7), 2309. https://doi.org/10.3390/s21072309