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Abstract: The ability to track the structural condition of existing structures is one of the main
concerns of bridge owners and operators. In the context of bridge maintenance programs, visual
inspection predominates nowadays as the primary source of information. Yet, visual inspections
alone are insufficient to satisfy the current needs for safety assessment. From this perspective,
extensive research on structural health monitoring has been developed in recent decades. However,
the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This
paper addresses the main limitations that slow the deployment and the acceptance of real-size
structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based
on random variable correlation for condition monitoring. The proposed algorithm was designed to
respond automatically to detect unexpected events, such as local structural failure, within a multitude
of random dynamic loads. The results are part of a project on SHM, where a high sensor-count
monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a
prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management
system developed to handle a large amount of data, and demonstrate the results from one of
the implemented post-processing methods, the principal component analysis (PCA). The results
showed that the deployed SHM system successfully translates the massive raw data into meaningful
information. The proposed real-time analysis algorithm delivers a reliable notification system that
allows bridge managers to track unexpected events as a basis for decision-making.

Keywords: structural health monitoring; FBG sensors; damage detection

1. Introduction

Transportation infrastructure plays a vital role in our society, as it enables people to
engage in activities that produce private, public, and social benefits [1]. With relevance to
large structure assets, bridge structures are built to connect people, shorten travel time,
cross obstacles, improve traffic flow at complex crossroads, and allow access to regions
otherwise inaccessible. In this sense, the socioeconomic impact of an inoperant bridge, as
well as the life-threatening consequences of damage and unattended bridge network, can
be incalculable. Therefore, the ability to evaluate the structural safety and the serviceability
condition of existing bridge structures within the road infrastructure is one of the main
tasks of engineers and a great desire of bridge owners. Additionally, many countries
enforce the maintenance of their infrastructure assets with strict laws and regulations [2],
such as the German model building code [3], the German civil code [4], and EU regulations
for construction products [5].

A bridge is considered safe if the probability of failure during its service does not
exceed a nominal value. The same is true for the serviceability, in which the likelihood of
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some service limits (e.g., vibration, deflection, etc.) to be exceeded must be small [6]. This
concept has been widely adopted for decades in design codes throughout the world, and it
is strictly observed during the design and construction phases of new bridges and other
wide-span structures. However, to deem an existing bridge structure as safe or unsafe to
operate is not as easy a task as it may seem.

On the one hand, the safety and serviceability requirements undergo constant changes
regarding actions and resistance models, as well as the understanding of structural behavior
and failure modes. As a result, generations of bridges that were designed using expired
codes may be unsafe to perform, even if they are undamaged [7,8]. On the other hand,
deterioration processes and changes in environmental conditions severely affect bridge
structures’ safety and serviceability. Some examples are the reduction of resistance due
to deterioration of concrete decks, corrosion or mechanical damage, the increasing traffic
volume and vehicle weight [9], and the exposure to natural hazards due to climate change.
Additionally, concrete material deterioration plays an essential role in the long-term damage
accumulation and strength reduction in concrete structures [10]. For example, corrosion
causes stiffness reduction [11], while cracking may increase the stress amplitude in the cross-
section [12]. A comprehensive review about degradation models and stiffness degradation
can be found in [11,13].

To cope with the challenges of managing existing bridge structures, the concept of
bridge management systems (BMS) emerged to support engineers and bridge managers
to provide cost-effective decisions for the planning of maintenance, rehabilitation, and
replacement (MRR) [14]. A BMS is defined as the rational and systematic approach to
organizing and carrying out all activities related to managing individual bridges within an
infrastructure network [15]. It became well established in 1993 when the US government
issued legislation outlining the obligatory requirements for a BMS model, as summarized
by Tran (2018) [14]:

• Database (inventory, inspection data, maintenance data).
• Condition rating model (field evaluation of bridge condition).
• Deterioration model (prediction of condition of bridge components).
• Cost model (identification of costs and benefit).
• Optimization model (search of optimal MMR strategies).
• Risk model (risk ranking and risk assessment).

The different BMS practices among countries and companies have periodic visual
inspection as the fundamental source of information [16]. The observed changes in the
structure are recorded in a database and used as a qualitative condition rating. Although
the visual inspections—when carried out regularly by qualified personal—are cost-effective
and provide thresholds for the decision-making process, they provide little information
about the inspected bridge’s actual structural safety and serviceability state without subse-
quent analysis and structural assessment. Moreover, the visual inspection procedures focus
on visible physical damages, disregarding the safety and serviceability constraints adopted
during the design phase. Hence, costly in-depth investigations and maintenance actions
are often unnecessarily prompted based only on the visual perception of safety. Simultane-
ously, real threatening events can occur between inspection appointments or go unnoticed
for not being visible or accessible, such as the failure of prestressed tendons under certain
conditions and risks from faulty execution. Only in rare cases are the bridge maintenance
actions triggered by a failed safety and serviceability check [6]. Therefore, visual inspec-
tions are inevitable as the primary means of information, but insufficient to satisfy the
current needs for modern bridge maintenance programs [2,17,18] and societal expectations.

