Overuse-Related Injuries of the Musculoskeletal System: Systematic Review and Quantitative Synthesis of Injuries, Locations, Risk Factors and Assessment Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Review Process
2.2. Epidemiology
2.3. Risk Factors
2.4. Assessment Instrumentation and Protocols
3. Results
3.1. Summary of the Literature Review Process
- -
- A total of 16 were systematic reviews, seven of which were based on PRISMA Statement [39]. All systematic reviews explicitly reported on the quality assessment of selected papers: five of them adopted a peculiar quality assessment based on purposely defined inclusion/exclusion criteria; two used the quality index [142], and each of the remaining nine applied a different quality assessment tool [143,144,145,146,147,148,149,150,151]. Meta-analysis was found in four reviews only. The level of evidence was only quantified in two reviews, level 6 and level 4. The systematic reviews were informative for the items of epidemiology and risk factors; however, they scarcely informed on assessment instrumentation (very few of them dealt with laboratory instrumentation and none with wearable instrumentation for motion analysis) and assessment protocols.
- -
- A total of 51 were narrative reviews; two of them showed a level of evidence 5, and one a level of evidence 4; besides contributing to epidemiology and risk factors, 11 contained relevant information for assessment instrumentation for motion analysis; however, just six of them detailed assessment parameters, and only six detailed assessment protocols.
- -
- The remaining 42 papers were: 20 interventional studies; eight cohort studies, two of which with a level of evidence 2; two cross-sectional studies; 10 research studies; one commentary (relevant since highly informative with respect to one of the included systematic reviews); one paper on SENIAM guidelines on surface electromyography (EMG) (relevant and informative for the item of assessment protocols). With respect to assessment issues, 33 out of those 42 papers contributed to the assessment instrumentation for motion analysis (either laboratory or wearable instrumentation), 29 detailed biomechanical and physiological assessment parameters, 35 contributed assessment protocols.
3.2. Qualitative Synthesis of Marginal/Introductory Papers
- -
- The occurrence of stress fractures: mentioned in 34 papers, they were associated with lower limb (18), foot (15, mostly metatarsals), pelvis (8), spine (8), ankle (7), trunk (3) and upper limb (3).
- -
- The occurrence of stress injuries: mentioned in 36 papers, they were associated with lower limb (27), foot (10), ankle (10), upper limb (7), pelvis (5), trunk (5) and spine (4).
- -
- The occurrence of overuse-related muscle fatigue: mentioned in 19 papers, fatigue was associated with trunk (7), lower limb (6), upper limb (3), foot (1) and pelvis (1).
- -
- The higher risk of injury experienced by elite athletes (34), recreational athletes (18) and soldiers (14).
- -
- The risk of injury associated with running (18), military activities/training (14), walking and march (six in total).
- -
- Risk factors: mentioned in 44 papers, 10 of which without any detail or just mentioning them as intrinsic or extrinsic factors; explicitly mentioned risk factors were training variables also including the type and environment (19 in total), altered biomechanics of motion (10), systemic or other diseases (8), morphology and anatomical factors (7), sex (6), body composition (6), alteration of bone density or vitamin D level (6), age (5), previous stress fractures (5), footwear (3) and ethnicity (1).
- -
- Assessment instrumentation: mentioned in 39 papers, it mostly refers to imaging (25); instrumentation for biomechanical assessment is also mentioned (6, 3 of which about EMG).
- -
- Assessment protocols: mentioned in 26 papers, 15 of which mentioning physical or clinical examination (one also referring to vitamin D level and bone density) and nine citing functional tests (eight also citing biomechanical parameters).
3.3. Epidemiology of Overuse-Related Injuries
3.4. Risk Factors
- -
- Intrinsic modifiable factors: biomechanical movement patterns, entry-level of physical fitness, body composition, other health risk behaviors, and nutritional factors;
- -
- Intrinsic nonmodifiable factors: sex, morphology and anatomical factors, age, history of lower limb stress fractures, and ethnicity;
- -
- Intrinsic potentially modifiable factors: bone mineral density;
- -
- Extrinsic modifiable factors: training volume, training intensity, footwear, training duration, training frequency, distance, and all training variables;
- -
- Extrinsic potentially modifiable factors: type of training and training environment.
3.5. Objective Assessment Instrumentation
3.6. Assessment Protocols
3.7. The Occupational Ergonomics Domain
- -
- 20 papers (nine reviews and 11 original studies) dealt with occupational ergonomics and overuse-related injuries. Specifically, nine referred to the military field (six reviews, three original studies) [67,89,113,127,135,137,170,173,223]; one review dealt with bricklayers and construction supervisors [224]; four (two reviews, two original studies) more generally referred to long-standing posture at work [62,70,133,171]; four (original studies) addressed athletes [102,116,124,209]; two original papers dealt with slip-induced falls in workers [100,114].
- -
- Of the 20 papers, five (three reviews, two original studies) dealt with assessment instruments such as the strain index, rapid entire body assessment (REBA) score, pain/discomfort/complaints scales including the VAS, Borg and Likert scale [62,70,133,165,171]; 10 papers (one review, nine original studies) reported models and techniques (regressive/logistic models, odds ratio, hazard ratio) to detect risk factors [46,81,89,102,106,116,121,124,135,173].
4. Discussion
4.1. The Literature Review Process
- -
- Only review papers were included: systematic reviews, besides a comprehensive, critical and updated analysis of the state-of-the-art developments on a research question, contain quality procedures, either standardized or adapted or purposely defined, for the assessment of the quality and adequacy of retrieved information [227]; since the focus on systematic reviews alone would have been too restricting, the search also included reviews that were not structured as systematic.
- -
- The search was limited to PubMed: in agreement with the previous limitation, this criterion likely allowed to reach all relevant scientific reviews and represented an acceptable trade-off between depth of the search and resources needed for the search, analysis and synthesis.
- -
- The search was limited to the last decade: this criterion is a consequence of the first one, since older evidence or relevant outcomes are surely accounted for in the review papers published in the last decade. Additionally, older publications might not be informative enough about more recent technology, training techniques or clinical approaches for the diagnosis and treatment of musculoskeletal injuries; last, of course, this criterion contributed to optimizing the available resources.
