A New Cache Update Scheme Using Reinforcement Learning for Coded Video Streaming Systems
Abstract
:1. Introduction
2. Related Work
3. XOR Coding-Based Streaming System
4. Proposed Cache Update Scheme Using Reinforcement Learning
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cisco. Cisco visual networking index: Global mobile data traffic forecast update, 2017–2022. Update 2019, 2017, 2022. [Google Scholar]
- Gill, P.; Arlitt, M.; Li, Z.; Mahanti, A. YouTube Traffic Characterization: A View From the Edge. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement 20067, San Diego, CA, USA, 24–26 October 2007. [Google Scholar]
- Jeon, J. NR Wide Bandwidth Operations. IEEE Commun. Mag. 2018, 56, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Tran, L.; Duong, T.Q.; Matthaiou, M.; Larsson, E.G. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Trans. Green Commun. Netw. 2018, 2, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Yang, J.; Gharavi, H.; Sun, Y. Energy Efficiency Challenges of 5G Small Cell Networks. IEEE Commun. Mag. 2017, 55, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Poularakis, K.; Iosifidis, G.; Sourlas, V.; Tassiulas, L. Exploiting Caching and Multicast for 5G Wireless Networks. IEEE Trans. Wirel. Commun. 2016, 15, 2995–3007. [Google Scholar] [CrossRef]
- Kanrar, S.; Mandal, N.K. Traffic analysis and control at proxy server. In Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017; pp. 164–167. [Google Scholar]
- Bidokhti, S.; Wigger, M.; Timo, R. Noisy broadcast networks with receiver caching. IEEE Trans. Inf. Theory 2018, 64, 6996–7016. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Xia, B.; Xie, W.; Huang, K.; Yao, Y.; Zhao, Y. Interference cancelation at receivers in cache-enabled wireless networks. IEEE Trans. Veh. Technol. 2018, 67, 842–846. [Google Scholar] [CrossRef] [Green Version]
- Arbabjolfaei, F.; Bandemer, B.; Kim, Y.; Şaşoğlu, E.; Wang, L. On the capacity region for index coding. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Turkey, Sunday, 7–12 July 2013; pp. 962–966. [Google Scholar]
- Birk, Y.; Kol, T. Coding on demand by an informed source (iscod) for efficient broadcast of different supplemental data to caching clients. IEEE Trans. Inf. Theory 2006, 52, 2825–2830. [Google Scholar] [CrossRef]
- Son, K.; Lee, J.H.; Choi, W. User-Cache Aided Transmission With Index Coding in K -User Downlink Channels. IEEE Trans. Wirel. Commun. 2019, 18, 6043–6058. [Google Scholar] [CrossRef]
- Ban, T.-W.; Lee, W.; Ryu, J. An efficient coded streaming using clients’ cache. Sensors 2020, 20, 6220. [Google Scholar] [CrossRef] [PubMed]
- Ascigil, O.; Phan, T.K.; Tasiopoulos, A.G.; Sourlas, V.; Psaras, I.; Pavlou, G. On uncoordinated service placement in edge-clouds. In Proceedings of the 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Hong Kong, China, 11–14 December 2017; pp. 41–48. [Google Scholar]
- Aimtongkham, P.; So-In, C.; Sanguanpong, S. A novel web caching scheme using hybrid least frequently used and support vector machine. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 13–15 July 2016; pp. 1–6. [Google Scholar]
- Nogueira, J.; Gonzalez, D.; Guardalben, L.; Sargento, S. Over-The-Top Catch-up TV content-aware caching. In Proceedings of the 2016 IEEE Symposium on Computers and Communication (ISCC), Messina, Italy, 27–30 June 2016; pp. 1012–1017. [Google Scholar]
- O’neil, E.; O’Neil, P.; Weikum, G.; Zurich, E. The LRU–K Page Replacement Algorithm For Database Disk Buffering. ACM SIGMOD Rec. 1993, 22, 297–306. [Google Scholar] [CrossRef]
- Abrahamsson, H.; Björkman, M. Caching for IPTV distribution with time-shift. In Proceedings of the 2013 International Conference on Computing, Networking and Communications (ICNC), San Diego, CA, USA, 28–31 January 2013; pp. 916–921. [Google Scholar]
- Abdelkrim, E.; Salahuddin, M.A.; Elbiaze, H.; Glitho, R. A Hybrid Regression Model for Video Popularity-Based Cache Replacement in Content Delivery Networks. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–7. [Google Scholar]
- Maniotis, P.; Thomos, N. Viewport-Aware Deep Reinforcement Learning Approach for 360° Video Caching. IEEE Trans. Multimed. 2021. to be published. [Google Scholar] [CrossRef]
- Zhong, C.; Gursoy, M.C.; Velipasalar, S. A deep reinforcement learning-based framework for content caching. In Proceedings of the 2018 52nd Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 21–23 March 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.; Lillicrap, T.; Hunt, J.; Mann, T.; Weber, T.; Degris, T.; Coppin, B. Deep reinforcement learning in large discrete action spaces. arXiv 2015, arXiv:1512.07679. [Google Scholar]
- Breslau, L.; Cao, F.; Phillips, G.; Shenker, S. Web caching and Zipf-like distributions: Evidence and implications. In Proceedings of the IEEE INFOCOM ’99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320), New York, NY, USA, 21–25 March 1999; Volume 1, pp. 126–134. [Google Scholar]
- Wang, Y.; Li, Y.; Song, Y.; Rong, X. The Influence of the Activation Function in a Convolution Neural Network Model of Facial Expression Recognition. Appl. Sci. 2020, 10, 1897. [Google Scholar] [CrossRef] [Green Version]
- Meißner, P.; Watschke, H.; Winter, J.; Vietor, T. Artificial Neural Networks-Based Material Parameter Identification for Numerical Simulations of Additively Manufactured Parts by Material Extrusion. Polymers 2020, 12, 2949. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, New Orleans, LA, USA, 12 December 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-S.; Lee, J.-M.; Ryu, J.-Y.; Ban, T.-W. A New Cache Update Scheme Using Reinforcement Learning for Coded Video Streaming Systems. Sensors 2021, 21, 2867. https://doi.org/10.3390/s21082867
Kim Y-S, Lee J-M, Ryu J-Y, Ban T-W. A New Cache Update Scheme Using Reinforcement Learning for Coded Video Streaming Systems. Sensors. 2021; 21(8):2867. https://doi.org/10.3390/s21082867
Chicago/Turabian StyleKim, Yu-Sin, Jeong-Min Lee, Jong-Yeol Ryu, and Tae-Won Ban. 2021. "A New Cache Update Scheme Using Reinforcement Learning for Coded Video Streaming Systems" Sensors 21, no. 8: 2867. https://doi.org/10.3390/s21082867
APA StyleKim, Y. -S., Lee, J. -M., Ryu, J. -Y., & Ban, T. -W. (2021). A New Cache Update Scheme Using Reinforcement Learning for Coded Video Streaming Systems. Sensors, 21(8), 2867. https://doi.org/10.3390/s21082867