In this sense, the inclusion of non-destructive testing (NDT) and structural health
monitoring (SHM) techniques into the bridge management process has become increas-
ingly sought [19,20]. The possibility of estimating the actual load level and occurrence
and detecting structural deterioration and damage events using SHM systems could bring
the BMS to the next level of sophistication. With the information provided by the sensor
network, more realistic numerical models can be achieved through structural identifica-
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tion [21] and model updating technics [22], and then be used, e.g., to simulate the real
structural behavior and estimate its expected time-life. Moreover, a suitable number and
placement of sensors and robust data acquisition software enable the real-life detection of
damage events and the online triggering of alarms.

The potential of SHM to optimize the management of bridge structures have moti-
vated its research in the structural engineering field since the 1970s [23], with more than
17,000 papers published from 2008 and 2017. Nonetheless, the transfer rate of research to
industrial practice is disappointing [24].

Cawley [24] notes that the scientific community should acknowledge the need to
perform SHM research on real practical cases, rather than on simple beam and plate
specimens with idealized failure modes, controlled environmental constraints, and without
consideration of false calls. The deployment of full SHM systems, including data handling
and decision-making, must be carefully designed. It is crucial to ponder, among others, the
environmental conditions in which the system operates, the characteristics of the damages
that the system should detect and their probability of occurrence, how the data is collected
and transmitted, how the resulting data will be analyzed and translated into reliable
performance indicators, and what actions are to be taken from the results and who will be
responsible for making then [25]. Such considerations are difficult, if not unfeasible, to be
investigated in simple laboratory tests.

Moreover, the sensor network and its operating system must allow the detection
of local damages. Global monitoring, such as the exclusive use of vibration or shock
sensors, has an excellent sensibility to detect changes in the boundary condition and
mass distribution. Still, it may not be sensitive enough to detect local damage on large
structures, depending on the setup and the system’s behavior. Cawley [26] reported that
a crack with a depth of 1% of the cross-section height at the root of a cantilever beam
would reflect a reduction of its natural frequency by less than 0.1%. Even if 10% of the
cross-section were removed, the natural frequency would be reduced by less than 1%.
Hence, the detection of local damage on bridge structures requires a high sensor-count
network with an appropriate area coverage and signal-to-noise ratio to prevent false calls.
Therefore, the system must be carefully designed to ensure its cost-effective deployment
and meaningful operation.

An important aspect during the design of real-size SHM systems is the optimum
sensor placement (OSP), which involves defining the minimum number of sensing points
and sensor layout [27]. For simple reduced-scale models, the number of degrees of freedom
(DOF) usually allows the placement of as many sensors as necessary to extract structural
parameters correctly. However, in real-sized applications, structures may have many thou-
sands of DOFs. At the same time, sensors can be placed at a finite number of locations [28],
leaving a gap between the experimental SHM results and the real structural response [29].
While OSP algorithms based on modal analysis are well established [30], few researchers
discuss OSP based on static parameters such as stress, strain, cracking, and long-term de-
formation [31,32]. Furthermore, different structure types require different OSP approaches.
For example, in a plane truss, the correct estimation of the nodal displacements seems
to be a reasonable OSP approach, which can be accomplished by measuring the axial
deformation on selected truss elements [27,31]. On the other hand, in prestressed concrete
bridges, the rupture of prestressed tendons at random locations may alter the structure’s
static response, thus requiring a new sensor-layout to identify structural damages correctly.
In the latter, SHM systems that prioritize distributed or quasi-distributed sensing are
more appropriated.

Another issue of real-size SHM—often disregarded in laboratory tests—is the transla-
tion of the measured data to reliable information, i.e., the interpretation and handling of a
massive amount of data [33]. A reasonable strain data collection on an average two-lane
bridge concerning prestressed steel failure may result in hundreds of GB of data per month,
corresponding to millions of spreadsheet lines. With the increasing availability of remote
communication systems, the decreasing cost of sensors, and longer battery life and energy



Sensors 2021, 21, 2871 4 of 32

harvesting in remote locations, more and more structures are being monitored in some
way. Still, the capacity to transfer a large amount of data into meaningful information has
only marginally increased [34]. Due to the growing number of sensors, the data stream
can become unmanageable; many SHM managers report that they do not know what
information to keep, ending up with piles of hard disks to store TBs of measured data no
one ever looks at in detail [35]. While in small deployments the engineer may individually
analyze the data from installed sensors, a high sensor-count system must automatically
highlight the anomalous signals where the existence, location, and severity of damages,
followed by prognostics, is performed [36,37]. Moreover, the initial structural state is
generally unknown outside of laboratory environments. The influence of temperature
and other external disturbances, which can significantly influence the measured values,
is also an example of drawbacks. Consequently, it is often necessary to manually check
and interpret the data, requiring, on the one hand, the permanent availability of personnel
and, on the other hand, leading to late detection or false alarms, which can compromise
the monitoring system reliability.

Up to now, the detection of structural changes in SHM systems falls into two main
philosophies: model-based and data-driven methods. The first, also known as model
updating or the inverse approach, usually combines measured structural responses with
finite element (FE) model predictions and supports long-term decision-making such as
the lifetime and repair and evaluation [38–44]. However, FE modeling and updating are
time-consuming and comes with a high computational cost. Given the many uncertainties,
a calibrated model may not be correct even if its predictions match the measured observa-
tions [45]. For the data-driven methods, nonparametric approaches, such as the moving
principal component analysis (MPCA) and robust regression analysis, can be applied to
the data measurement history for damage detection and have been demonstrated in many
laboratory tests and real-case applications [46–49]. Still, their real-time capability to detect
structural changes is only feasible to a limited extent. The reasons lie in the unknown
actual structural reaction due to local changes, such as prestressed steel rupture and crack
formation, and the discrepancies between the real and theoretical properties related to the
structure’s materials and geometry. Other methods independent of baseline references
delivered promising results for real-life damage detection in bridge structures. They rely
on statistical learning methods—e.g., neural networks and clustering—to extract intrin-
sic features without requiring prior knowledge of the structure health, and can be used
on multiple sensing platforms, such as imaging technique, modal parameters, and static
parameters (inclination, displacement, strain) [50–54].

This work presents a novel algorithm for the real-time analysis and alarm triggering
of a high sensor-count monitoring system deployed on a structure that is subjected to envi-
ronmental and random dynamic loading. The SHM system is based on a long-gauge fiber
Bragg grating (FBG) (LGFBG) sensor network and was installed on a real-life prestressed
concrete national highway bridge in Neckarsulm, Germany. Statistical and quantitative
parameters are continuously updated from the strain and temperature data stream using a
real-time computing (RTC) algorithm that performs, amongst others, a correlation analysis
between adjacent sensors and allows the automatic detection of unexpected local structure
changes by the minute. The algorithm is built based on redundancy to enhance its reliability
and prevent false calls. A three-step check is performed to handle outliers, noise, and other
random and unpredictable events. One important novelty of the proposed algorithm is that
it was implemented inside the data acquisition software and is executed during runtime.
In other words, the damage detection algorithm runs parallel to the measurements, and
the analysis is carried out before data storage and data transmission take place.

Additionally, a post-processing method based on the principal components analysis
(PCA) is applied to demonstrate the correlation coefficient analysis’s reliability to detect
behavior changes in a high sensor-count system. Although the PCA post-processing results
are compared with the real-time analysis results, they are two independent matters and
should not be confused. The novel real-time damage detection algorithm does not depend
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on any post-processing evaluation. The PCA results are used to mathematically support
the findings around the proposed algorithm.

The novel algorithm for real-time analysis and the post-processing method, are part
of a pilot monitoring system developed to access the structural health of prestressed
concrete bridge structures by providing robust, yet meaningful information to support
bridge managers and bridge inspectors in the decision-making process of bridge main-
tenance. The system has a comprehensive data management design to handle the large
volume of data produced from four different post-processing approaches and the real-time
analysis algorithm.

The paper is organized as follows: Section 2 describes the monitored bridge and the
installed monitoring system. Section 3 presents the data management system. Section 4
describes the novel real-time analysis algorithm and the post-processing method based
on the MCPA. Section 5 contains the results of the real-time analysis and the MPCA
post-processing method. Section 6 closes the work with the conclusions.

2. SHM System in Neckarsulm
2.1. Characteristics of the Monitored Bridge

The monitored structure is a prestressed hollow-core concrete bridge constructed
in 1964. The design load class is BK 60 (60 tons wheeled type load), according to DIN
1072. With a width of 11.08 m, it has three continuous spans with a total length of 57.00 m
(17.00 m–23.00 m–17.00 m) without coupling joints (Figures 1 and 2). The two center
columns are designed as individual supports with pot bearing. The superstructure is
supported by two linear rocker bearings on the southern abutment, and on the northern
abutment, by two roller bearings.
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Like many of the prestressed concrete structures designed and built until the 1970s in
Germany, the bridge was constructed with prestressing steel types St 145/160 Sigma (ten-
sioning methods KA 141/40 and KA 35/10) which are known for their high vulnerability to
stress-corrosion-induced cracking. A total of 18 tendons are placed in the total length, with
an additional six tendons in the mid spam. In addition to the high increase in traffic loads
compared to the year of construction in 1964, and the corrosion-induced cracking risk, other
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critical problems may arise due to construction methods and the design standards adopted
back then [8]. From the structural point-of-view, the hollow-core bodies prevent two-axis
load transfer and thus the redistribution of forces in the transversal direction. Likewise,
shear forces and differential temperature loads were not considered to the extent that it is
deemed necessary from today’s standards when the building was planned. Additionally,
construction failures can already appear during construction caused by misplacement of
the hollow-core bodies, and difficulties in compacting the surrounding concrete. Finally,
the hollow-core cannot be examined as part of the regular visual building inspection, which
means that any inside damage, especially the fill up with precipitation water, may not be
detected in due time.

2.2. Characteristics of the Monitoring System

An elaborate fiber optic monitoring system based on long-gauge FBG (LGFBG) sensors
were installed to continuously monitor strain and temperature changes, and vibration of
the bridge superstructure.

The strain monitoring consists of two parallel measuring lines, each with 27 LGFBG
sensors connected in a series along the complete longitudinal direction, and five measuring
lines in the shear direction, with five LGFBG sensors. Additionally, 10 LGFBG sensors
are located on the sides of the main body to measure the strain at a higher position. For
every LGFBG strain sensor, an embedded temperature sensor is present for temperature
compensation on the fiber optic (FO). The LGFBG sensors’ brackets were mounted on the
concrete’s surface using stainless steel hammerset anchors EA II M8 from Fischer, with a
length of 30 mm to prevent damaging the rebars and stirrups (the bridge’s main deck has a
concrete cover of 30 mm).

Moreover, the concrete temperature is monitored at four different points at the bridge’s
midsection, and the deck’s vertical acceleration is measured at two selected locations.
The total of 184 sensors was divided into eight quasi-distributed arrays equipped with
redundancy connection fibers, which enable measurements to be continued if a primary
connection cable fails. The LGFBG sensors in this project were manufactured by Sylex
s.r.o. [55], Bratislava, Slovakia, and the interrogator unit by HBM FiberSensing S.A. [56],
Porto, Portugal.

The monitoring system in Neckarsulm has run continuously since November 2019 at
a sampling rate of 200 Hz, generating over 70 thousand measurement points per second.
The sampling rate was defined in order to optimize the representation of extreme values
such as load peaks during the crossing of a vehicle. Considering that the average travelling
speed at the bridge is 60 km/h (and there are speed cameras a few meters from the north
abutment), a sampling rate of 200 Hz provides an 8-centimetre measuring step. This
enables extracting the detailed dynamic behavior (e.g., peaks and strain influence lines),
and characterizing the traffic load (vehicles’ average velocity, direction of travel, length,
and number of axles), which were implemented in the SHM in Neckarsulm, but are outside
the scope of this paper. Additionally, the high sampling frequency was chosen to depict
sudden events, such as the rupture of prestressed tendons, which is the core of the novel
real-time analysis algorithm. However, the high sampling rate does not imply that all the
measured data must be stored at the same pace. For the novel damage detection algorithm,
for example, the analyzed dataset rests in a temporary buffer. As soon as a batch of data
is analyzed, only the statistical results are stored. The raw data is then discarded, except
if the algorithm detects an anomaly, which, in this case, only the affected data segment is
completely stored.

A control cabinet was installed underneath the bridge, where the optical interrogator,
the industrial computer for data acquisition, and the industrial LTE modem for data transfer
are stored. A schema of the sensors is given in Figure 3, and overview photos are shown in
Figure 4. The following sensors are installed on the structure:

• strain in the longitudinal direction (sensors S01–S54 and S80–S89): for monitoring
in the longitudinal direction, two quasi-distributed strain sensor lines are attached
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to the bottom of the bridge, located in the area of the prestressed cables (the sensors
S80–S89 were installed on the side of the structure at about 50 cm above the lower
surface; the sensors S01–S54 have a gauge length of 2.05 m, and the sensors S80–S89 a
gauge length of 0.50 m);

• strain in the transverse direction (sensors S55–S79): five strain sensor lines across the
cross-section were installed on the underside of the bridge in the area of the maximum
bending moments and on the two supports (these sensors have a gauge length of
1.35 m);

• temperature (sensors T01–T04): temperature sensors in the middle of the bridge,
transverse to the direction of travel;

• acceleration (sensors AC01–AC02): two accelerometers with a vertical measuring
direction in the middle of the main field, underneath each driving lane.
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The FBG sensing technology is known for its high sensitivity, durability, and stability.
It can provide quasi-distribute measurements over extensive measurement lengths, making
it perfect for monitoring structures such as reinforced concrete and prestressed structures,
where damage formation is usually local and random. The strain sensors have a precision
of 1 µm/m and the temperature sensors of 0.1 ◦C. More information about the FBG sensors
and fiber optic sensing in SHM of concrete structures can be found in [30–33,57–60].
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3. Data Management

The monitoring system’s data acquisition is performed using the commercial software
Catman AP developed and distributed by Hottinger Brüel and Kjaer (HBK), Darmstadt,
Hesse, Germany. Beyond the required characteristics of a robust acquisition software,
Catman also allows the online processing of computational channels and auxiliary channels
that can be used to perform user-defined tasks via scripting.

The data acquisition (DAQ) process in Catman (DAQ job) can be divided into three
main stages, namely the job preparation, the data transfer cycle, and the job finalization.
During each step, a series of closed tasks are executed in the background without the
user’s control. The basic workflow of a DAQ job is shown in Figure 5. However, using the
Catman’s scripting functionality, it is possible to “intercept” a data block using a scripted
procedure to carry out user-defined tasks. The system automatically sets the size of a data
block according to the data sampling rate. For a sampling rate of 200 Hz, a data block
has 20 measurement points for each of the 184 sensors, giving a total of 10 data transfer
cycles per second per sensor (185 cycles every 100 ms). The data block cycle allows the
implementation of RTC to process the data as it comes in, which is the core of the novel
real-time analysis presented in this work.

Moreover, the Catman software allows parallel data recorders configuration, where
selected sensors with different saving configurations can be simultaneously stored into
permanent files. For the monitoring system in Neckarsulm, four separate recorders were
created and associated with specific events, namely the dynamic continuously event, the
dynamic triggered event, the statistic journal, and the real-time analysis data. However,
only the real-time analysis data belongs to the scope of this paper.
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Given the high sensor-count and the dynamic measuring characteristics, the amount
of data generated is enormous; thus, it was necessary to create a robust data management
for both the data storing and the post-processing. The chosen solution was integrating the
software MathWorks MATLAB [61], Natick, MA, USA, and the MySQL [62], Austin, TX,
USA, database using scripts written specifically for this application.
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MATLAB is a powerful analysis software known for its vast availability of mathemat-
ical and statistical pre-generated methods for data analysis and numerical computation.
MATLAB allows the connection with a SQL database and the execution of queries inside
the MATLAB workspace among its many attributes. The data on MATLAB can be stored
in a SQL database, and an SQL database can be loaded into MATLAB for analysis. The
SQL database can save millions of data entries and provides fast access to a specific set
of data within the database, optimizing the data saving and the data query for analysis.
Figure 6 shows the data storing process, where the received monitoring data is saved into
a MySQL database through MATLAB processing. The monitoring system generates about
600 GB of raw data every month. Only 2 GB are effectively stored in the SQL database after
executing the pre-processing scripts developed exclusively for this project. Nevertheless,
all raw data generated during this SHM project is being stored in an external hard drive
disk (HDD) for scientific purposes.
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The SQL database was structured to allow easy management and query for post-
processing and data visualization. The database schema has four groups of relational
tables divided by the type of recorder, as shown in Figure 6, and a single table to store the
sensors’ information and calibration coefficients. Additionally, a rainflow analysis result
from the dynamic continuously event is saved separately as a MATLAB structure after its
pre-processing.
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Figure 7 shows an overview of the SQL schema and its table groups. Each group
has a parent file table that records the files’ information and gives them a unique file-id
number, followed by a child entry table that indexes all the entries in each file with a unique
entry-id number. Finally, the records are organized in separate result tables, where each
row corresponds to a unique entry-id. The fields closed by curly brackets {} in the result
tables refer to an array of fields, usually one for each sensor, and is represented this way
for simplification.

The tables within each group are linked together by foreign keys, where the entry-id
in the result tables refers to the entry table, which directs its file-id to the files table. The
SQL relational structure optimizes the data-selection from the database without the loss of
referential integrity and facilitates database management. The JOIN clause, e.g., permits
the rows and columns from two or more result table to be combined based on their related
entry-id, allowing the selection of result from the desired period of a specific sensor without
the need to load the entire dataset. Moreover, if a file-id must be removed from the file
table, all the rows in the entry table related to that file are automatically deleted. Likewise,
all the rows in the results table linked to the removed rows in the entry table are erased.
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4. Theory and Methodology
4.1. Real-Time Analysis Algorithm

For the installed SHM system in Neckarsulm, an algorithm was developed and
implemented to determine whether unexpected changes have occurred in the structure
based on the real-time analysis of the measured strain and temperature data. The algorithm
is registered for a patent. Statistical values are continuously updated from the strain and
temperature data stream of each sensor over an optimized n-sampled moving time window
τn, namely the statistical strain mode Mo, the arithmetic strain mean µ, the arithmetic
temperature mean T, and the maximal peak-to-peak amplitude u. Additionally, the strain
data from the time window τn for every two adjacent sensors p and q are analyzed, where
the correlation coefficient ρpq(τn) for the measured strain sp(k) and sq(k) are calculated
according to:

ρpq(τn) =
∑n

k=1

(
sp, k − µp

)
·
(

sq,k − µq

)
√

∑n
k=1

(
sp,k − µp

)2
·
√

∑n
k=1

(
sq,k − µq

)2
(1)

For a continuous monitoring system with high sampling rate measurements on coher-
ent structures with consistent loading, the correlation coefficient between a pair of sensors
must remain constant and close to one, if they are well correlated, or close to zero, if there
is no correlation. In the case of adjacent sensors disposed along the longitudinal direction
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of a continuous beam, the correlation coefficient should remain stationary and close to
one until a change occurs in the structural system [63]. The evaluation of the correlation
between two sensors can also be used to infer already existing geometric discontinuities,
e.g., hollow bodies or built-in parts, or pre-existing damages in the structure.

Although the correlation coefficient is a relevant parameter, it cannot be used alone
as an indicator of structural change since noise and influences from wind or traffic loads,
amongst others, can also lead to deviations in the correlation. Therefore, the implemented
algorithm is based on a three-step validation to avoid false calls and enhance the system’s
reliability. Should the correlation coefficient for two correlated sensors drop below a pre-
defined threshold within the time window τn, the maximal peak-to-peak amplitude u and
the strain-offset through the statistical mode Mo of both sensors during τn are examined.
Under normal operation conditions, the peak-to-peak amplitude is directly related to the
traffic load. Simultaneously, the statistical mode represents the strain signal offset due to
the environment temperature variation and can be considered the “unloaded state” of the
bridge for a short time window.

Suitable limit values must be defined for all three indicators. The correlation coef-
ficient threshold is set as 0.9, which is a relatively low value considering the observed
measurement history for one year. Figure 8a, e.g., shows the box plot for all measured
correlation coefficients between sensors S01 and S02 from 14 July to 6 November 2020. It
can be observed a median of 0.98 and narrow interquartile range, with all values above 0.94.
The peak-to-peak amplitude can be determined by an initial load test or estimated from the
strain history over a long period. Since no load test was performed on the monitored bridge,
the peak-to-peak amplitude limit was taken from the cumulative distribution plot of the
maximal observed values for the sensor S14, located at the middle of the bridge, and set as
60 µm/m. The strain offset is defined by observing the statistical mode of short moving
time-windows τn over a long measuring period. Figure 8b shows the correlation between
the statistical mode and the mean temperature calculated for each time-window τn from
14 July to 6 November 2020. Since the strain sensors are temperature compensated, and
the bridge superstructure is free to deform in the longitudinal direction, the changes in the
mode values are mainly due to the structural deformation due to the temperature variation.
A linear correlation between the strain mode and the temperature can be observed, with
a statistical variation coefficient of one and an inclination of 12.82 × 10−6 ◦C. Therefore,
an abrupt non-linear behavior between the strain mode and the temperature variation
indicates an unexpected event unrelated to temperature changes, which could for example
be due to a crack opening or a change in the static behavior.

Figure 8c shows the strain signal from sensor S03 during a one-minute time window
τn. The recorded event occurred on 21 July 2020, starting at 09:39:59.000 h and ending at
09:40:58.995 h. The calculated strain mode of 118.25 µm/m is marked with a horizontal
line, and the peak-to-peak amplitude of 51.46 µm/m is displayed as a dimension line.
A segment of the strain signal was enlarged to show the quality of the signal and the
precision of the mode to estimate the signal offset when short periods are analyzed. It can
be seen that the signal noise amplitude is less than 0.5 µm/m, and the mode line is a fair
representation of its relative midline.

As shown in Figure 5, the real-time analysis intercepts the data block transfer con-
taining each sensor’s last 20 measured samples. Figure 9 shows the flowchart of how the
algorithm handles the data block for each sensor i during the real-time analysis. The data
block’s samples are collected and appended in a temporary buffer until the size of the
temporary buffer reaches the size of the moving time window τn. When the temporary
buffer’s size equals the τn size of 12,000 samples (equivalent to 60 s), the statistical parame-
ters are extracted from the temporary buffer dataset, as explained at the beginning of this
section. Next, the correlation coefficient between sensor i and sensor i − 1 is calculated, as
Figure 10 shows. The correlation coefficient is calculated if the peak-to-peak amplitude
of either sensor is higher than 30 µm/m, and a low-cut filter removes samples with an
absolute value inferior to 5 µm/m. After the calculations, the temporary buffer is erased,
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and the statistical parameters are sent to auxiliary channels for permanent storage. It
is important to note that the algorithm runs during runtime inside the data acquisition
software. Therefore, all the tasks take place parallel with the measurements, and before
data storage and data transfer.
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The 30 µm/m limit was set to optimize the computational performance. In theory,
each pair of sensors’ coefficient could be calculated every minute, regardless of the strain
amplitudes. However, the authors chose not to overload the processor with small strain
values that are known to have no impact on structural integrity. The 5 µm/m low-cut
filter is meant to remove noise. Take, for example, the correlation coefficient between
two sensors, where only one heavy vehicle crossed the bridge during a 60 s time window.
Considering that it takes about 3.5 s for a vehicle with a speed of 60 km/h to cross the
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bridge, there would be 700 samples (6%) where the strain values between the sensor would
be well correlated, and the remaining 11,300 would be just noise.

To set the time window’s size, one must find the equilibrium between computing
performance, reaction time to detect damages, and influence of the strain signal caused by
the traffic loading for the analyzed period. If the time window is too short, the algorithm
must run often, and there is a risk that the system will overload. Likewise, the impact of
abrupt strain variations in the correlation analysis reduces as the time window increases
and the reaction time to detect damages increases.

Finally, the three-step alarm trigger checks the calculated parameters for unexpected
behavior during the last 60 s dataset, as shown in Figure 11. If all three-steps are triggered,
an alarm is immediately sent to the bridge managers. As soon as a time window is
thoroughly analyzed, the process repeats itself from the beginning for the next set of
12,000 samples.
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In contrast to the traditional alarm triggering approaches, the monitoring system in
Neckarsulm does not rely on absolute or singular thresholds. Each derived parameter is
particularly sensitive to different factors: the statistical strain mode to the temperature influ-
ence, the peak-to-peak strain amplitude to the traffic load, and the correlation coefficients
to the static system behavior. Only if the three indicators individually show critical values,
an alarm is triggered, allowing the bridge managers to evaluate all three indicators together
with the complete measurement data from all sensors. The proposed system allows the
detection of unexpected events by the minute and a post-processing of the acquired data
for long-term analysis of the structural integrity and life expectancy.



Sensors 2021, 21, 2871 15 of 32
Sensors 2021, 21, x FOR PEER REVIEW 15 of 33 
 

 

 
Figure 10. Correlation coefficient calculation subroutine flowchart (refer to Figure 9). 

Finally, the three-step alarm trigger checks the calculated parameters for unexpected 
behavior during the last 60 s dataset, as shown in Figure 11. If all three-steps are triggered, 
an alarm is immediately sent to the bridge managers. As soon as a time window is thor-
oughly analyzed, the process repeats itself from the beginning for the next set of 12,000 
samples. 

In contrast to the traditional alarm triggering approaches, the monitoring system in 
Neckarsulm does not rely on absolute or singular thresholds. Each derived parameter is 
particularly sensitive to different factors: the statistical strain mode to the temperature 
influence, the peak-to-peak strain amplitude to the traffic load, and the correlation coeffi-
cients to the static system behavior. Only if the three indicators individually show critical 
values, an alarm is triggered, allowing the bridge managers to evaluate all three indicators 
together with the complete measurement data from all sensors. The proposed system al-
lows the detection of unexpected events by the minute and a post-processing of the ac-
quired data for long-term analysis of the structural integrity and life expectancy. 

Figure 10. Correlation coefficient calculation subroutine flowchart (refer to Figure 9).
Sensors 2021, 21, x FOR PEER REVIEW 16 of 33 
 

 

 
Figure 11. Three-step check subroutine for alarm triggering flowchart (refer to Figure 9). 

4.2. PCA Method 
The correlation coefficient analysis is a powerful method to visualize the relationship 

between two variables and measure their linear dependence. However, in a multivariate 
statistics problem, it is difficult to visualize the relationship between multiple variables 
and determine their contribution to the driving principle that governs the system’s behav-
ior. The principal component analysis (PCA) is a quantitative method used to simplify 
such problems by replacing the original data with a new set of variables that still contains 
most of the information, called the principal components [61]. 

Although the PCA post-processing is implemented in the SHM system in Neck-
arsulm, it is not part of the proposed real-time damage detection algorithm. Namely, the 
proposed real-time algorithm is independent of the PCA analysis. However, this paper 
shows the PCA implementation and results to support the proposed real-time damage 
detection algorithm with a mathematical background, especially regarding the correlation 
coefficients’ reliability on detecting structural changes. 

The principal components have no physical meaning, but they describe the directions 
that explain a maximal amount of variance, i.e., the axes that provide the best angle to see 
and evaluate the data. The first principal component is composed of the axes’ directions 
that capture each variable’s largest possible variance. The second principal component is 
another set of axes perpendicular to the first and accounts for the next highest variance. 
This process continues until the number of calculated principal components equals the 
number of variables in the original data. The full set of principal components is a square 
matrix of order n, where n is the number of variables. However, it is commonplace that 
the first few principal components explain over 80% of the total variance. Therefore, they 
can be used to understand the driving forces that generated the original data [64]. 

The principal components are constructed by calculating the eigenvectors and eigen-
values of the data’s covariance matrix. The eigenvectors represent the direction of the axes 
where there is the most variance, while the eigenvalues are coefficients that give the 
amount of variance carried by each eigenvector. The principal components are simply the 
eigenvectors sorted in order of their eigenvalues. 

Therefore, to evaluate each variable’s contribution (sensor) in the overall structural 
system’s behavior, a PCA analysis is performed to calculate the principal components 
from the sensors’ strain history. Given the high number of sensors, the PCA is achieved 
by dividing them into groups of sensors, sorted by measurement line and span (Figure 3) 
to allow a proper assessment of the variables’ dependency, as follows: 
• group A: sensors S01–S27; and 
• group B: sensors S28–S54. 

First, a matrix with the strain histories from all sensors in a group is constructed for 
the analyzed time window ߬௡, where the result is a N by n matrix: 

ܵ(߬௡) = ቌ ௜ܵ൫ݐ௝൯ ⋯ ܵே൫ݐ௝൯⋮ ⋱ ⋮௜ܵ൫ݐ௝ା௡ିଵ൯ ⋯ ܵே൫ݐ௝ା௡ିଵ൯ቍ , with ݅ = 1 to ܰ and ݊ = (2) (௡߬)݁ݖ݅ݏ

Figure 11. Three-step check subroutine for alarm triggering flowchart (refer to Figure 9).

4.2. PCA Method

The correlation coefficient analysis is a powerful method to visualize the relationship
between two variables and measure their linear dependence. However, in a multivariate
statistics problem, it is difficult to visualize the relationship between multiple variables and
determine their contribution to the driving principle that governs the system’s behavior.
The principal component analysis (PCA) is a quantitative method used to simplify such
problems by replacing the original data with a new set of variables that still contains most
of the information, called the principal components [61].
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Although the PCA post-processing is implemented in the SHM system in Neckarsulm,
it is not part of the proposed real-time damage detection algorithm. Namely, the proposed
real-time algorithm is independent of the PCA analysis. However, this paper shows
the PCA implementation and results to support the proposed real-time damage detection
algorithm with a mathematical background, especially regarding the correlation coefficients’
reliability on detecting structural changes.

The principal components have no physical meaning, but they describe the directions
that explain a maximal amount of variance, i.e., the axes that provide the best angle to see
and evaluate the data. The first principal component is composed of the axes’ directions
that capture each variable’s largest possible variance. The second principal component is
another set of axes perpendicular to the first and accounts for the next highest variance.
This process continues until the number of calculated principal components equals the
number of variables in the original data. The full set of principal components is a square
matrix of order n, where n is the number of variables. However, it is commonplace that the
first few principal components explain over 80% of the total variance. Therefore, they can
be used to understand the driving forces that generated the original data [64].

The principal components are constructed by calculating the eigenvectors and eigen-
values of the data’s covariance matrix. The eigenvectors represent the direction of the
axes where there is the most variance, while the eigenvalues are coefficients that give the
amount of variance carried by each eigenvector. The principal components are simply the
eigenvectors sorted in order of their eigenvalues.

Therefore, to evaluate each variable’s contribution (sensor) in the overall structural
system’s behavior, a PCA analysis is performed to calculate the principal components from
the sensors’ strain history. Given the high number of sensors, the PCA is achieved by
dividing them into groups of sensors, sorted by measurement line and span (Figure 3) to
allow a proper assessment of the variables’ dependency, as follows:

• group A: sensors S01–S27; and
• group B: sensors S28–S54.

First, a matrix with the strain histories from all sensors in a group is constructed for
the analyzed time window τn, where the result is a N by n matrix:

S(τn) =

 Si
(
tj
)

· · · SN
(
tj
)

...
. . .

...
Si
(
tj+n−1

)
· · · SN

(
tj+n−1

)
 , with i = 1 to N and n = size(τn) (2)

where N is the number of sensors, j is the first sample in the time window τn, and n is the
time window’s size in samples. