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Abstract: Pure, mixed and doped metal oxides (MOX) have attracted great interest for the devel-
opment of electrical and electrochemical sensors since they are cheaper, faster, easier to operate
and capable of online analysis and real-time identification. This review focuses on highly sensitive
chemoresistive type sensors based on doped-SnO2, RhO, ZnO-Ca, Smx-CoFe2−xO4 semiconductors
used to detect toxic gases (H2, CO, NO2) and volatile organic compounds (VOCs) (e.g., acetone,
ethanol) in monitoring of gaseous markers in the breath of patients with specific pathologies and for
environmental pollution control. Interesting results about the monitoring of biochemical substances
as dopamine, epinephrine, serotonin and glucose have been also reported using electrochemical
sensors based on hybrid MOX nanocomposite modified glassy carbon and screen-printed carbon
electrodes. The fundamental sensing mechanisms and commercial limitations of the MOX-based
electrical and electrochemical sensors are discussed providing research directions to bridge the
existing gap between new sensing concepts and real-world analytical applications.

Keywords: metal-oxide; nanohybrid; conductometric sensors; gas sensing; electrochemical sensors;
biosensing

1. Introduction

Today, chemical sensors represent a class of devices of outmost importance both from
the scientific and applicative point of view. Since 1991 the International Union of Pure
and Applied Chemistry (IUPAC) provided the definitions and classification of chemical
sensors: “A chemical sensor is a device that transforms chemical information, ranging from
the concentration of a specific sample component to total composition analysis, into an
analytically useful signal” [1]. Figure 1 reports a scheme with the classification adopted
by IUPAC.

Among the typology of chemical sensors, electrical and electrochemical ones are
the most simple and therefore have been largely investigated and utilized in practical
applications: either gases and substances in liquid phase can be detected and quantified
by simple electrical and electrochemical transduction platforms. These devices have
now reached a large market volume: the Electrochemical Sensor Market was valued at
USD 6.19 billion in 2020 and is expected to reach USD 11.83 billion by 2026 [2].
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Figure 1. Scheme of the chemical sensors classification from International Union of Pure and Ap-
plied Chemistry (IUPAC) [1]. 
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The popularity of sensor devices to detect gases is due to the increased development 
of solid-state sensors, the miniaturization of gas detection devices and the micro electro-
mechanical system (MEMS) technology advent. Indeed, compared with conventional an-
alytical instruments such as gas chromatography (GC) and high-performance liquid chro-
matography (HPLC), chemical sensors are less costly, easier to operate and capable of 
online real-time identification. 

Apart from the carbon based and metal nanomaterials, metal oxides (MOX) attracted 
great attention, due to their chemical characteristics and functional properties [3–5], for 
the development of chemical sensors [6,7] applied to achieve a safer working environ-
ment. In compliance with government regulations such as Control of Substances Hazard-
ous to Health (COSHH) and Occupational Safety and Health Administration (OSHA) reg-
ulations, MOX based sensors have been recently adopted to efficiently reveal the presence 
of toxic and combustible gases (i.e., hydrogen sulfide, carbon monoxide) to withstand 
high humidity and temperature. All of that to avoid explosions in manufacturing and 
chemical industries. Moreover, MOX based nanomaterials chemical sensors are increas-
ingly used in the automotive field to optimize cabin air quality, as fuel emission detectors 
and as fast point-of-care testing and monitoring devices in biomedical field. For example, 
very recently, a new handheld gas sensor for Airborne SARS-CoV-2 virus diagnosis from 
exhaled breath was awarded an NSF RAPID grant, demonstrating the potentiality of these 
devices in the biomedical field. 
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The popularity of sensor devices to detect gases is due to the increased development
of solid-state sensors, the miniaturization of gas detection devices and the micro electro-
mechanical system (MEMS) technology advent. Indeed, compared with conventional
analytical instruments such as gas chromatography (GC) and high-performance liquid
chromatography (HPLC), chemical sensors are less costly, easier to operate and capable of
online real-time identification.

Apart from the carbon based and metal nanomaterials, metal oxides (MOX) attracted
great attention, due to their chemical characteristics and functional properties [3–5], for
the development of chemical sensors [6,7] applied to achieve a safer working environment.
In compliance with government regulations such as Control of Substances Hazardous to
Health (COSHH) and Occupational Safety and Health Administration (OSHA) regulations,
MOX based sensors have been recently adopted to efficiently reveal the presence of toxic
and combustible gases (i.e., hydrogen sulfide, carbon monoxide) to withstand high hu-
midity and temperature. All of that to avoid explosions in manufacturing and chemical
industries. Moreover, MOX based nanomaterials chemical sensors are increasingly used in
the automotive field to optimize cabin air quality, as fuel emission detectors and as fast
point-of-care testing and monitoring devices in biomedical field. For example, very recently,
a new handheld gas sensor for Airborne SARS-CoV-2 virus diagnosis from exhaled breath
was awarded an NSF RAPID grant, demonstrating the potentiality of these devices in the
biomedical field.

Among MOX, metal oxide semiconductors (MOS) with sizes in the range of 1–100 nm
have been considered as promising candidates for gas detection by means of electrical
transduction platforms [8]. The processes involved in gas sensing with MOS gas sensors
are extremely complex and their understanding, which is needed for developing smart
sensors, demands promising investigation techniques that must be applied in operation
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conditions. These are the main issues that are still open today. Parameters like sensi-
tivity, selectivity, response time and stability of gas sensors can be further improved by
the addition of different dopants, which act to change the activation energy, to gener-
ate oxygen vacancy or to change the electronic structure/band gap [9]. The doping of
nanowires, nanotubes, core-shell nanostructures and nanofibers is paving the way for
newer and better gas sensor materials [10,11]. More recently, MOX have been receiving
great attention mainly in the field of biosensors due to their high potential and versality
to become very competitive materials for modifying the morphology, chemical stability
and physicochemical interfacial properties of conventional sensing materials [12]. In fact,
MOX can be assembled to form tandem heterostructures [13], hybrid structures [14] or
composite structures [15] with advanced electrochemical properties which can be adapted
for a specific biosensor application.

MOX materials find large applications also in the fabrication of biosensors. Such
devices consist of sensitive biometric elements, transducers and signal analysis systems
allowing the rapid detection of various trace-level analytes [16]. The sensitive element
selectively reacts (enzyme) or binds (antibody) with analytes. Therefore, the transducer cap-
tures the results of the interaction between sensitive material and analyte. These could be
changes in number of transferred electrons in the case of redox enzymes or changes in mass
or potential for various sensors based on immunosensing principles. However, for their
biosensing applications there are several issues to overcome such as organic/inorganic inter-
face compatibility, increasing the carrier charge mobility, while decreasing the electron-hole
recombinations. Furthermore, for an effective commercialization, an important prospect
is the prolongation of lifetime of the sensors, as well as the stability and reliability of the
sensor signal, especially in humid conditions. Thus, a great deal of researchers’ attention
will be focused on novel inorganic nanomaterials.

Besides the biosensor field discussed above, MOX thin film transistor (TFTs) could
contribute to environmental sensing and automation biosystems [17]. However, this field
is almost completely unexplored. The chemically modified biosensors can be regarded as
an efficient technology for the determination of various biomolecules.

A lot of literature has been produced through the years covering all issues regarding
metal, carbon and MOX materials, such as their preparation and characterization, sens-
ing mechanism and applications. To complete this, the core objective of our review is to
provide the most complete and exhaustive picture on the types of sensors available today
in the market, highlighting their advantages and disadvantages in the specific field in
which they are used, focusing the attention on the sensing performances of novel MOX
based sensors developed in our joint laboratories at the University of Messina (Italy) and
University of Alagappa (India). In particular, we highlight the enhanced sensing properties
achieved by using MOX-based modified electrical and electrochemical sensors illustrat-
ing the corresponding sensing mechanisms. For example, we show improved ammonia
sensing response of V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis (see
Section 3). Additionally, we discuss about the properties of MOX-modified glass carbon
and scree-printed, carbon-based electrochemical sensors with respect to the electrocatalytic
characteristics collected using the common carbon electrode materials. In such a way,
we shed light on the advantage of the simultaneous detection of different analytes with
similar oxidation potential such as epinephrine, uric acid and ascorbic acid (see Section 5).
Therefore, this review will serve as a source of knowledge for the future development of in-
novative and more performing MOX and specifically MOS based sensors for quantitatively
and selectively measuring target species in complex systems. To this purpose, specific
applications of different electrical and electrochemical sensors based on MOX nanocom-
posites in real and analytical situations will be discussed together with their limitations.
We believe that this review may help to provide research directions by specifying existing
hindrances and can also aid in designing novel materials.
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2. Conductometric Type Sensors: Building Basics and Sensing Mechanisms

MOS-based conductometric gas sensors are the most used and studied electrical
devices designed for the control of toxic and inflammable gases in technological processes
and surrounding atmosphere [18]. Conductometric sensors have a simple structure which
consists of two elements, a sensitive conducting layer and contact electrodes. To make
the measurement, a DC voltage usually in the range of 1–10 V is applied to the device
and the current flowing through the electrodes is monitored as the response. The sensing
material bridges the gap between two electrodes or coats a set of interdigitated electrodes,
printed on an insulating ceramic, a plastic flexible foil or a silicon substrate [19]. For
those sensors which do not work at room temperature, a heating micro-resistance can be
included on the bottom side of the sensor to bring the sensitive material to the optimal
working temperature.