4.2. Epidemiology of Overuse-Related Injuries
4.3. Risk Factors
4.4. Assessment Instrumentation
4.4.1. Imaging
4.4.2. Wearables and Laboratory Devices
4.5. Functional Assessment Protocols
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukushima, Y.; Ray, J.; Kraus, E.; Syrop, I.P.; Fredericson, M. A review and proposed rationale for the use of ultrasonography as a diagnostic modality in the identification of bone stress injuries. J. Ultrasound Med. 2018, 37, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Nye, N.S.; Covey, C.J.; Sheldon, L.; Webber, B.; Pawlak, M.; Boden, B.; Beutler, A. Improving Diagnostic Accuracy and Efficiency of Suspected Bone Stress Injuries: Algorithm and Clinical Prediction Rule. Sports Health 2016, 8, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Roub, L.W.; Gumerman, L.W.; Hanley, E.N.; Clark, M.W.; Goodman, M.; Herbert, D.L. Bone stress: A radionuclide imaging perspective. Radiology 1979, 132, 431–438. [Google Scholar] [CrossRef]
- Epstein, Y.O.; Leischmann, C.H.E.N.F.; Anovich, R.A.N.Y. Physiological and medical aspects that put women soldiers at increased risk for overuse injuries. J. Strength Cond. Res. 2015, 29, S107–S110. [Google Scholar] [CrossRef]
- Nagai, T.; Lovalekar, M.; Wohleber, M.F.; Perlsweig, K.A.; Wirt, M.D.; Beals, K. Poor anaerobic power/capability and static balance predicted prospective musculoskeletal injuries among Soldiers of the 101st Airborne (Air Assault) Division. J. Sci. Med. Sport 2017, 20, S11–S16. [Google Scholar] [CrossRef]
- Rappole, C.; Grier, T.; Anderson, M.K.; Hauschild, V.; Jones, B.H. Associations of age, aerobic fitness, and body mass index with injury in an operational Army brigade. J. Sci. Med. Sport 2017, 20, S45–S50. [Google Scholar] [CrossRef]
- Sandrey, M.; Chang, Y.; Meder, K.; McCrory, L. Effect of Fatigue on Leg Muscle Activation and Tibial Acceleration during a Jumping Task. Med. Sci. Sports Exerc. 2018, 50, 688. [Google Scholar] [CrossRef]
- DeFroda, S.F.; Cameron, K.L.; Posner, M.; Kriz, P.K.; Owens, B.D. Bone Stress Injuries in the Military: Diagnosis, Management, and Prevention. Am. J. Orthop. 2017, 46, 176–183. [Google Scholar] [PubMed]
- Warden, S.J.; Burr, D.B.; Brukner, P.D. Stress fractures: Pathophysiology, epidemiology, and risk factors. Curr. Osteoporos. Rep. 2006, 4, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Rum, L.; Sten, O.; Vendrame, E.; Belluscio, V.; Camomilla, V.; Vannozzi, G.; Truppa, L.; Notarantonio, M.; Sciarra, T.; Lazich, A.; et al. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. Sensors 2020, 21, 1858. [Google Scholar] [CrossRef]
- Bennell, K.L.; Malcolm, S.A.; Thomas, S.A.; Wark, J.D.; Brukner, P.D. The incidence and distribution of stress fractures in competitive track and field athletes: A twelve-month prospective study. Am. J. Sports Med. 1996, 24, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Bulathsinhala, L.; Hughes, J.M.; McKinnon, C.J.; Kardouni, J.R.; Guerriere, K.I.; Popp, K.L.; Matheny, R.W.; Bouxsein, M.L. Risk of Stress Fracture Varies by Race/Ethnic Origin in a Cohort Study of 1.3 Million US Army Soldiers. J. Bone Miner. Res. 2017, 32, 1546–1553. [Google Scholar] [CrossRef]
- Friedl, K.E. Military applications of soldier physiological monitoring. J. Sci. Med. Sport 2018, 21, 1147–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, J.M.; Cameron, K.L.; Bojescul, J.A. Lower Extremity Stress Fractures in the Military. Clin. Sports Med. 2014, 33, 591–613. [Google Scholar] [CrossRef]
- Jones, B.H.; Bovee, M.W.; Harris, J.M., 3rd; Cowan, D.N. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am. J. Sports Med. 1993, 21, 705–710. [Google Scholar] [CrossRef]
- Schwartz, O.; Malka, I.; Olsen, C.H.; Dudkiewicz, I.; Bader, T. Overuse Injuries in the IDF’s Combat Training Units: Rates, Types, and Mechanisms of Injury. Mil. Med. 2018, 183, e196–e200. [Google Scholar] [CrossRef] [Green Version]
- Lovalekar, M.; Sharp, M.A.; Billing, D.C.; Drain, J.R.; Nindl, B.C.; Zambraski, E.J. International consensus on military research priorities and gaps—Survey results from the 4th International Congress on Soldiers’ Physical Performance. J. Sci. Med. Sport 2018, 21, 1125–1130. [Google Scholar] [CrossRef] [Green Version]
- Trone, G.D.W.; Reis, C.J.P.; Trone, D.W.; Macera, C.A.; Rauh, M.J. Factors Associated with Discharge during Marine Corps Basic Training. Mil. Med. 2007, 172, 936–941. [Google Scholar]
- Cameron, K.; Peck, K.; Owens, B.; Svoboda, S.; Padua, D.; DiStefano, L.; Beutler, A.; Marshall, S. Biomechanical Risk Factors for Lower Extremity Stress Fracture. Orthop. J. Sport. Med. 2013. [Google Scholar] [CrossRef]
- Knapik, J.J.; Sharp, M.A.; Montain, S.J. Association between stress fracture incidence and predicted body fat in United States Army Basic Combat Training recruits. BMC Musculoskelet. Disord. 2018, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sonneville, K.R.; Gordon, C.M.; Kocher, M.S.; Pierce, L.M.; Ramappa, A.; Field, A.E. Vitamin D, calcium, and dairy intakes and stress fractures among female adolescents. Arch. Pediatr. Adolesc. Med. 2012, 166, 595–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adami, S.; Romagnoli, E.; Carnevale, V.; Scillitani, A.; Giusti, A.; Rossini, M.; Gatti, D.; Nuti, R.; Minisola, S. Guidelines on prevention and treatment of vitamin D deficiency. Reumatismo 2011, 63, 129–147. [Google Scholar] [CrossRef]
- Dankers, W.; Colin, E.M.; van Hamburg, J.P.; Lubberts, E. Vitamin D in autoimmunity: Molecular mechanisms and therapeutic potential. Front. Immunol. 2017, 7, 697. [Google Scholar] [CrossRef] [Green Version]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Van Schoor, N.M.; Lips, P. Worldwide vitamin D status. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 671–680. [Google Scholar] [CrossRef]
- Dao, D.; Sodhi, S.; Tabasinejad, R.; Peterson, D.; Ayeni, O.R.; Bhandari, M.; Farrokhyar, F. Serum 25-hydroxyvitamin D levels and stress fractures in military personnel: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2015, 43, 2064–2072. [Google Scholar] [CrossRef]
- Dawson-Hughes, B. Vitamin D and muscle function. J. Steroid Biochem. Mol. Biol. 2017, 173, 313–316. [Google Scholar] [CrossRef]
- Ruohola, J.P.; Laaksi, I.; Ylikomi, T.; Haataja, R.; Mattila, V.M.; Sahi, T.; Tuohimaa, P.; Pihlajamäki, H. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J. Bone Miner. Res. 2006, 21, 1483–1488. [Google Scholar] [CrossRef]
- Bikle, D. Extraskeletal actions of Vitamin D. Physiol. Behav. 2019, 176, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprio, M.; Infante, M.; Calanchini, M.; Mammi, C.; Fabbri, A. Vitamin D: Not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat. Weight Disord. 2017, 22, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Girgis, C.M.; Baldock, P.A.; Downes, M. Vitamin D, muscle and bone: Integrating effects in development, aging and injury. Mol. Cell. Endocrinol. 2015, 410, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Wolden-Kirk, H.; Gysemans, C.; Verstuyf, A.; Mathieu, C. Extraskeletal Effects of Vitamin D. Endocrinol. Metab. Clin. North. Am. 2012, 41, 571–594. [Google Scholar] [CrossRef]
- DiNicola, A. Need for Routine Vitamin D Screening in Military Personnel. Mil. Med. 2016, 181, 1163. [Google Scholar] [CrossRef] [Green Version]
- Antoniak, A.E.; Greig, C.A. The effect of combined resistance exercise training and Vitamin D 3 supplementation on musculoskeletal health and function in older adults: A systematic review and meta-analysis. BMJ Open 2017, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kemp, G.J.; Birrell, F.; Clegg, P.D.; Cuthbertson, D.J.; De Vito, G.; Van Dieën, J.H.; Del Din, S.; Eastell, R.; Garnero, P.; Goljanek-Whysall, K.; et al. Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age Ageing 2018, 47, iv1–iv19. [Google Scholar] [CrossRef]
- Ceyssens, L.; Vanelderen, R.; Barton, C.; Malliaras, P.; Dingenen, B. Biomechanical Risk Factors Associated with Running-Related Injuries: A Systematic Review. Sport. Med. 2019, 49, 1095–1115. [Google Scholar] [CrossRef] [Green Version]
- Zadpoor, A.A.; Nikooyan, A.A. The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clin. Biomech. 2011, 26, 23–28. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; John, P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. PRISMA Statement per il reporting di revisioni sistematiche e meta-analisi degli studi che valutano gli interventi sanitari: Spiegazione ed elaborazione. Evidence 2015, 7, e1000115. [Google Scholar]
- Aparisi Gómez, M.P. Nonspinal Fragility Fractures. Semin. Musculoskelet. Radiol. 2016, 20, 330–344. [Google Scholar] [CrossRef]
- Utter, A.C.; Robertson, R.J.; Green, J.M.; Suminski, R.R.; Mcanulty, S.R.; Nieman, D.C. Validation of the Adult OMNI Scale of Perceived Exertion for Walking / Running Exercise. Med. Sci. Sports Exerc. 2004, 36, 1776–1780. [Google Scholar] [CrossRef]
- Wang, H.; Kia, M.; Dickin, D.C. Influences of load carriage and physical activity history on tibia bone strain. J. Sport Health Sci. 2019, 8, 478–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wang, Y.; Ma, A.; Ma, G.; Ye, Y.; Li, R.; Lu, T. A Comparative Study of EMG Indices in Muscle Fatigue Evaluation Based on Grey Relational Analysis during All-Out Cycling Exercise. Biomed. Res. Int. 2018, 2018, 9341215. [Google Scholar] [CrossRef] [Green Version]
- Wannop, J.W.; Stefanyshyn, D.J.; Anderson, R.B.; Coughlin, M.J.; Kent, R. Development of a Footwear Sizing System in the National Football League. Sports Health 2019, 11, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Wentz, L.; Liu, P.; Haymes, E.; Ilich, J.Z. Females Have a Greater Incidence of Stress Fractures Than Males in Both Military and Athletic Populations: A Systemic Review. Mil. Med. 2011, 176, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Winkelmann, Z.K.; Anderson, D.; Games, K.E.; Eberman, L.E. Risk factors for medial tibial stress syndrome in active individuals: An evidence-based review. J. Athl. Train. 2016, 51, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Wood, M. Lower limb stress fractures in military training. J. R Nav Med. Serv. 2015, 101, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.A.; Taylor, J.B.; Ford, K.R.; Siska, L.; Smoliga, J.M. Risk factors associated with lower extremity stress fractures in runners: A systematic review with meta-analysis. Br. J. Sports Med. 2015, 49, 1517–1523. [Google Scholar] [CrossRef]
- Wu, M.; Fallon, R.; Heyworth, B.E. Overuse Injuries in the Pediatric Population. Sports Med. Arthrosc. 2016, 24, 150–158. [Google Scholar] [CrossRef]
- Barbieri, F.A.; Dos Santos, P.C.R.; Lirani-Silva, E.; Vitório, R.; Gobbi, L.T.B.; Van Diëen, J.H. Systematic review of the effects of fatigue on spatiotemporal gait parameters. J. Back Musculoskelet. Rehabil. 2013, 26, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Beierle, R.; Burton, P.; Smith, H.; Smith, M.; Ives, S.J. The Effect of Barefoot Running on EMG Activity in the Gastrocnemius and Tibialis Anterior in Active College-Aged Females. Int. J. Exerc. Sci. 2019, 12, 1110–1120. [Google Scholar] [PubMed]
- Bhatty, U.N.; Khan, S.H.M.; Zubairy, A.I. Managing the patient with heel pain. Br. J. Hosp. Med. 2019, 80, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Bourgois, J.G.; Boone, J.; Callewaert, M.; Tipton, M.J.; Tallir, I.B. Biomechanical and physiological demands of kitesurfing and epidemiology of injury among kitesurfers. Sport. Med. 2014, 44, 55–66. [Google Scholar] [CrossRef]
- Bowser, B.J.; Fellin, R.; Milner, C.E.; Pohl, M.B.; Davis, I.S. Reducing impact loading in runners: A one-year follow-up. Med. Sci. Sports Exerc. 2018, 50, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- Vercruyssen, F.; Blin, N.; L’huillier, D.; Brisswalter, J. Assessment of physiological demand in kitesurfing. Eur. J. Appl. Physiol. 2008, 105, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Camp, C.L.; Conti, M.S.; Sgroi, T.; Cammisa, F.P.; Dines, J.S. Epidemiology, Treatment, and Prevention of Lumbar Spine Injuries in Major League Baseball Players. Am. J. Orthop. 2016, 45, 137–143. [Google Scholar] [PubMed]
- Chang, G.H.; Paz, D.A.; Dwek, J.R.; Chung, C.B. Lower extremity overuse injuries in pediatric athletes: Clinical presentation, imaging findings, and treatment. Clin. Imaging 2013, 37, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Wang, M.J. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait Posture 2010, 31, 131–135. [Google Scholar] [CrossRef]
- Chuter, V.H.; Janse de Jonge, X.A.K. Proximal and distal contributions to lower extremity injury: A review of the literature. Gait Posture 2012, 36, 7–15. [Google Scholar] [CrossRef]
- Clansey, A.C.; Hanlon, M.; Wallace, E.S.; Lake, M.J. Effects of fatigue on running mechanics associated with tibial stress fracture risk. Med. Sci. Sports Exerc. 2012, 44, 1917–1923. [Google Scholar] [CrossRef]
- Clough, T.M.; Majeed, H. Turf Toe Injury—Current Concepts and an Updated Review of Literature. Foot Ankle Clin. 2018, 23, 693–701. [Google Scholar] [CrossRef]
- Coenen, P.; Parry, S.; Willenberg, L.; Shi, J.W.; Romero, L.; Blackwood, D.M.; Healy, G.N.; Dunstan, D.W.; Straker, L.M. Associations of prolonged standing with musculoskeletal symptoms—A systematic review of laboratory studies. Gait Posture 2017, 58, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossley, K.; Bennell, K.L.; Wrigley, T.; Oakes, B.W. Ground reaction forces, bone characteristics, and tibial stress fracture in male runners. Med. Sci. Sports Exerc. 1999, 31, 1088–1093. [Google Scholar] [CrossRef]
- Rocha, V.D.; do Carmo, J.C.; Nascimento, F.A. Weighted-Cumulated S-EMG Muscle Fatigue Estimator. IEEE J. Biomed. Health Inform. 2018, 22, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
- Deangelis, N.A.; Busconi, B.D. Assessment and Differential Diagnosis of the Painful Hip. Clin. Orthop. Relat. Res. 2003, 406, 11–18. [Google Scholar] [CrossRef]
- Delp, S.L.; Besier, T.F.; Fredericson, M.; Gold, G.E.; Beaupre, G.S. Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J. Biomech. 2009, 42, 898–905. [Google Scholar]
- Dobson, J.A.; Riddiford-Harland, D.L.; Bell, A.F.; Steele, J.R. Work boot design affects the way workers walk: A systematic review of the literature. Appl. Ergon. 2017, 61, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Fredericson, M.; Jennings, F. Stress fractures in athletes. Phys. Sportsmed. 2010, 38, 109–116. [Google Scholar]
- Franklyn-miller, A.; Wilson, C.; Bilzon, J.; Mccrory, P. Foot Orthoses in the Prevention of Injury in Initial Military Training. Am. J. Sports Med. 2011, 39, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Läubli, T.; Martin, B.J. Long-Term Muscle Fatigue After Standing Work. Hum. Factors 2015, 57, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Giandolini, M.; Horvais, N.; Rossi, J.; Millet, G.Y.; Morin, J.B.; Samozino, P. Effects of the foot strike pattern on muscle activity and neuromuscular fatigue in downhill trail running. Scand. J. Med. Sci. Sport. 2017, 27, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Giandolini, M.; Vernillo, G.; Samozino, P.; Horvais, N.; Edwards, W.B.; Morin, J.B.; Millet, G.Y. Fatigue associated with prolonged graded running. Eur. J. Appl. Physiol. 2016, 116, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Grimmer, M.; Riener, R.; Walsh, C.J.; Seyfarth, A. Mobility related physical and functional losses due to aging and disease—A motivation for lower limb exoskeletons. J. Neuroeng. Rehabil. 2019, 16, 1–22. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Hamstra-Wright, K.L.; Bliven, K.C.H.; Bay, C. Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Han, J.S.; Geminiani, E.T.; Micheli, L.J. Epidemiology of Figure Skating Injuries: A Review of the Literature. Sports Health 2018, 10, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Harrast, M.A.; Colonno, D. Stress fractures in runners. Clin. Sports Med. 2010, 29, 399–416. [Google Scholar] [CrossRef]
- Harvey, B.S.; Brooks, G.; Hergenroeder, A. Lumbar injuries of the pediatric population. Prim. Care 2013, 40, 289–311. [Google Scholar] [CrossRef]
- Murdock, G.H.; Hubley-Kozey, C.L. Effect of a high intensity quadriceps fatigue protocol on knee joint mechanics and muscle activation during gait in young adults. Eur. J. Appl. Physiol. 2012, 112, 439–449. [Google Scholar] [CrossRef]
- Helbostad, J.L.; Sturnieks, D.L.; Menant, J.; Delbaere, K.; Lord, S.R.; Pijnappels, M. Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: A systematic literature review. BMC Geriatr. 2010, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- House, C.; Reece, A.; Roiz de Sa, D. Shock-Absorbing Insoles Reduce the Incidence of Lower Limb Overuse Injuries Sustained During Royal Marine Training. Mil. Med. 2013, 178, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Jayalath, J.L.R.; de Noronha, M.; Weerakkody, N.; Bini, R. Effects of fatigue on ankle biomechanics during jumps: A systematic review. J. Electromyogr. Kinesiol. 2018, 42, 81–91. [Google Scholar] [CrossRef]
- Jones, B.H.; Thacker, S.B.; Gilchrist, J.; Kimsey, C.D.; Sosin, D.M. Prevention of Lower Extremity Stress Fractures in Athletes and Soldiers: A Systematic Review. Epidemiol. Rev. 2002, 24, 228–247. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.H.; Amendola, A.S. Navicular stress fractures. Clin. Sports Med. 2006, 25, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Kaeding, C.C.; Najarian, R.G. Stress fractures: Classification and management. Phys. Sportsmed. 2010, 38, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Kahanov, L.; Eberman, L.; Games, K.; Wasik, M. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners. Open Access J. Sport. Med. 2015, 6, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, P.B.; Guss, D.; Digiovanni, C.W. Stress Fractures of the Foot and Ankle in Athletes. Foot Ankle Orthop. 2018, 6, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Lundgren, L.; Jarpe, E.; Ollson, C.; VIberg, P. A Novel Method for Classification of Running Fatigue Using Change-Point Segmentation. Sensors 2019, 19, 4729. [Google Scholar] [CrossRef] [Green Version]
- Knapik, J.; Montain, S.J.; Mcgraw, S.; Grier, T.; Ely, M.; Jones, B.H. Stress Fracture Risk Factors in Basic Combat Training. Int. J. Sports Med. 2012, 33, 940–946. [Google Scholar] [CrossRef]
- Kovacevic, D.; Mariscalco, M.; Goodwin, R.C. Injuries about the hip in the adolescent athlete. Sports Med. Arthrosc. 2011, 19, 64–74. [Google Scholar] [CrossRef]
- Lawrence, D.A.; Rolen, M.F.; Morshed, K.A.; Moukaddam, H. MRI of heel pain. Am. J. Roentgenol. 2013, 200, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Hidler, J. Biomechanics of overground vs. treadmill walking in healthy individuals. J. Appl. Physiol. 2008, 104, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Lessi, G.C.; dos Santos, A.F.; Batista, L.F.; de Oliveira, G.C.; Serrão, F.V. Effects of fatigue on lower limb, pelvis and trunk kinematics and muscle activation: Gender differences. J. Electromyogr. Kinesiol. 2017, 32, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Liem, B.C.; Truswell, H.J.; Harrast, M.A. Rehabilitation and return to running after lower limb stress fractures. Curr. Sports Med. Rep. 2013, 12, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Linde, C. Single-leg hop testing following fatiguing exercise: Reliability and biomechanical analysis. Scand. J. Med. Sci. Sports. 2006, 16, 111–120. [Google Scholar]
- Piantanida, N.A.; Knapik, J.J.; Brannen, S.; O’Connor, F. Injuries during Marine Corps officer basic training. Mil. Med. 2000, 165, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, D.; Pal, M.S.; Majumdar, D. Effects of military load carriage on kinematics of gait. Ergonomics 2010, 53, 782–791. [Google Scholar] [CrossRef]
- Mandell, J.C.; Khurana, B.; Smith, S.E. Stress fractures of the foot and ankle, part 1: Biomechanics of bone and principles of imaging and treatment. Skelet. Radiol. 2017, 46, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Abboud, J.; Nougarou, F.; Lardon, A.; Dugas, C.; Descarreaux, M. Influence of lumbar muscle fatigue on trunk adaptations during sudden external perturbations. Front. Hum. Neurosci. 2016, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Parijat, P.; Lockhart, T.E. Effects of lower extremity muscle fatigue on the outcomes of slip-induced falls. Ergonomics 2008, 51, 1873–1884. [Google Scholar] [CrossRef] [Green Version]
- Mccormick, F.; Nwachukwu, B.U.; Provencher, M.T. Stress Fractures in Runners. Clin. Sports Med. 2012, 31, 291–306. [Google Scholar] [CrossRef]
- Mcguine, T.A.; Post, E.G.; Hetzel, S.J.; Brooks, M.A.; Trigsted, S.; Bell, D.R. A Prospective Study on the Effect of Sport Specialization on Lower Extremity Injury Rates in High School Athletes. Am. J. Sports Med. 2017, 45, 2706–2712. [Google Scholar] [CrossRef]
- Milner, C.E.; Davis, I.S.; Hamill, J. Free moment as a predictor of tibial stress fracture in distance runners. J. Biomech. 2006, 39, 2819–2825. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.E.; Ferber, R.; Pollard, C.D.; Hamill, J.; Davis, I.S. Biomechanical factors associated with tibial stress fracture in female runners. Med. Sci. Sports Exerc. 2006, 38, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, F.; Azma, K.; Naseh, I.; Emadifard, R.; Etemadi, Y. Military Exercises, Knee and Ankle Joint Position Sense, and Injury in Male Conscripts: A Pilot Study. J. Athl. Train. 2013, 48, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.F.; Connolly, D.A.J.; Beynnon, B.D. Risk factors for lower extremity injury: A review of the literature. Br. J. Sports Med. 2003, 37, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Murray, S.R.; Reeder, M.T.; Udermann, B.E.; Pettitt, R.W. High-risk stress fractures: Pathogenesis, evaluation, and treatment. Compr. Ther. 2006, 32, 20–25. [Google Scholar] [CrossRef]
- Napier, C.; Cochrane, C.K.; Taunton, J.E.; Hunt, M.A. Gait modifications to change lower extremity gait biomechanics in runners: A systematic review. Br. J. Sports Med. 2015, 49, 1382–1388. [Google Scholar] [CrossRef]
- Newman, J.S.; Newberg, A.H. Basketball Injuries. Radiol. Clin. N. Am. 2010, 48, 1095–1111. [Google Scholar] [CrossRef]
- Adlerton, A.; Moritz, U. Forceplate and accelerometer measures for evaluating the effect of muscle fatigue on postural control during one-legged stance. Physiother. Res. Int. 2003, 8, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Wasser, J.G.; Zaremski, J.L.; Herman, D.C.; Vincent, H.K. Assessment and rehabilitation of chronic low back pain in baseball: Part II. Res. Sports Med. 2017, 25, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, R.M.; Pope, R.; Johnston, V.; Coyle, J. Load Carriage: Minimising Solider Injuries through physical conditioning—A narrative review. J. Mil. Veterans Health 2010, 18, 31–38. [Google Scholar]
- Orr, R.M.; Pope, R.; Johnston, V.; Coyle, J. Soldier occupational load carriage: A narrative review of associated injuries. Int. J. Inj. Contr. Saf. Promot. 2014, 21, 388–396. [Google Scholar] [CrossRef]
- Parijat, P.; Lockhart, T.E. Effects of quadriceps fatigue on the biomechanics of gait and slip propensity. Gait Posture 2008, 28, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Pegrum, J.; Crisp, T.; Padhiar, N. Diagnosis and management of bone stress injuries of the lower limb in athletes. BMJ 2012, 344, 1–9. [Google Scholar] [CrossRef]
- Pohl, M.B.; Mullineaux, D.R.; Milner, C.E.; Hamill, J.; Davis, I.S. Biomechanical predictors of retrospective tibial stress fractures in runners. J. Biomech. 2008, 41, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Raabe, M.E.; Chaudhari, A.M.W. Biomechanical consequences of running with deep core muscle weakness. J. Biomech. 2018, 67, 98–105. [Google Scholar] [CrossRef]
- Radwan, A.; Wyland, M.; Applequist, L.; Bolowsky, E.; Klingensmith, H.; Virag, I. Ultrasonography, an Effective Tool in Diagnosing Plantar Fasciitis: A Systematic Review of Diagnostic Trials. Int. J. Sports Phys. Ther. 2016, 11, 663–671. [Google Scholar]
- Rajasekaran, S.; Finnoff, J.T. Exertional Leg Pain. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 91–119. [Google Scholar] [CrossRef] [PubMed]
- Almekinders, L.C.; Engle, C.R. Common and uncommon injuries in ultra-endurance sports. Sports Med. Arthrosc. 2019, 27, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Reinking, M.F.; Austin, T.M.; Richter, R.R.; Krieger, M.M. Medial Tibial Stress Syndrome in Active Individuals: A Systematic Review and Meta-analysis of Risk Factors. Sports Health 2017, 9, 252–261. [Google Scholar] [CrossRef]
- Rice, H.M.; Saunders, S.C.; McGuire, S.J.; O’Leary, T.J.; Izard, R.M. Estimates of Tibial Shock Magnitude in Men and Women at the Start and End of a Military Drill Training Program. Mil. Med. 2018, 183, e392–e398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, G.A.J.; Goffin, J.S.; Wood, A.M. Return to sport following stress fractures of the great toe sesamoids: A systematic review. Br. Med. Bull. 2017, 122, 135–149. [Google Scholar] [CrossRef]
- Fousekis, K.; Tsepis, E.; Vagenas, G. Intrinsic risk factors of noncontact ankle sprains in soccer: A prospective study on 100 professional players. Am. J. Sports Med. 2012, 40, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Rodney, P. Prevention of pelvic stress fractures in female army recruits. Mil. Med. 1999, 164, 370–373. [Google Scholar]
- Saxena, A.; Fullem, B.; Gerdesmeyer, L. Treatment of Medial Tibial Stress Syndrome With Radial Soundwave Therapy in Elite Athletes: Current Evidence, Report on Two Cases, and Proposed Treatment Regimen. J. Foot Ankle Surg. 2017, 56, 985–989. [Google Scholar] [CrossRef]
- Seay, J. Biomechanics of load carriage—Historical perspectives and recent insights. J. Strength Cond. Res. 2015, 29, S129–S133. [Google Scholar] [CrossRef] [PubMed]
- Seay, J.F.; Frykman, P.N.; Sauer, S.G.; Gutekunst, D.J. Lower Extremity Mechanics During Marching at Three Different Cadences for 60 Minutes. J. Appl. Biomech. 2014, 30, 21–30. [Google Scholar] [CrossRef]
- Segal, N.A.; Glass, N.A. Is Quadriceps Muscle Weakness a Risk Factor for Incident or Progressive Knee Osteoarthritis? Phys. Sportsmed. 2011, 39, 44–50. [Google Scholar] [CrossRef]
- Sheerin, K.R.; Reid, D.; Besier, T.F. The measurement of tibial acceleration in runners—A review of the factors that can affect tibial acceleration during running and evidence-based guidelines for its use. Gait Posture 2019, 67, 12–24. [Google Scholar] [CrossRef]
- Al-Mulla, M.R.; Sepulveda, F.; Colley, M. A review of non-invasive techniques to detect and predict localised muscle fatigue. Sensors 2011, 11, 3545–3594. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 539–583. [Google Scholar] [CrossRef] [PubMed]
- Speed, G.; Harris, K.; Keegel, T. The effect of cushioning materials on musculoskeletal discomfort and fatigue during prolonged standing at work: A systematic review. Appl. Ergon. 2018, 70, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, D.J.; Fredrick, G.A. Baseball (Part II). Strength Cond. J. 2001, 23, 44. [Google Scholar] [CrossRef]
- Taanila, H.; Suni, J.H.; Kannus, P.; Pihlajamäki, H.; Ruohola, J.P.; Viskari, J.; Parkkari, J. Risk factors of acute and overuse musculoskeletal injuries among young conscripts: A population-based cohort study. BMC Musculoskelet. Disord. 2015, 16, 104. [Google Scholar] [CrossRef] [Green Version]
- Tavares, F.; Beaven, M.; Teles, J.; Baker, D.; Healey, P.; Smith, T.B.; Driller, M. Effects of Chronic Cold-Water Immersion in Elite Rugby Players. Int. J. Sports Physiol. Perform. 2019, 14, 156–162. [Google Scholar] [CrossRef]
- Attwells, R.L.; Birrell, S.A.; Hooper, R.H.; Mansfield, N.J. Influence of carrying heavy loads on soldiers ’ posture, movements and gait. Ergonomics 2006, 49, 1527–1537. [Google Scholar] [CrossRef] [Green Version]
- Birrell, S.A.; Haslam, R.A. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics 2009, 52, 1298–1304. [Google Scholar] [CrossRef]
- Nunns, M.; Stiles, V.; Dixon, S. The effects of standard issue Royal Marine recruit footwear on risk factors associated with third metatarsal stress fractures. Footwear Sci. 2012, 4, 59–70. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Kraus, E.; Fredericson, M. Bone Stress Injuries in Runners. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 139–149. [Google Scholar] [CrossRef]
- Toigo, M.; Flück, M.; Riener, R.; Klamroth-Marganska, V. Robot-assisted assessment of muscle strength. J. Neuroeng. Rehabil. 2017, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariëns, G.A.M.; Van Mechelen, W.; Bongers, P.M.; Bouter, L.M.; Van Der Wal, G. Physical risk factors for neck pain. Scand. J. Work. Environ. Health 2000, 26, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Buono, A.; Smith, R.; Coco, M.; Woolley, L.; Denaro, V.; Maffulli, N. Return to sports after ankle fractures: A systematic review. Br. Med. Bull. 2013, 106, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Galna, B.; Peters, A.; Murphy, A.T.; Morris, M.E. Obstacle crossing deficits in older adults: A systematic review. Gait Posture 2009, 30, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Kmet, L.; Lee, R.; Cook, L. Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields. AHFMR HTA Initiat. 2004, 13. [Google Scholar] [CrossRef]
- Macedo, L.G.; Elkins, M.R.; Maher, C.G.; Moseley, A.M.; Herbert, R.D.; Sherrington, C. There was evidence of convergent and construct validity of Physiotherapy Evidence Database quality scale for physiotherapy trials. J. Clin. Epidemiol. 2010, 63, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [Green Version]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (Minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Thacker, S.B.; Stroup, D.F.; Branche, C.M.; Gilchrist, J.; Goodman, R.A.; Weitman, E.A. The Prevention of Ankle Sprains in Sports. Am. J. Sports Med. 1999, 27, 753–760. [Google Scholar] [CrossRef]
- van Tulder, M.; Furlan, A.; Bombardier, C.; Bouter, L. Updated Method Guidelines for Systematic Reviews in the Cochrane Collaboration Back Review Group. Spine 2003, 28, 1290–1299. [Google Scholar] [CrossRef] [Green Version]
- Abrams, G.D.; Renstrom, P.A.; Safran, M.R. Epidemiology of musculoskeletal injury in the tennis player. Br. J. Sports Med. 2012, 46, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Bandpei, M.A.M.; Rahmani, N.; Majdoleslam, B.; Abdollahi, I.; Ali, S.S.; Ahmad, A. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: An updated systematic review. J. Manip. Physiol. Ther. 2014, 37, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, N.A.; Jaimes, C.; Khwaja, A. Ankle and Foot Injuries in the Young Athlete. Semin. Musculoskelet. Radiol. 2018, 22, 104–117. [Google Scholar]
- Cheatham, S.W.; Stull, K.R.; Fantigrassi, M.; Montel, I. Hip musculoskeletal conditions and associated factors that influence squat performance: A systematic review. J. Sport Rehabil. 2018, 27, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, K.K.; Dhawan, R.T.; Wilson, L.F.; Peirce, N.S.; Rajeswaran, G. Pars interarticularis injury in elite athletes—The role of imaging in diagnosis and management. Eur. J. Radiol. 2018, 108, 28–42. [Google Scholar] [CrossRef]
- Clements, J.R.; Dijour, F.; Leong, W. Surgical Management Navicular and Cuboid Fractures. Clin. Podiatr. Med. Surg. 2018, 35, 145–159. [Google Scholar] [CrossRef]
- De Noronha, M.; Refshauge, K.M.; Herbert, R.D.; Kilbreath, S.L. Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain? Br. J. Sports Med. 2006, 40, 824–828. [Google Scholar] [CrossRef] [Green Version]
- Elattar, O.; Choi, H.R.; Dills, V.D.; Busconi, B. Groin Injuries (Athletic Pubalgia) and Return to Play. Sports Health 2016, 8, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Eldayrie, G.E.; Smith, K.; Smith, M.S. Adult foot fractures: A guide. J. Fam. Pract. 2018, 67, E8–E15. [Google Scholar]
- Enoka, R.M.; Duchateau, J. Muscle fatigue: What, why and how it influences muscle function. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Forrest, M.R.L.; Hebert, J.J.; Scott, B.R.; Brini, S.; Dempsey, A.R. Risk Factors for Non-Contact Injury in Adolescent Cricket Pace Bowlers: A Systematic Review. Sport. Med. 2017, 47, 2603–2619. [Google Scholar] [CrossRef] [PubMed]
- Fullem, B.W. Overuse lower extremity injuries in sports. Clin. Podiatr. Med. Surg. 2015, 32, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Barton, C.J.; Bonanno, D.R.; Carr, J.; Neal, B.S.; Malliaras, P.; Franklyn-Miller, A.; Menz, H.B. Running retraining to treat lower limb injuries: A mixed-methods study of current evidence synthesised with expert opinion. Br. J. Sports Med. 2016, 50, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, S.; Heberger, J.R. Examining the interaction of force and repetition on musculoskeletal disorder risk: A systematic literature review. Hum. Factors 2013, 55, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, A.; Warner, J.; Aniq, H. Central metatarsalgia and walking on pebbles: Beyond morton neuroma. Am. J. Roentgenol. 2018, 210, 821–833. [Google Scholar] [CrossRef]
- Van Gent, R.N.; Siem, D.; Van Middelkoop, M.; Van Os, A.G.; Koes, B.W. Incidence and determinants of lower extremity running injuries in long distance runners: A systematic review. Br. J. Sports Med. 2007, 41, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Ghamkhar, L.; Kahlaee, A.H. The effect of trunk muscle fatigue on postural control of upright stance: A systematic review. Gait Posture 2019, 72, 167–174. [Google Scholar] [CrossRef]
- Gibbon, W.W. Groin pain in athletes. Lancet 1999, 353, 1444–1445. [Google Scholar] [CrossRef]
- Greeves, J.P. Physiological implications, performance assessment and risk mitigation strategies of women in combat-centric occupations. J. Strength Cond. Res. 2015, 29, S94–S100. [Google Scholar] [CrossRef]
- Halim, I.; Omar, A.R. Development of Prolonged Standing Strain Index to Quantify Risk Levels of Standing Jobs. Int. J. Occup. Saf. Ergon. 2012, 18, 85–96. [Google Scholar] [CrossRef]
- Hertel, J. Functional instability following lateral ankle sprain. Sports Med. 2000, 29, 361–371. [Google Scholar] [CrossRef]
- Hill, O.T.; Bulathsinhala, L.; Scofield, D.E.; Haley, T.F.; Bernasek, T.L. Risk Factors for Soft Tissue Knee Injuries in Active Duty U. S. Army Soldiers, 2000–2005. Mil. Med. 2013, 178, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayanthi, N.A.; Post, E.G.; Laury, T.C.; Fabricant, P.D. Health consequences of youth sport specialization. J. Athl. Train. 2019, 54, 1040–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, N.A.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J. Biomech. 2013, 46, 1237–1241. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Ferreira, M.; Hush, J. Lumbar vertebral stress injuries in fast bowlers: A review of prevalence and risk factors. Phys. Ther. Sport 2012, 13, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Jorge, J.P.; Carvalho, N. Adjacent Bi-level bilateral pedicle stress fractures after instrumented posterolateral lumbar fusion—a case report and review of the literature. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 1147–1151. [Google Scholar] [CrossRef]
- Kelly, J.L.; Valier, A.R. The use of orthotic insoles to prevent lower limb overuse injuries: A critically appraised topic. J. Sport Rehabil. 2018, 27, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H.M.; Thevarajah, V.; Zubairy, A.I. Imaging the patient with heel pain. Br. J. Hosp. Med. 2019, 80, 192–195. [Google Scholar] [CrossRef]
- Kofotolis, N.D.; Kellis, E.; Vlachopoulos, S.P. Ankle Sprain Injuries and Risk Factors in Amateur Soccer Players During a 2-Year Period. Am. J. Sports Med. 2007, 35, 458–466. [Google Scholar] [CrossRef]
- Kwon, J.Y.; Cronin, P.; Velasco, B.; Chiodo, C. Evaluation and Significance of Mortise Instability in Supination External Rotation Fibula Fractures: A Review Article. Foot Ankle Int. 2018, 39, 865–873. [Google Scholar] [CrossRef]
- Lareau, C.R.; Sawyer, G.A.; Wang, J.H.; DiGiovanni, C.W. Plantar and medial heel pain: Diagnosis and management. J. Am. Acad. Orthop. Surg. 2014, 22, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.J.; Brown, S.H.M. The effects of trunk extensor and abdominal muscle fatigue on postural control and trunk proprioception in young, healthy individuals. Hum. Mov. Sci. 2018, 57, 13–20. [Google Scholar] [CrossRef]
- Lee, S.; Saifuddin, A. Magnetic resonance imaging of subchondral insufficiency fractures of the lower limb. Skelet. Radiol. 2019, 48, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.S.; Tan, T.J.; Yan, Y.Y. Fracture of a Bipartite Medial Hallux Sesamoid Masquerading as a Tripartite Variant: A Case Report and Review of the Literature. J. Foot Ankle Surg. 2019, 58, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Baxter, M.L.; Ribeiro, D.C.; Milosavljevic, S. Do orthotics work as an injury prevention strategy for the military? Phys. Ther. Rev. 2012, 17, 241–251. [Google Scholar] [CrossRef]
- Gazzoni, M.; Botter, A.; Vieira, T. Surface EMG and muscle fatigue: Multi-channel approaches to the study of myoelectric manifestations of muscle fatigue. Physiol. Meas. 2017, 38, R27–R60. [Google Scholar]
- Liong, S.Y.; Whitehouse, R.W. Lower extremity and pelvic stress fractures in athletes. Br. J. Radiol. 2012, 85, 1148–1156. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.T.; Sanders, D.T.; Raspovic, K.M.; Wukich, D.K. Trauma in the Diabetic Limb. Clin. Podiatr. Med. Surg. 2019, 36, 499–523. [Google Scholar] [CrossRef]
- McCall, A.; Carling, C.; Davison, M.; Nedelec, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br. J. Sports Med. 2015, 49, 583–589. [Google Scholar] [CrossRef]
- Menon, D.; Onida, S.; Davies, A.H. Overview of arterial pathology related to repetitive trauma in athletes. J. Vasc. Surg. 2019, 70, 641–650. [Google Scholar] [CrossRef]
- Miller, T.; Kaeding, C.C.; Flanigan, D. The classification systems of stress fractures: A systematic review. Phys. Sportsmed. 2011, 39, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Olivier, B.; Taljaard, T.; Burger, E.; Brukner, P.; Orchard, J.; Gray, J.; Botha, N.; Stewart, A.; Mckinon, W. Which Extrinsic and Intrinsic Factors are Associated with Non-Contact Injuries in Adult Cricket Fast Bowlers? Sport. Med. 2016, 46, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, M.; Polychronopoulos, V.; Strange, C. Respiratory and lower limb muscle function in interstitial lung disease. Chron. Respir. Dis. 2016, 13, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Pardiwala, D.N.; Rao, N.N.; Varshney, A.V. Injuries in Cricket. Sports Health 2018, 10, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Payo-Ollero, J.; Álvarez Goenaga, F.; Elorriaga Sagarduy, G.; Ruiz Nasarre, A.; Olmos-García, M.A.; Villas Tomé, C. Stress Fracture of the Fifth Metatarsal in Foot Deformity Secondary to Neuromuscular Disease: Experiences of Deformity Correction Treatment—A Report of 3 Cases and Review of the Literature. Foot Ankle Spec. 2018, 11, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Brukner, P.D. Epidemiology and site specificity of stress fractures. Clin. Sports Med. 1997, 16, 179–196. [Google Scholar] [CrossRef]
- Proske, U. Exercise, fatigue and proprioception: A retrospective. Exp. Brain Res. 2019, 237, 2447–2459. [Google Scholar] [CrossRef]
- Schaffler, M.B.; Radin, S.E.L.; Burr, D.B. Long-Term Fatigue Behavior of Compact Bone at Low Strain Magnitude and Rate. Bone 1990, 11, 321–326. [Google Scholar] [CrossRef]
- Rivera, C.E. Core and Lumbopelvic Stabilization in Runners. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 319–337. [Google Scholar] [CrossRef]
- Röijezon, U.; Clark, N.C.; Treleaven, J. Proprioception in musculoskeletal rehabilitation: Part 1: Basic science and principles of assessment and clinical interventions. Man. Ther. 2015, 20, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Schneiders, A.G.; Sullivan, S.J.; Hendrick, P.A.; Hones, B.D.G.M.; McMaster, A.R.; Sugden, B.A.; Tomlinson, C. The ability of clinical tests to diagnose stress fractures: A systematic review and meta-analysis. J. Orthop. Sports Phys. Ther. 2012, 42, 760–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoneboom, B.A.; Perry, S.M.; Barnhill, W.K.; Giordano, N.A.; Wiltse Nicely, K.L.; Polomano, R.C. Answering the call to address chronic pain in military service members and veterans: Progress in improving pain care and restoring health. Nurs. Outlook 2016, 64, 459–484. [Google Scholar] [CrossRef] [PubMed]
- Slobodin, G.; Lidar, M.; Eshed, I. Clinical and imaging mimickers of axial spondyloarthritis. Semin. Arthritis Rheum. 2017, 47, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Small, K.; McNaughton, L.; Greig, M.; Lovell, R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J. Sci. Med. Sport 2010, 13, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, D.; Alentorn-Geli, E.; Mendiguchía, J.; Samuelsson, K.; Karlsson, J.; Myer, G.D. Biomechanical and Neuromuscular Characteristics of Male Athletes: Implications for the Development of Anterior Cruciate Ligament Injury Prevention Programs. Sport. Med. 2015, 45, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Symonds, T.; Campbell, P.; Randall, J.A. A review of muscle- and performance-based assessment instruments in DM1. Muscle Nerve 2017, 56, 78–85. [Google Scholar] [CrossRef]
- Blankenbaker, D.G.; De Smet, A.A. Hip Injuries in Athletes. Radiol. Clin. N. Am. 2010, 48, 1155–1178. [Google Scholar] [CrossRef]
- Taunton, J.; Ryan, M.; Clement, D.; McKenzie, D.; Lloyd-Smith, D.; Zumbo, B. A prospective study of running injuries: The Vancouver Sun Run “In Training” clinics. Br. J. Sports Med. 2003, 37, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.L.; Amann, M.; Duchateau, J.; Meeusen, R.; Rice, C.L. Neural contributions to muscle fatigue: From the brain to the muscle and back again. Med. Sci. Sports Exerc. 2016, 48, 2294–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedl, K.E.; Evans, R.K.; Moran, D.S. Stress Fracture and Military Medical Readiness: Bridging Basic and Applied Research. Med. Sci. Sports Exerc. 2008, 40, S609–S622. [Google Scholar] [CrossRef]
- Terrier, P.; Reynard, F. Effect of age on the variability and stability of gait: A cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture 2015, 41, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.Y.; Byrne, C.; Williams, M.A.; Keene, D.J.; Schlussel, M.M.; Lamb, S.E. Prognostic factors for recovery following acute lateral ankle ligament sprain: A systematic review. BMC Musculoskelet. Disord. 2017, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Villafañe, J.H.; Gobbo, M.; Peranzoni, M.; Naik, G.; Imperio, G.; Cleland, J.A.; Negrini, S. Validity and everyday clinical applicability of lumbar muscle fatigue assessment methods in patients with chronic non-specific low back pain: A systematic review. Disabil. Rehabil. 2016, 38, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Vincent, H.K.; Vincent, K.R. Core and back rehabilitation for high-speed rotation sports: Highlight on lacrosse. Curr. Sports Med. Rep. 2018, 17, 208–214. [Google Scholar] [CrossRef]
- Vitale, K.; Smitaman, E.; Huang, B.K. Medial iliac stress fractures in athletes: Report of two rare cases: Review of literature and clinical recommendations. Skelet. Radiol. 2019, 48, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Wasser, J.G.; Zaremski, J.L.; Herman, D.C.; Vincent, H.K. Prevalence and proposed mechanisms of chronic low back pain in baseball: Part i. Res. Sports Med. 2017, 25, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkes, M.; van Eerten, P.; Scheltinga, M. Deep posterior chronic exertional compartment syndrome as a cause of leg pain. Der Unfallchirurg 2020, 123, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, L.M. Potential contributions of skeletal muscle contractile dysfunction to altered biomechanics in obesity. Gait Posture 2017, 56, 100–107. [Google Scholar] [CrossRef]
- Wojtys, E.M.; Beaulieu, M.L.; Ashton-Miller, J.A. New perspectives on ACL injury: On the role of repetitive sub-maximal knee loading in causing ACL fatigue failure. J. Orthop. Res. 2016, 34, 2059–2068. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.A.; Hegedus, E.J.; Lenchik, L.; Kuhn, K.J.; Santiago, L.; Smoliga, J.M. Diagnostic Accuracy of Various Imaging Modalities for Suspected Lower Extremity Stress Fractures. Am. J. Sports Med. 2016, 44, 255–263. [Google Scholar] [CrossRef]
- Zawadka, M.; Skublewska-Paszkowska, M.; Gawda, P.; Lukasik, E.; Smolka, J.; Jablonski, M. What factors can affect lumbopelvic flexion-extension motion in the sagittal plane?: A literature review. Hum. Mov. Sci. 2018, 58, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Zukas, R.; Sloat, N.; Wright, P. Are soft in-soles or orthotics better than no insoles to prevent stress fractures of the lower extremity in adults? J. Okla. State Med. Assoc. 2013, 106, 81–82. [Google Scholar] [PubMed]
- Boschman, J.S.; Van Der Molen, H.F.; Sluiter, J.K.; Frings-Dresen, M.H.W. Occupational demands and health effects for bricklayes and construction supervisors: A systematic review. Am. J. Ind. Med. 2011, 54, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Burrus, M.T.; Werner, B.C.; Starman, J.S.; Gwathmey, F.W.; Carson, E.W.; Wilder, R.P.; Diduch, D.R. Chronic Leg Pain in Athletes. Am. J. Sports Med. 2015, 43, 1538–1547. [Google Scholar] [CrossRef]
- Geifman, N.; Cohen, R.; Rubin, E. Redefining meaningful age groups in the context of disease. Age 2013, 35, 2357–2366. [Google Scholar] [CrossRef] [Green Version]
- Rogante, M.; Kairy, D.; Giacomozzi, C.; Grigioni, M. A quality assessment of systematic reviews on telerehabilitation: What does the evidence tell us? Annali Dell’istituto Superiore Di Sanita 2015, 51, 11–18. [Google Scholar]
- van der Kruk, E.; Reijne, M.M. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J. Sport Sci. 2018, 18, 806–819. [Google Scholar] [CrossRef]
Instrumentation | Number of Articles |
---|---|
Imaging techniques + Wearables | 2 |
Imaging techniques + Laboratory | 6 |
Imaging techniques + Physiological | 0 |
Wearables + Laboratory | 12 |
Wearables + Physiological | 3 |
Laboratory + Physiological | 1 |
Wearables + Laboratory + Physiological | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orejel Bustos, A.; Belluscio, V.; Camomilla, V.; Lucangeli, L.; Rizzo, F.; Sciarra, T.; Martelli, F.; Giacomozzi, C. Overuse-Related Injuries of the Musculoskeletal System: Systematic Review and Quantitative Synthesis of Injuries, Locations, Risk Factors and Assessment Techniques. Sensors 2021, 21, 2438. https://doi.org/10.3390/s21072438
Orejel Bustos A, Belluscio V, Camomilla V, Lucangeli L, Rizzo F, Sciarra T, Martelli F, Giacomozzi C. Overuse-Related Injuries of the Musculoskeletal System: Systematic Review and Quantitative Synthesis of Injuries, Locations, Risk Factors and Assessment Techniques. Sensors. 2021; 21(7):2438. https://doi.org/10.3390/s21072438
Chicago/Turabian StyleOrejel Bustos, Amaranta, Valeria Belluscio, Valentina Camomilla, Leandro Lucangeli, Francesco Rizzo, Tommaso Sciarra, Francesco Martelli, and Claudia Giacomozzi. 2021. "Overuse-Related Injuries of the Musculoskeletal System: Systematic Review and Quantitative Synthesis of Injuries, Locations, Risk Factors and Assessment Techniques" Sensors 21, no. 7: 2438. https://doi.org/10.3390/s21072438
APA StyleOrejel Bustos, A., Belluscio, V., Camomilla, V., Lucangeli, L., Rizzo, F., Sciarra, T., Martelli, F., & Giacomozzi, C. (2021). Overuse-Related Injuries of the Musculoskeletal System: Systematic Review and Quantitative Synthesis of Injuries, Locations, Risk Factors and Assessment Techniques. Sensors, 21(7), 2438. https://doi.org/10.3390/s21072438