The basis of the operation of conductometric sensors is the change in resistance/
conductivity of a sensitive layer under the effect of reactions (adsorption, chemical reactions,
diffusion, catalysis) taking place on the surface of the sensing layer. The chemical species
interact with the sensitive layer and thus modulate its electrical conductivity (essentially
trapping of electrons at adsorbed molecules and band bending induced by these charged
molecules are responsible for a change in conductivity). The most accepted mechanism,
explaining the sensitivity of n-type MOX-based sensors, includes the role played by the
chemisorbed oxygen [20]. The negative charge trapped in these oxygen species causes an
upward band bending and thus a reduced conductivity compared to the flat band situation.
As shown in Figure 2, when O2 molecules are adsorbed on the surface of MOX, they would
extract electrons from the conduction band Ec and trap the electrons at the surface in
the form of ions. This will lead a band bending and an electron depleted region, called
space-charge layer, whose thickness coincides with the length of the band bending region.
Reaction of these oxygen species with reducing gases or a competitive adsorption and
replacement of the adsorbed oxygen by other molecules decreases and can reverse the band
bending, resulting in an increased conductivity [20]. O− is believed to be dominant at the
operating temperature of 300–450 ◦C which is the work temperature for most metal oxide
gas sensors. These changes in the film conductivity are thus correlated to the concentration
of the chemical species.

The main advantages of MOX conductometric sensors are: (1) ease of fabrication
using thin and thick film technologies, (2) simple operation and (3) low production cost.
Specifically, reversibility, rapid response, longevity and robustness are other merits of metal
oxide gas sensors. However, conductometric MOX sensors are not highly selective, and
much effort has been involved in devising materials and methods of operation to improve
specificity [21,22]. During exposure, gases interact with the sensing material producing
a modulation of the resistance value which represents the response of the sensor. Hence,
by measuring the increase or decrease of electrical resistance (or conductivity), the type
(oxidizing or reducing) and concentration of gas (i.e., H2, CO, NO2) or Volatile Organic
Compound, VOC, (i.e., acetone, ethanol) can be estimated [23]. Easy measurement of
the electrical properties with only two electrodes is a key factor in their preference and
supplying safety [24,25].

Many sensing materials can be employed as active layer in these devices including
MOS, graphene, carbon nanotubes and metal nanoparticles in self assembled monolayers
or conductive polymers [26–30]. Chemical composition and structural properties are
the main factors affecting MOS chemoresistive sensor response toward gases and their
stability over time [31,32]. On the other hand, different sensing properties have been
obtained changing materials morphology, mainly remarking nano-scale peculiarities to
improve gas sensors [29,33]. The doping of MOX materials or any approach used to
“create oxygen defects” results in a large concentration of carriers, mobility and change in
electrical resistivity. In particular, doping with metallic ions (Al, Fe, Co, Cu, Ag, etc.) is an
effective method for enhancing sensing capability of about two orders of magnitude with
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respect to the undoped samples [33]. The substituted atoms can act as reactive sites for gas
adsorption [34] and can cause extrinsic electronic states [35,36].
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space-charge layer. The conducting electrons are represented by e– and the symbol + represents the
donor sites.

Noble metal species with high-effective oxidation catalytic activity can be used to
enhance the sensitivity of pure MOX due to the “spillover effect” [37]. Moreover, good
catalyst supporting materials are also a key point to determine how much potential of
catalysts can be developed. So, the structure of MOX layers is very important. High surface
areas are necessary to obtain highly-dispersed catalyst particles. Furthermore, high surface
areas can provide large reaction contact area between gas sensing materials and target gases.
Therefore, porous structures with high surface areas seem to be the standard structure of
MOX gas sensor layers, while one-dimension materials are prospective material platform
for the next generation of durable conductometric gas sensors due to open surface, high
gas sensitivity and long-term stability.

Particularly interesting are the nanoporous and two-three dimensional structures of
MOX such as nanowires, nanorods and nanotetrapods [38–42]. Nanostructures have an
extremely high surface/volume ratio and, since the sensitive part of the oxide is their
surface which comes into contact with gases and others volatile compounds in air [43].
It is easy to understand how this property can greatly influence the two main processes
involved, when the MOX surface reacts with the surrounding atmosphere containing
oxygen and target gases (see Figure 3).
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from Ref. [44].

The mechanism of gas sensing on MOS sensors has been largely investigated in the
last several decades [45]. It is assumed that the first process is the diffusion of the analyte
gas from the atmosphere toward the oxide semiconductor surface. The diffusion process
is improved if the sensing film has a micro-, meso- or nanoporous structure [43,44]. The
second process consists in the charge-transferring interaction between the analyte gas and
the oxide surface. This mechanism depends on the gas adsorption, the change of charge
carrier concentration in proximity of the oxide surface, and by the surface reactions [46–48].
Particularly, nanostructured sensitive layers allow complete electron depletion and effective
gas diffusion, thus yielding high sensing performance in terms of short recovery times and
low detection limits [49,50]. Finally, the sensor working temperature plays an important
role either in the formation of reactive species and chemisorbed reactive oxygen species
(ions) [51,52], according to the following reactions:

O2(ads) + e− � O−2(ads) (< 100 ◦C)

O−2(ads) + e− � 2O−
(ads) (100–300 ◦C)

The formation of oxygen ions results in the capture of electrons from conduction band
of the surface layer, determining an alteration in conductivity of the MOS [52]. The increase
or decrease in conductivity depends on the type of majority carriers in the semiconducting
metal oxide material (n-type or p-type) and on the nature of the probed gas molecules
(oxidizing or reducing). In the case of n-type nanostructured oxides, the electrons are
“removed” from the conduction band of the surface layer thanks to the action of the
adsorbed oxygen molecules. In this way, negatively charged chemisorbed ions will be
formed. In particular, at room temperature, surface oxygen ions will be O−2 type [51].
Consequently, we have the formation on the oxide surface of a depletion zone and a
potential barrier, which produce a decrease in conductivity or, analogously, an increase in
the resistance of the oxide layer, due to the loss of electrons [53].

In each case, the analyte gas plays an important role in the detection mechanism.
Indeed, in the case of reducing gas (donor), i.e., NH3, H2, H2S, HCHO etc., the chemical
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reaction, taking place on the oxide surface, releases electrons which are reintroduced into
the depletion layer. It follows a lowering of the potential barrier level and, therefore, an
increase in conductivity (i.e., decrease in resistance). On the other hand, when the target
gas is an oxidant (acceptor), such as O3, NO, CH3COCH3, Cl2, NO2, etc., the reaction
with chemisorbed oxygen ions causes a further loss of electrons from the depletion layer,
widening it and producing an increase in the potential barrier. The process described is
responsible of a decrease in conductivity, or equivalently, an increase in the resistance of
the oxide layer.

Figure 4 shows a schematic diagram of sensor resistance changes upon exposure to
the target gas (reducing gas) in the cases of n-type and p-type MOX sensors, respectively.
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Figure 4. Schematic diagram for change of the sensor resistance upon exposure to the target gas
(reducing gas) in the cases of n-type and p-type metal oxide sensors. Reprinted under the terms of
the Creative Commons Attribution License (CC BY 3.0) from Ref. [54].

If the metal oxide is n-type, a lowering in resistance will take place if exposed to
reducing gas; on the other hand, the material shows an increase in resistance if exposed to
oxidizing gas [45,55]. In the case of p-type nanostructured oxides, the gas detection mecha-
nism is always linked to the change in resistance of the oxide layer, following the oxidation
or reduction reactions that occur between its surface and the target gas. In this case, the key
factor is the change in the concentration of p-type carriers. At room temperature, when the
air-analyte gas mixture interacts with the oxide surface, two processes take place: (1) the
formation of oxygen ions O−2 due to the molecules that have been adsorbed, and (2) the
capture of electrons from the oxide conduction band. In this way, there will be an increase
in p-type carriers concentration on the surface layer, with a lowering of the Fermi level, or
an increase of the oxide conductivity (i.e., decrease of resistance) [56,57]. Specifically, if the
sensor is exposed to reducing gases, whose molecules are adsorbed on the oxide surface,
the electrons released will recombine with holes, causing an increase of the Fermi level and
a reduction in the p-type carriers concentration (reaction between gas and O−2 ions). The
result is a decrease in conductivity or equivalently an increase in resistance. Otherwise,
once the sensor is exposed to oxidizing gases, whose molecules are adsorbed by the metal
oxide surface, electrons were captured, forming negatively charged chemisorbed oxygen
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ions. This mechanism leads to an increase in the concentration of holes (majority carriers),
which results in an increase of conductivity and, therefore, a decrease in resistance of the
sensitive layer. To summarize, for p-type MOX, an increase in resistance if exposed to
reducing gas, while a decrease in resistance if exposed to oxidizing gas were observed. This
is exactly the opposite behavior with respect to n-type MOX sensing materials [54,58,59].

Thus, in metal-oxide and metal-doped oxide nanostructured sensing layers, a well-
defined control of film growth process is essential to avoid agglomerative formations
and unexpected ion positions in the crystal structure, in turn, to limit the decrease of gas
adsorption process. For what has been said: “a careful engineering control over the metal
oxide structure and sensor design is mandatory to obtain high stability as well as high gas
sensitivity for devices” [60,61]. Besides the internal causes limiting metal oxide sensors
mentioned above, external causes, such as temperature and humidity, also play an impor-
tant role. Humidity decreases the sensitivity so preventing measurements reproducibility.
Fortunately, it can be eliminated by heating to high temperatures (usually >400 ◦C) [20].
Nevertheless, among all the types of sensors nowadays available, the chemiresistive ones
are distinguished by low cost in terms of production and operation, long lifetime, good
stability and reproducibility of measurements, as well as their high response speed and sen-
sitivity because they allow the quantitative estimation of target gas concentration variation
by a direct measurement of electrical resistance [62,63]. Additionally, being usually small
and low in power consumption, it is very simple to integrate them into distributed sensor
networks or in everyday objects to turn them into smart objects, in view of the expansion
of the emerging Internet of Things (IoT) experience.

3. An Overview on MOX Nanomaterials Used for Gas Sensing

Recently, there was an increased interest towards the applications of gas sensors
based on semiconductor MOX. For instance, TiO2, SnO2 and ZnO have been successfully
applied for the detection of combustible and toxic gases, principally for monitoring the
environmental pollution and to secure the home/industrial ambient [20,64,65]. In details,
for the sensing of hydrocarbons, oxygen, CO, H2 and NO2, devices based on ZnO have been
adopted in a real-time fashion, with a particular enhancement for doped nanostructures by
Al, Ga, In and Sn [66].

From our side, some of us investigated the sensing properties of V-doped ZnO:Ca
nanopowders that were synthetized by the sol–gel technique. The results showed an
increase in the resistive sensor response for the detection of ammonia (NH3), ascribed
to the combined impacts of V, ZnO and Ca. This has very important fallouts concerning
gas sensing for environmental detection, automotive-chemical industry and for medical
purposes. In fact, just revealing 1 ppm of ammonia is particularly important both in
environmental pollution and biomedical applications. Note that the ammonia limits are
fixed to 35 and 25 ppm for short term and long term exposure, respectively [67].

Figure 5 reports the detection response of 1000 ppm of ammonia for the investigated
sensors, working in air under the same conditions. As it can be observed, sensors with V
components display the most enhanced response on average, whereas the binary ZnO:Ca
has the weakest response for ammonia detection. Therefore, it seems that the inclusion of
vanadium is responsible of this enhancement although only if combined with calcium. In
fact, the ZnOV sample shows a response that is nearly the same than that of the reference
ZnO sample. Furthermore, the response for ZnO:CaVx sensors depends on the V amount,
being the highest for the ZnO:CaV1 sample. In particular, this last sensor has a sensitivity
toward the ammonia detection which is about 2.85× 10−3 ppm−1. For this specific purpose,
this sensitivity value is higher than that shown by carbon nanotubes based sensors that are
also less cheap [68].
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CO2 species are considered the main responsible of the greenhouse effect and global
warming [69]. The concentration range of CO2 is between 0.03% (300 ppm), corresponding
to the CO2 concentration present in uncontaminated atmospheric air, and 0.3% (3000 ppm),
typically found in closed and highly populated ambient. CO2 is mainly monitored by
infrared (IR)-based gas sensors, but MOX materials showing sensitivity to CO2 have also
been recently exploited for developing conductometric sensors for monitoring this gas. For
example, many efforts in our laboratory and from other research groups have been made to
optimize CO2 sensors based on ZnO sensing elements [70,71], which incorporated suitable
dopants (i.e., Al). However, a precise control of particle shape and size, as well as of the
amount of dopants, is considered essential to ensure high sensing performance, without
dramatically alter electrical characteristics and reactivity of ZnO, when interacting with
gaseous species [72].

Dhahri et al. investigated the performance of a resistive CO2 sensor based on ZnO:Ca
nanoparticles, synthesized by sol-gel method [73]. The improvement of the Ca-doped
ZnO sensor response (S = (∆R/R0) × 100 = 113 to 5% CO2) with respect to the ZnO
sensor, was observed in terms of the higher adsorption of CO2 on the semiconductor
surface in the presence of Ca dopant. In fact, the presence of Ca promotes the formation
of carbonates species as confirmed by the trend of the intensity of IR band at 1420 cm−1

(due to the formation of carbonates species), versus Ca loading and also by the response
of the sensors versus the intensity of IR band at 1420 cm−1 (see Figure 9 in Ref. [73]).
On the overall, the substitutional doping of ZnO, with lower or higher valence (e.g., I or
III group) impurities, is known to result in enhanced carrier concentration and lowered
resistivity (p- or n-type doping) [74]. On the contrary, the incorporation in the lattice of
isovalent ions (e.g., Ca2+), having larger ionic radius with respect to Zn2+ ions, creates
large lattice distortion leading to an increase in the adsorption of acidic CO2. This is due to
dopant-induced modification of the acid-base properties of the ZnO surface [75], finally
resulting in improved sensor response.

Gas sensing properties are strongly affected by nanomaterials properties, such as
morphology and composition. Here, we report the gas sensing response of Ca-doped ZnO
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nanofibers at different Ca to Zn loading ratio (1:40 or 1:20) [76]. Generally, electro-spun
fibers are characterized by a very large surface area and high porosity, unique properties
to enhance sensor performance for the detection of CO2. The ZnO:Ca fibers, produced
by Pantò et al. [76], are constituted by interconnected grains of oxide with the hexagonal
wurtzite structure of zincite. The efficient sensor response is given by the combined effect
of the fiber morphology and the presence of Ca-ion sites. In fact, the first effect favors
diffusion processes inside the sensing layer by the gas molecules, whereas the second
favors CO2 adsorption. However, the sensing response reduces on increasing the relative
humidity (RH) because of the competing absorption between water and oxygen molecules
on the sensor surface. This phenomenon has to be investigated especially for the evaluation
of air quality. Figure 6 reports the baseline resistance (right y-axis) and the response to CO2
of nanofibers-based sensor (left y-axis), in terms of the ratio between the sensor resistance
in air (R0) and in the presence of the gas (RG), by varying RH from 25% to 75%. A decrease
of both these parameters can be easily seen on increasing RH.
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It is well known that replacing hydrocarbons with hydrogen as energy source has
many advantages. However, hydrogen shows high flammability and is an odourless
gas [77,78]. Indeed, its detection is fundamental within all its development chain, from
production to use. Mass spectrometry and gas chromatography cannot be used for H2
detection due to their large dimension and cost. Hence, most reliable sensors are being
developed to accomplish the industrial and safety needs. One example is constituted
by MOX based conductometric sensors although they show a scarce long-term stability
especially when working at high hydrogen concentration and/or at high temperature.
This is caused by the reducing effect of hydrogen so not allowing, at the moment, the
employment of these kinds of sensors for practical applications [79].

Moreover, resistive sensor devices have been tested for H2 sensing. Recently, a resis-
tive sensor, based on carbon nanotubes (CNTs), that utilizes 2 wt% Pt/TiO2/CNTs as an
active material, has been proposed by De Luca et al. [80] for monitoring H2 in inert atmo-
sphere. Interestingly, results of this study have shown that the 2 wt% Pt/TiO2/CNTs-based
sensor operates at near-room temperature (NRT) and responses to a very wide range of
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H2 concentrations (5–100%) while, under the same conditions, devices based on 2 wt%
Pt/CNTs and 2 wt% Pt/TiO2 exhibit much lower responsiveness. The sensor working
mechanism is ascribed to the quenching of the carbon nanotube conductance, following the
oxide mediated electron transfer from the metal. The differences in stoichiometry, agglom-
eration degree of the nanosized TiO2 phase and surface contact with CNTs (introduced by
the variation of the CNT load) account for the changes in responsiveness of the sensors
based on Pt/TiO2/CNTs composite [81]. Santangelo et al. [81] interpreted their results
in terms of the formation of a Schottky barrier at the Pt/oxide interface provoked by the
electron transfer from TiO2 to Pt because of the work function of platinum (øPt = 5.4 eV) is
higher than the electron affinity (Eea) of TiO2 (Eea = 4.3 eV) as indicated in Figure 7a. At
the same time, at the oxide/CNTs interface a n-/p-type hetero-junction can form with a
corresponding band gap of 0.5 eV, given that Eea (CNTs) = 4.8 eV. Therefore, once hydrogen
molecules were adsorbed and activated onto Pt nanoclusters, can dissociate and diffuse,
throughout a “spill-over” mechanism [82], within the metallic system so reducing the work
function [81] (Figure 7b,c).
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occurring after H2 dissociation and characterizing the sensing mechanism. Reprinted from Sensors
and Actuators B: Chemical, Vol 178, Santangelo S. et al., On the hydrogen sensing mechanism
of Pt/TiO2/CNTs based devices, Pages No. 473–484, Copyright (2013), with permission from
Elsevier [81].

Indeed, hydrogen species behave as surface donors by transferring an electron to the
conduction band of titania and then to the graphitic network by taking advantage of the
edges position corresponding to the conduction bands of TiO2 and CNTs. This mechanism,
which is involved also for photo-injected carriers in TiO2/CNTs catalysts [83], provokes
the decrease in the concentration of H+ species within CNTs and the subsequent enhance-
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ment of the electrical resistance. Furthermore, when the titania surface comprises many
sites with highly reactive oxygen vacancies (VO), hydrogen molecules can be dissociative
chemisorbed there with subsequent electron trapping at the corresponding unoccupied
VO in-gap states [84,85]. Finally, the use of CNTs as a dispersing template inhibits the
clustering of oxide Nanoparticles (NPs) so increasing the efficiency of sensing devices
based on Pt/TiO2 components. Furthermore, by changing the order in which CNTs are
added to TiO2 solution, hetero-structures with different grain size and crystalline phase
of the MOX were synthesized. Adding CNTs to the micro-emulsion solution favored the
aggregation between oxide nanoparticles over the interaction with CNTs, leading to the
formation of larger anatase titania agglomerates. Instead, smaller-sized rutile particles
were formed by adding CNTs before the onset of precipitation. All these evidences are
presented and discussed by Frontera et al. [86] that took care of the characterization of
TiO2-CNTs/Pt nanohybrids, prepared by the micro-emulsion method, and used as active
materials in electrochemical devices designed for amperometric sensing of hydrogen perox-
ide. It emerged that the nanocomposite consisting of uniformly distributed TiO2 particles
on the surface of CNTs and smaller Pt nanoparticles showed the best sensing performance
towards H2O2. The main result was that the TiO2-CNTs/Pt based sensor was able to work
at lower potential (0.3 V). This is of obvious advantage, because it limits the interfering of
other oxidizable species and provides a much wider linear dynamic range.

The lack of selectivity towards H2, as well as sensor reliability in the presence of species
other than H2 gas (leading to false alarms), constitute drawbacks of most conductometric
sensors. For example, in car parking closed places where ventilation is insufficient, a CO
high concentration is detected together with H2. Thus, sensors for the hydrogen detection
need to be highly selective.

To enhance sensors sensitivity and selectivity, semiconducting MOX for hydrogen
sensing are usually doped with suitable modifiers. The sensing characteristics of certain
SnO2-based conductometric hydrogen sensors display substantial differences as a function
of the concentration and working temperature, as reported in Ref. [87]. In order to better
discuss this important aspect, the analytical performance of the developed sensor in
comparison with other sensors reported in literature is summarized in Table 1. It can be
seen that Co-SnO2 based conductometric sensors are characterized by a high response,
especially with respect to those working at lower temperature. Furthermore, Co-doped
SnO2 particles are characterized by catalytically active centers working effectively as
H2 oxidation centers. The oxygen vacancies in SnO2 nanoparticles act as preferential
adsorption sites for O2 coming from the gas phase. The more favorable surface reaction
of the target gas with reactive adsorbed oxygen species determines the increase of gas
response towards H2 [87]. Gas sensing measurements evidenced that the Co-doped SnO2
based sensor exhibited high sensitivity and good selectivity towards hydrogen compared to
undoped SnO2 and Mn-doped SnO2. However, we outline that an effective improvement
of the sensing characteristics occurs when Mn-doped SnO2 particles size decreases [87].
Comparing the response and recovery times, and also taking into account the concentration
expressed in ppm and the sensors working temperature (see Table 1), we observe that
the Co-doped SnO2 shows the highest response with respect to the other listed sensors,
working in some cases also at lower temperature. By this comparison, the 10 wt% Co-SnO2
sensor has been indicated among the best hydrogen leak devices based on a conductometric
platform, so it is the most promising candidate for highly sensitive and selective detection
of H2 for automotive applications.

Nowadays, some drawbacks emerged using bulk Pd as sensing layer in H2 conducto-
metric platforms. Thick Pd film can result in an extraordinary large internal stress leading
to buckling of the films [88] which induces an irreversible resistance change. Moreover, at
room temperature, hydrogen atom diffusion in Pd is very slow leading to a long response
time [89]. Otherwise, Pd nanowires emerge as a promising alternative for the development
of H2 sensors [90].
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Table 1. Comparison of the sensing characteristics of SnO2-based conductometric hydrogen sensors. Reprinted from
International Journal of Hydrogen Energy, Vol 42, Lavanya N. et al., Development of a selective hydrogen leak sensor based
on chemically doped SnO2 for automotive applications, Pages No. 10645–10655, Copyright (2017), with permission from
Elsevier [87].

Materials Working Temperature
(◦C)

Concentration
(ppm)

Response
(Ra/Rg)

Response/Recovery
Time (s)

SnO2 nanowires 150, 300 1000 6.5, 4.25 -/-
Co-SnO2 nanofibers 330 100 (1000) 24 (~90) 2/3 (-/-)

SnO2 nanowires 300 1000 4.25 -/-
SnO2 thin film r.t. 1000 26.5 192/95

Pt/SnO2 thin film 110 500 169 6/57
Pd-SnO2/MoS2 composite r.t. 5000 1.22 30/20

Pd-SnO2 thin film 180 500 6.5 -/-
Pd-SnO2 nanofibers 280 100 (1000) 8.2 (~26) 9/9 (-/-)
Al-SnO2 nanofibers 340 100 (1000) 7.7 (~15) 3/2 (-/-)

ZnO/SnO2 composite 150 10,000 10 60/75
SnO2/CNTs 100 1000 1.55 -/-

Au-SnO2 NPs 250 100 (1000) 25 (150) 1/3 (-/-)
Eu-SnO2 NPs 350 300 21 7/-

RGO-SnO2 nanofibers 60 1000 1.3 119/265
Co-SnO2 NPs 250 2000 100 3/15

With the aim to explore the potential of other noble metal oxides as gas-sensing
materials, Fazio et al. [37] prepared nanosized rhodium oxides (RhOx) by the green pulsed
laser ablation technique. In a controlled temperature environment, the sensors’ resistance
was measured by varying the hydrogen concentration. A chosen set of sensors was
conditioned in air for about 2 h at 200 ◦C before sensing tests, while other two sensors
were initially annealed at 200 ◦C in air then one of them was treated in a pure hydrogen
atmosphere for 10 min at 80 ◦C while the other at 100 ◦C. As shown in Figure 8a, the
highest sensor sensitivity was obtained working at 100 ◦C.
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However, the sensor based on the film annealed in air at 200 ◦C was the most respon-
sive, as indicated by the sensing response reported in Figure 8b. A completely reversible
behavior was seen for low concentration of H2 (10 ppm), also for medium-high humidity
levels. Moreover, this sensor shows a good stability after repeated cycling and the sensing
response to 50 ppm of H2 was much higher than that to other simple gases tested including
CO, CO2, NO2 and O2 (Figure 8d).

Figure 9 reports a scheme for the sensing mechanism based on what is known as
“spillover effect” over Rh/RhOx-based film [37].
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Perovskite and spinel MOX systems are generally more stable under reducing atmo-
sphere and then they are interesting for the monitoring of hydrogen. Sm-doped Cobalt
ferrite (CoFe2O4) conductometric sensor exhibited good sensitivity, good reproducibility
and stability over time and fast dynamics (see Figure 10 and Ref. [91] for more details).
The Sm substitution into the cobalt-ferrite host structure offers a proper microstructure for
H2 sensing. Less conventional MOX nanomaterials were also synthesized and processed
for their application in conductometric sensors [92–95]. For example, another interesting
activity about the MOX nanoparticles materials is that related to evaluating the effect of
the irradiation by gamma rays (γ-rays) on their sensing properties [96,97]. WO3 NPs have
been prepared by a microwave method and successively irradiated. The γ-irradiation with
60Co gamma rays at different doses (0, 50 and 100 kGy) induced significant changes on
structural properties of WO3 nanoparticle and indeed in the MOX microstructure, favoring
the tetragonal to triclinic transformation, along with a reduction of the grain size. The
consequent effect on the sensing properties for detection of NH3, CO and CO2 in air was
found to be dependent on the tested gas. The response to NH3 decreased after γ-irradiation,
while that to CO2 increased. Further, γ-irradiated WO3 sensor displays fast recovery time
for NH3, when compared to pristine WO3 sensor. Results reported for both WO3 and
SnO2 demonstrated that the γ-irradiation can be an effective step for tailoring the sensing
properties of MOX NPs.
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4. Electrochemical Sensor: Building Basics and Sensing Mechanisms

Electrochemical sensors exploit the changes in the electrical signal due to bio-chemical
reaction induced by a specific analyte at the working electrode surface [98]. Note that
there are potentiometric sensors that do not exploit electrons but work on the principle
of equal electrochemical potential [99]. In such cases, since the chemical potential of the
species cannot be equal, compensation can be obtained through the generation of electrical
potential at the phase boundary. Electrochemical sensors are particularly suitable for the
determination of organic substances in liquid media, so they find interesting practical
applications for the analysis of a variety of biomolecules in physiological fluids (blood,
urine, saliva) and in other complex matrixes. For these applications, electrochemical sensors
functionalized with enzymes and other biological receptors (biosensors), are generally
used for their high selectivity towards the target biomolecules.

Nowadays, electrochemical sensors composed by MOX have received growing interest
for the successful detection of electroactive biomolecules in many fields including medicine,
environmental processes, energy efficient systems, food safety, chemical and agricultural
industries. The demand for such metal oxide based biosensors continues to increase due
to their ability in performing rapid measurements and analyses with flexible and reliable
characteristics [12]. In fact, electrochemical sensors are able to convert, in a direct and fast
way, biological events to an electronic signal with great stability. Furthermore, they can be
combined in composite and flexible structures [100,101] and have high sensitivity and low-
cost [102]. MOX based electrochemical sensors are also used to detect trace metals in the
environment (especially in water). The determination of heavy metals is of vital importance
in monitoring environment quality. Currently, a natural mechanism for controlled removal
of heavy metals from the human body is unknown. Hence, even trace levels of toxic
heavy metals, e.g., lead, cadmium, mercury and arsenic may have detrimental effects on
the environment and human health. The standard approaches used to monitor trace of
metals are atomic absorption/fluorescence and emission spectroscopies. Furthermore,
potentiometric sensors are currently the most performing sensors since they cover a wide
linear range (between 10−7 and 10−1 M), allowing the determination of metal ions in
industrial wastewater where tens to hundreds of ppm of heavy metals are found [103].
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However, the electrochemical sensors engineered today require time, manpower,
expensive electrode materials that can only be used within a laboratory and chemical
agents, and additionally suffer from multi-elemental interference. It is therefore clear that
the above techniques are not realistic approaches for meeting the new EU regulations in a
cost-effective manner. Instead, a cheap, fast and easy measurement protocol that can be
performed in situ should be introduced for a widespread testing of heavy metals pollution.
Particularly, the combination of electrochemical techniques (miniaturized and portable
potentiostats adopting screen-printed electrodes) is considered a promising candidate to
optimize determination methods, in terms of quality targets and to effectively monitor a
wide variety of global health parameters that affect all of us [104].

Figure 11 reports a schematic illustration about the structure and working principle of
a Field Effect Transistor (FET) type of sensor based on MOX [12]. These sensors are mostly
based on potentiometric principles and on the compensation of the generated potential at
the gate by analyte binding on the gate surface [105]. The small time needed for charge
accumulation on the nanomaterial channel between source and drain electrodes allows
to quickly detect and analyze different analytes. Thanks to their enhanced sensitivity
and selectivity, FET-based biosensors are very much employed in different fields [106].
Generally, biosensors can be considered as basically composed by two main elements: a
biotransducer and the signal processing elements [107]. The biotransducer consists of a
working electrode, a counter electrode and a reference electrode. The reference electrode,
kept away from the reaction site, maintains a stable potential. The counter electrode,
after interacting with the electrolytic solution, sends an electric signal to the working
electrode, which is just the transduction element of the corresponding biochemical reaction
process. Once the recognition of the target analyte happens, the probe molecules send
signal impulses to the processing elements that can be indeed easily analyzed.
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Generally, wide band gap semiconductors are used to construct such biosensors due
to their unique crystalline structures and physical properties (electrochemical, optical,
electronic, gravimetric and piezoelectric) [108]. The other advantages of MOX include their
specific chemical composition, crystallization degree and that the interaction pathways
between their surface and the analyte can be tuned to achieve a proper displacement of
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Fermi energy and induced depletion [109]. In fact, physico-chemical properties of the
semiconductor surface are altered by the interactions with the analytes and corresponding
changes can be correlated with the specific induced stimuli [110]. Furthermore, the biosen-
sor surface can be functionalized to offer super hydro–phobicity/philicity, self-cleaning,
antimicrobial activity and selective response to external stimuli such as light exposure [111].

From a general point of view, electrochemical responses corresponding to the reaction
under investigation can be monitored by measuring potential, resistance and electric
current. These can be divided into: (1) non-interfacial methods which are applied to
the whole solution, such as conductometry [112] and (2) interfacial methods when the
analyte is revealed on the electrode surface. The latter can be also divided into: (i) static
if the electric current is null (e.g., potentiometry) and (ii) dynamic if an electron transfer
(redox reaction) takes place between the electrode and the analyte (e.g., voltammetry and
amperometry) [98,113].

Conductometric techniques are based on the measurement of conductivity (resistance)
changes of an electrolyte solution because of a precise chemical reaction. Usually, they
deal with enzymatic reactions that, by inducing changes of the ionic strength, and thus of
the conductivity, provoke a quantifiable variation in the amount of the charged species in
the considered solution [114]. Although their intrinsic low sensitivity usually limits their
potential applications, the implementation of hybrid electrodes has opened new routes
for their use in biosensing [115]. In addition, both the fast progress of semiconductor
technology and the possible integration of sensors within microelectronic devices [116]
brought a growing interest for biosensors using conductometric devices in combination
with nanostructures [117].

Potentiometric techniques are based on the measurement of the potential correspond-
ing to the electrical charges collected on the working electrode. Then, it is compared to
that of another electrode (reference electrode) located inside an electrochemical cell, when
negligible current flows through these two electrodes [118]. The detection limit depends
indeed on the analyte, ranging from 10−8 to 10−11 M.

Voltammetric techniques are based on the measurement of the electric current flow-
ing across the electrochemical cell as a function of the applied potential. Although the
applied potential can be varied in different ways corresponding to different methods (e.g.,
cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry
(SWV)) [119], all these techniques involve the same quantities: potential, current and time.
Although cyclic voltammetry is mostly a diagnostic and not an analytic tool, it is the most
used voltammetric technique, allowing the measurement of the redox potential and rate of
the chemical reactions which take place within the analyte solutions [98]. In details, the
voltage, varied between two reference values at a specific scan rate, should be correctly cho-
sen to provide enough time for the evolution of the chemical reaction. Hence, different scan
rates furnish different results [118]. The electric current, measured between the working
and the auxiliary electrodes, is then plotted as a function of the voltage applied between
the reference and the working electrodes, producing the so-called voltammogram. Today,
there is a growing interest in the development of biosensors also employing other kinds
of electrochemical detection techniques, such as impedimetric that employs impedance
measurements [120] and the field-effect which utilizes transistors for measuring the electric
current after a potentiometric event at the gate electrode [115].

5. An Overview on MOX Nanomaterials Used for Biosensing Detection

In this section we report achievements, obtained by the authors in the last few years,
and other relevant works reported in the literature on the implementation and optimization
of MOX as biosensor components in biological and environmental systems. Mono and
coupled semiconductors (composite, heterostructures etc.) are generally adopted. Among
them, TiO2, MnO2, SnO2, MoOx, ZnO and WO3 metal oxides (also added with metal
nanoparticles), carbon based materials or doped with metal ions are applied [12]. In order
to optimize MOX nanostructures composition, morphology and structure, and in turn
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to enhance biosensing response, the synthesis parameters have been changed [121–123].
We focused on revealing neurotransmitters, which are endogenous chemical messengers
playing an important role in many of the brain functions, abnormal levels being corre-
lated with physical, psychotic and neurodegenerative diseases. Epinephrine (EP) is an
excitatory neurotransmitter (NT) helping in regulating alertness, cognition, metabolism
and mental focus, while Norepinephrine (NE) is another excitatory neurotransmitter vital
for metabolism, heart rate and attention. Dopamine (DA, 3,4-dihydroxy phenylalanine),
which belongs to the catecholamine family of neurotransmitters, consists of a benzene
ring having two hydroxyl side groups with monoamine group attached via an ethyl chain.
DA is mainly produced in adrenal glands and several areas of the brain, and it is also
involved in brain-body integration. DA plays a significant role in the functioning of the
central nervous, renal, hormonal and cardiovascular systems. Therefore, dopaminergic
systems serve as a target for antipsychotic drugs and act as brain reward systems. Sero-
tonin (5-hydroxytryptamine, 5-HT) is a redox active monoamine neurotransmitter, which is
biochemically derived from tryptophan. 5-HT plays a crucial role in the emotional system
by regulating mood, sleep, emesis, cardiovascular function and appetite. These classes of
NTs have a great impact on the smooth running of the central nervous system. Hence, it
is very important to precisely quantify NTs in extracellular fluid for an easy diagnosis of
health conditions associated with the imbalance in the level of any or all of them in the
human body system [124]. In this case, electrochemical sensors, being characterized by
high sensitivity, wide linear range, fast response time and low limit of detection, can be
efficiently used for precisely monitoring NTs [125–127].

Simultaneous detection of epinephrine (EP) and uric acid (UA) in the presence of
common interferent ascorbic acid (AA), in different human fluids such as plasma and
urine, has been reported by Lavanya et al. [128]. This is of great interest for investigating
their physiological functions and diagnosing diseases. However, EP, UA and AA are
oxidized at almost similar potentials with poor sensitivity at bare solid electrodes and the
overlap of their voltammetric responses would confuse their simultaneous determination.
Interestingly, SnO2/graphene composite modified glassy carbon electrode (GCE) enabled
simultaneous determination of EP and UA in the presence of AA with good separation in
the oxidation potential. The determination of EP and UA was possible by cyclic voltam-
metry method using a SnO2/graphene composite modified glass electrode with Ag/AgCl
standard electrode. The application of the specific redox potential allows the oxidation of
alcoholic to ketonic groups, producing a quinone functionality in the EP molecule. Other-
wise, the amine oxidation to imine groups is observed on the UA molecule. The developed
sensor (see Figure 12) showed better electrochemical performance for the oxidation of EP
and UA compared to the bare GCE and SnO2/GCE, possibly due to the high surface area
and synergistic effect of the composite materials. Moreover, the SnO2/graphene/GCE
showed a simple, rapid and sensitive protocol for the simultaneous determinations of EP
and UA with the lowest detection limits of 0.017 µM and 0.28 µM [128], with respect to
other different chemically modified electrodes (see Table 2).

These promising results have stimulated the research activities about another GCE
modified electrode, namely Mn doped SnO2 nanoparticles modified electrode (Mn-SnO2/
GCE). The Mn-SnO2/GCE has shown wider linear range and low detection limits for the
simultaneous determination of AA, UA and folic acid (FA). The linear responses of AA, UA
and FA were tested in the concentration ranges of 1 to 900, 1 to 860 and 0.5 to 900 µM for
AA, UA and FA, with detection limits of 56, 36 and 79 nM respectively. For simultaneous
determination by synchronous change of the analyte concentrations, the linear response
ranges were between 5 and 500 µM for UA and 1–500 µM for FA, with the lowest detection
limits of 25 and 38 nM respectively, in the presence of AA [129].



Sensors 2021, 21, 2494 19 of 32

Sensors 2021, 21, x FOR PEER REVIEW 19 of 33 
 

 

their physiological functions and diagnosing diseases. However, EP, UA and AA are oxi-
dized at almost similar potentials with poor sensitivity at bare solid electrodes and the 
overlap of their voltammetric responses would confuse their simultaneous determination. 
Interestingly, SnO2/graphene composite modified glassy carbon electrode (GCE) enabled 
simultaneous determination of EP and UA in the presence of AA with good separation in 
the oxidation potential. The determination of EP and UA was possible by cyclic voltam-
metry method using a SnO2/graphene composite modified glass electrode with Ag/AgCl 
standard electrode. The application of the specific redox potential allows the oxidation of 
alcoholic to ketonic groups, producing a quinone functionality in the EP molecule. Other-
wise, the amine oxidation to imine groups is observed on the UA molecule. The developed 
sensor (see Figure 12) showed better electrochemical performance for the oxidation of EP 
and UA compared to the bare GCE and SnO2/GCE, possibly due to the high surface area 
and synergistic effect of the composite materials. Moreover, the SnO2/graphene/GCE 
showed a simple, rapid and sensitive protocol for the simultaneous determinations of EP 
and UA with the lowest detection limits of 0.017 μM and 0.28 μM [128], with respect to 
other different chemically modified electrodes (see Table 2). 

 
Figure 12. Schematic representation of the SnO2/graphene modified glassy carbon electrode for sim-
ultaneous detection of epinephrine (EP) and uric acid (UA). Reprinted from Sensors and Actuators 
B: Chemical, Vol 221, Lavanya N. et al., Simultaneous electrochemical determination of epinephrine 
and uric acid in the presence of ascorbic acid (AA) using SnO2/graphene nanocomposite modified 
glassy carbon electrode, Pages No. 1412–1422, Copyright (2015), with permission from Elsevier 
[128]. 

Table 2. Comparison of different chemically modified electrodes for EP and UA determination 
using SnO2/graphene/GCE. Reprinted from Sensors and Actuators B: Chemical, Vol 221, Lavanya 
N. et al., Simultaneous electrochemical determination of epinephrine and uric acid in the presence 
of AA using SnO2/graphene nanocomposite modified glassy carbon electrode, Pages No. 1412–
1422, Copyright (2015), with permission from Elsevier [128]. 

Electrode Linear Range (μM) Detection Limit (μM) 
 EP UA EP UA 

Nano-diamond/graphite/PGE 0.01–10 0.01–60 0.003 0.003 
Nanofion-OMC/GCE 0.5–200 0.25–100 0.2 0.07 

Poly(p-xylenolsulfo-nephtha-
lein)/GCE 2–390 0.1–560 0.1 0.08 

Electrochemically activated GCE 1–40 1–55 0.089 0.16 
Caffeic acid/GCE 2–80 5–300 20 60 

CNTs/Ru oxide/hexacyanofer-
rate/GCE 0.1–10 0.90–250 0.087 0.052 

Graphene/SnO2/Au composite/GCE 0.5–100 2–100 0.050 0.5 
SnO2/graphene/GCE 0.5–200 0.1–200 0.017 0.28 

Figure 12. Schematic representation of the SnO2/graphene modified glassy carbon electrode for
simultaneous detection of epinephrine (EP) and uric acid (UA). Reprinted from Sensors and Actuators
B: Chemical, Vol 221, Lavanya N. et al., Simultaneous electrochemical determination of epinephrine
and uric acid in the presence of ascorbic acid (AA) using SnO2/graphene nanocomposite modified
glassy carbon electrode, Pages No. 1412–1422, Copyright (2015), with permission from Elsevier [128].

Table 2. Comparison of different chemically modified electrodes for EP and UA determination using
SnO2/graphene/GCE. Reprinted from Sensors and Actuators B: Chemical, Vol 221, Lavanya N. et al.,
Simultaneous electrochemical determination of epinephrine and uric acid in the presence of AA using
SnO2/graphene nanocomposite modified glassy carbon electrode, Pages No. 1412–1422, Copyright
(2015), with permission from Elsevier [128].

Electrode Linear Range (µM) Detection Limit (µM)

EP UA EP UA

Nano-diamond/graphite/PGE 0.01–10 0.01–60 0.003 0.003

Nanofion-OMC/GCE 0.5–200 0.25–100 0.2 0.07

Poly(p-xylenolsulfo-
nephthalein)/GCE 2–390 0.1–560 0.1 0.08

Electrochemically activated GCE 1–40 1–55 0.089 0.16

Caffeic acid/GCE 2–80 5–300 20 60

CNTs/Ru oxide/
hexacyanoferrate/GCE 0.1–10 0.90–250 0.087 0.052

Graphene/SnO2/Au composite/GCE 0.5–100 2–100 0.050 0.5

SnO2/graphene/GCE 0.5–200 0.1–200 0.017 0.28

Swamy et al. [126] reported cyclic and differential pulse voltammetry studies using
metal oxides (Cu, Ni) aimed at simultaneous determination of AA, DA and Tyr. CV studies
with Tyrosine (Tyr) at MO modified electrode (M = Cu, Ni), showed an irreversible oxida-
tion process and both modified electrodes exhibited an anodic peak at a potential of +0.80 V,
against very low or no anodic peak currents obtained at bare graphite electrode. Moreover,
the CuO modified electrode successfully separated the anodic signals of dopamine (DA),
ascorbic acid (AA) and Tyr in their ternary mixture whereas, on bare graphite, a single,
overlapped oxidative peak was observed. In CV studies, the peak potential difference
between AA-DA, DA-Tyr and AA-Tyr is 166 mV, 323 mV and 489 mV respectively and the
corresponding peak potential separations are 209 mV, 400 mV and 609 mV respectively in
differential pulse voltammetry (DPV). On the other hand, NiO modified electrodes display
poor activity towards DA, but show good sensitivity towards the determination of Tyr,
while CuO modified electrodes show remarkable sensing activity towards multianalyte
mixture of DA, AA and Tyr.
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The combination of the efficient electron redox capability of pulse laser ablation
(PLA) synthesized MoOx NPs colloids with the fast electron transfer rate of screen printed
carbon electrode (SPCE) emerged as a good possibility for obtaining sensitive and selective
detection of DA, excluding any interference from ascorbic acid [130]. This is explained on
considering the high surface to volume ratio and Mo participation to surface oxidation
processes. Figure 13 reports a schematic picture of the electrochemical oxidation of DA
using MoOx NPs/SPCE structure. In this case, the DA content is detected without any
electron transfer mediator (such as graphene, carbon nanotube, etc.).
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Figure 13. Schematic representation of dopamine electrochemical oxidation on the MoOx nanos-
tructured modified screen-printed carbon electrode and square wave voltammetry (SWVs) for
0.01–650 µM dopamine (DA) concentrations at MoOx/screen printed carbon electrode (SPCE) in
0.1 M phosphate buffer saline solution. The inset shows the calibration curve at low DA concentration
(0.01–1 µM). Reprinted from Journal of Electroanalytical Chemistry, Vol 814, Fazio, E. et al., Molyb-
denum oxide nanoparticles for the sensitive and selective detection of dopamine, Pages No. 91–96,
Copyright (2018), with permission from Elsevier [130].

In addition, MoOxNPs/SPCE sensing performance (linear range: 0.01–650 µM, limit
of detection (LOD): 43 nM) is comparable to that shown by a ternary composite including
reduced graphene oxide(rGO) that is MoO2-rGO/polyimide (linear range: 0.1–2000 µM,
LOD: 21 nM) [131]. Finally, the preparation procedure is very complex for the ternary
composite with respect to the samples synthesized by the picoseconds pulsed laser ablation
(ps-PLA) which is a very simple, green and cheap method [131,132].

Regarding serotonin (SE) detection, MnO2 nanoparticles have been anchored on
graphene (GR) support, yielding MnO2-GR composite with a large surface area, improved
electron transport, high conductivity and numerous channels for rapid diffusion of elec-
trolyte ions [133]. Indeed, even if MnO2 is one of the most promising transition MOX for
electrochemical applications due to its non-toxicity, environmental compatibility and low
cost [134,135], it is characterized by relatively poor electrical conductivity.

Recently, Lavanya et al. [133] synthesized a MnO2-GR composite by the microwave
irradiation method and fabricated an electrochemical sensor for detection of serotonin
(SE) (see Figure 14). Microwave heating increases the rate of certain chemical reactions by
several folds when compared to conventional heating. In addition, it does not produce
any green gas or other side products and the use of solvents in the chemical reaction
can also be removed or reduced significantly. The developed sensor showed an excellent
electrochemical activity towards the detection of SE in phosphate buffer saline (PBS) at
physiological pH of 7.0. Tests were made by carrying out square wave voltammetry (SWV)
measurements, over a wide linear range of 0.1 to 800 µM, with the lowest detection limit
of 10 nM (S/N = 3), with a good anti-interference ability, high reproducibility and long-
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term stability. It has been found that 100-fold concentrations of Na2+, K+ and Mg2+ and
10-fold excess DA, EP, FA, UA, AA and glucose (500 µM) had no obvious influences on the
response of 50 µM serotonin with deviations below±5%. Moreover, the oxidation potential
(0.6 V) of nor-epinephrine (NE) is far from that of SE (0.4 V), therefore the interferent NE
will not influence SE detection.
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Nowadays, biosensors based on ZnO nanostructures are largely used for detection of
multiple analytes. Different ZnO nanostructures and their advantages in terms of sensing
applications are shown in Figure 15. As described in Ref. [136], zero dimensional (0D)
nanostructures provide large surface area, one dimensional (1D) nanostructures possess
stable and direct electron transport, two dimensional (2D) nanostructures give specific
planes for immobilization process for the simultaneous detection of different analytes and
finally three dimensional (3D) nanostructures have extra surface area (outer and inner
area), to provide more sites for immobilization. For example, nanohybrid ZnO and reduced
graphene oxide have been used for AA and DA sensing [137], while 0D ZnO nanoparticles
with sizes in the range of 10–100 nm have been successfully adopted to fabricate minia-
turized medical biosensors [138]. ZnO nanomaterials are particularly suited for glucose
detection, whose released electrons provoke an extension of the depletion layer and a
decrease in the electric current proportional to the number of glucose molecules [136]. On
the other hand, 1D ZnO nanostructures (nanorods, nanotubes, nanofibers and nanowires),
showing an increased surface/volume ratio with respect to 0D nanostructures, provided a
direct pathway for fast electrons transport and then have been successfully implemented
for efficient glucose sensing with a sensitivity of 10.911 mA/(mM cm2) and a lower de-
tection limit of 0.22 mM [139]. Furthermore, functionalization of ZnO nanotubes with
molecularly imprinted polymer (MIP) allows reducing selectivity problems among differ-
ent analytes [140]. As previously mentioned, 2D ZnO nanostructures (nanosheets, porous
nanoflakes, nanodiscs and nanowalls) allow an optimal immobilization of enzymes. At
the same time, ZnO nanosheets have been proven to offer a bio-compatible surface able to
retain the cytochrome-c bioactivity and to sustain its natural activity towards H2O2 [141].
Moreover, ZnO nanowalls with stabilized polymerized films have been used to detect
cholesterol [142]. In such a case, the geometrical properties of the nanowalls together
with the cholesterol solubility exhibited by the lipid matrixes have shown a significative
cholesterol oxidase absorption. ZnO nanowalls have the unique possibility to alternate
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positive and negative layers along their nonpolar planes, so facilitating the cholesterol
oxidase absorption.
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As already outlined, the precise quantification of glucose and DA is crucial both
for analytical applications and in diagnostic research, since they are key in physiology
and above all are coupled with important diseases such as diabetes mellitus, Parkinson’s
disease and schizophrenia [143,144]. It is well known that the amount of DA, being a
fundamental catecholamine neurotransmitter in the mammalian central nervous system,
affects the body physiological functions [145], and it is also correlated with brain glucose
metabolism that, in neuronal activity, triggers the transients of vesicular neurotransmitter
release and fluctuations of metabolites in the proximity of the activated neurons [146].
Recently, a simultaneous detection of glucose and DA was carried out using CuO and
hybrid nanostructures composed by CuO and graphitic carbon nitrides (g-C3N4) [147–150].
Notably, g-C3N4 is an innovative two-dimensional π-conjugated material containing many
nitrogen atoms and defects that, by generating delocalized electrons, allow high metal
coordination sites as catalytically active sites [143,151]. The mechanism of glucose oxidation
on g-C3N4/CuO in NaOH can be explained by the following equations [143,151]:

CuO + OH− → CuOOH + e−

CuOOH + e− + glucose→ CuO + OH− + gluconic acid

Ultimately, CuO based biosensors, from one side, can achieve the direct electrocat-
alytic oxidation of glucose and, from the other side, can detect DA being an electroactive
compound [143,152,153].

The electrochemical behavior of different types of CNTs and the effects of their dif-
ferent orientation, size, morphology and oxidation treatments towards the oxidation of
H2O2 have been widely investigated in the last years [154]. Decoration of CNTs with Pt
NPs has been proposed [155] to improve the electrocatalytic properties towards H2O2
monitoring. The presence of metal improves the electrochemical activity, reducing the
oxidation overpotential compared to platinum-free carbon nanostructures. In particular,
the presence of small and well-dispersed Pt nanoparticles plays a key role in promoting
the electrocatalytic activity towards H2O2 oxidation. In details, the occurrence of a low
Pt0/Pt2+ ratio seems to favor the adsorption of H2O2 and its discharge, contributing to en-
hance the electrocatalytic activity, exhibiting a high sensitivity (177 µA mM−1 cm−2) [156].
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Moreover, TiO2-CNTs/Pt nanohybrids were used as active materials in electrochemical
devices designed for amperometric sensing of H2O2. When smaller titania and Pt particles
were obtained, better electrochemical properties were registered, while sensing towards
H2 in gas phase was little influenced by this [86]. The selectivity of this sensor was also
examined recording the responses towards some of the most common substances, that
are present in biological and environmental samples, and which could cause interferences
during electrochemical determination of the target analyte [157]. A clear and fast increase
of the current is observed when 0.1 mM of H2O2 is added, no significant response is
observed instead for 0.1 mM of NaCl, KCl, KNO3 and CaCl2 salts, as well as for the same
concentration of citric acid (CA). As regards AA, DA and UA, no significant interference is
observed for concentrations up to 5 µM.

Among other metal oxides, tungsten trioxide (WO3), exhibits fascinating electronic,
structural and mechanical properties with a wide range of applications in the areas of gas
sensors, electrochromic, photochromic and electrocatalytic processes. It is an intrinsically
n-type semiconductor, the stoichiometric excess of metal being due to oxygen vacancies.
Anithaa et al. have synthesized WO3 nanoparticles by microwave irradiation method
and subsequently modified the surfaces through gamma irradiation under different doses
(0–150 kGy). Differential pulse voltammetry (DPV) studies carried out at 100 kGy irradiated
WO3 modified GCE in the presence of serotonin (SE) exhibited strong oxidation peaks
(Figure 16) over a very wide concentration range of 0.01 µM to 600 µM SE in 0.1 M PBS
(pH 7.0). The fabricated sensor showed high sensitivity with the LOD of 1.42 nM with
the signal to noise ratio (S/N) of 3, long term stability, excellent reproducibility and high
selectivity towards potentially interfering substances [158].

Sensors 2021, 21, x FOR PEER REVIEW 24 of 33 
 

 

 
Figure 16. (A) differential pulse voltammetry (DPV) of 100 kGy WO3/GCE in 0.1 M phosphate buffer 
saline (PBS) (pH 7.0) containing different concentrations of serotonin (5-HT) (0.01–600 μM). (B–D) 
show the plots of the electrocatalytic oxidation peak current as a function of 5-HT concentration 
within the range of 0.01–10 μM, 10–100 μM and 100–600 μM, respectively. Reprinted from Sensors 
and Actuators B: Chemical, Vol 238 Anithaa A.C. et al., Highly sensitive and selective serotonin 
sensor based on gamma ray irradiated tungsten trioxide nanoparticles, Pages No. 667–675, Copy-
right (2017), with permission from Elsevier [158]. 

The same authors demonstrated that the irradiation of WO3 with low energy nitrogen 
ion beam (fluences: 1 × 1014 to 1 × 1017 ions/cm2) and swift heavy ion [Ni11+] enabled the 
detection of acetylcholine [159] and guanine [160] with high precision and improved se-
lectivity. In all the cases, WO3 NPs surface modification through irradiation seems to en-
hance the sensitivity, linear range and selectivity. 

6. MOX-Based Sensors Drawbacks and Future Perspectives and Challenges 
Data reported in this review are an example about the recent and effective applica-

tions of electrical and electrochemical sensors based on multi-component nanomaterials 
(of various shapes, sizes, chemical compositions and surface functional groups). Never-
theless, it has been remarked that the repeatability and reproducibility of the analytical 
information provided by these sensors can be influenced by the complexity of multicom-
ponent materials. Therefore, specific requirements with regards to the intended applica-
tion must be considered. The main drawbacks and the potential approaches to overcome 
them are summarized here: 

(i) Low selectivity and low response/recovery speed for a long time and after repeated 
bending/recovering, without degradation of the sensor components. In this respect, 
one should take advantage of the light illumination of conductometric sensors to im-
prove their sensing response at room-temperature operation. 

(ii) Restricted sensing performance at room temperature, also due to the influence of hu-
midity level. Thus, NRT gas sensors with a rapid response should be still engineered 
to meet the need for timely triggering of the alarm. 
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and Actuators B: Chemical, Vol 238 Anithaa A.C. et al., Highly sensitive and selective serotonin
sensor based on gamma ray irradiated tungsten trioxide nanoparticles, Pages No. 667–675, Copyright
(2017), with permission from Elsevier [158].
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The same authors demonstrated that the irradiation of WO3 with low energy nitrogen
ion beam (fluences: 1 × 1014 to 1 × 1017 ions/cm2) and swift heavy ion [Ni11+] enabled
the detection of acetylcholine [159] and guanine [160] with high precision and improved
selectivity. In all the cases, WO3 NPs surface modification through irradiation seems to
enhance the sensitivity, linear range and selectivity.

6. MOX-Based Sensors Drawbacks and Future Perspectives and Challenges

Data reported in this review are an example about the recent and effective applications
of electrical and electrochemical sensors based on multi-component nanomaterials (of
various shapes, sizes, chemical compositions and surface functional groups). Nevertheless,
it has been remarked that the repeatability and reproducibility of the analytical informa-
tion provided by these sensors can be influenced by the complexity of multicomponent
materials. Therefore, specific requirements with regards to the intended application must
be considered. The main drawbacks and the potential approaches to overcome them are
summarized here:

(i) Low selectivity and low response/recovery speed for a long time and after repeated
bending/recovering, without degradation of the sensor components. In this respect,
one should take advantage of the light illumination of conductometric sensors to
improve their sensing response at room-temperature operation.

(ii) Restricted sensing performance at room temperature, also due to the influence of hu-
midity level. Thus, NRT gas sensors with a rapid response should be still engineered
to meet the need for timely triggering of the alarm.

(iii) High degree of responsivity and selectivity for multiple-agent sensors should be
still reached.

(iv) The interaction between the target molecules and chemisorbed oxygen species (such
as O2− and O− ions) is almost known, a clear understanding of the interaction
mechanisms of some groups bearing oxygen atoms (such as OH−) with the target
molecules is missing. This investigation could be the starting point to develop surface
modification procedures useful to minimize OH− effects. As regarding biosensors, the
peculiar chemical-physical properties that metal oxide nanohybrids on appropriately
modified electrodes offer (with respect to other materials conventionally used to
fabricate these biosensors) have been described in this review in view of specific
sensing applications.

(v) A limited production of flexible and wearable sensor arrays for electroactive biomolecules
detection; this is due to the relatively low mechanical robustness (mainly on flexible sub-
strates) currently obtained. Therefore, this is still the major challenge to be addressed
in gas sensors manufacture.

In future, all these limits must be overcome by engineering MOX nanomaterials for a
more universal use of the sensors. In addition, future research directions should bridge the
gap between new electrochemical sensing concepts and real-world analytical applications.
To convey the idea, a non-enzymatic glucose sensor showing excellent sensitivity to glucose
in 0.1 M NaOH may be not ideal for wearable glucose monitoring under physiological
conditions. This makes easy to understand as various analytical measurement scenarios
will occur in the future using electrochemical sensors to their full potential. Figure 17
illustrates the main recent applications and future research directions of sensors.

Finally, further research and development is necessary to allow the commercializa-
tion of implantable in vivo and portable in vitro biosensor-devices, which require the im-
provement of practical, affordable and advanced nanomaterial-based electrocatalysts with
multifunctional reactivity. In this context, electrochemical sensing parameters of advanced
nanomaterials with bifunctional electrodes should be analyzed in future to understand
the mechanism for the electro-catalytic activity of nanomaterials (mainly 2D materials).
For example, all that will improve prospects for meeting the urgent need for point of care
(POC) devices and live cell monitoring through low-cost miniaturized potentiostats.
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7. Conclusions

In this review, MOX semiconductor-based electrical and electrochemical sensors used
for gas sensing and for the determination of electroactive biomolecules are described in
terms of their sensing performance and, in some cases, of their practical limitations to be
used for multi-detections of gases and analytes.

As regarding conductometric gas sensors, a lot of literature has been produced through
the years on sensing materials outlining the actions taken to optimize materials chemical-
physical properties by a fine check of preparation/doping procedures. Here, more attention
is instead focused on highly sensitive electrical and electrochemical sensors based on doped-
SnO2, RhO, ZnO-Ca and Smx-CoFe2−xO4, proposed to detect toxic and hazardous gases
(H2, CO, NO2) and volatile organic compounds (VOCs) (e.g., acetone, ethanol). They
have been applied in relevant applications such as monitoring gaseous markers in the
breath of patients with specific pathologies, for the control of environmental pollution,
home and industrial safety. In this review, we remarked the existence of a large variety of
conductometric gas sensors based on MOX nanostructured materials, outlining that none
of them can be considered an ideal gas-sensitive material. Each of them shows advantages
and disadvantages: some have low selectivity, others increased sensitivity to humidity,
some are stable only at low temperatures and some require high temperatures for efficient
operation. Therefore, when choosing a MOX-based gas sensing material, it is necessary
to take into account the type of sensor being developed, the nature of the gas, the sensor
manufacture and operating conditions.

In the field of electrochemical sensors, the growing of advanced nanomaterials may
support the next generation of new sensor devices for the biomedical and environmental
field. As advantages, the design of the nanometer MOX characteristic factors such as shape,
size, architecture, composition and functionalization may offer exceptional electrocatalytic
properties, for improving the sensitivity and stability of the electrochemical sensor platform.
However, besides these advantages, there are numerous characteristic drawbacks to be
taken into account while designing the electrode materials. Indeed, advanced nanomate-
rials used in electrochemical sensors are required to offer high specificity and selectivity
towards the target analyte. Thus, it is important in the design of the nanoscale electrode
materials, not only to focus on the signal intensity but also to provide the right chemical
interaction with the target biomolecule, which is prominent to highly selective sensing.
Further, the optimization of electrochemical sensing parameters (e.g., electrode potential)
will help in this, especially in the multi-analyte sensing.

In conclusion, in this review we tried to provide future research directions by specify-
ing the many advantages but also highlighting the existing hindrances. Thus, the reader
can critically acquire some ideas for the development of high performance electrical and
electrochemical sensors based on the peculiar properties of MOX nanomaterials.
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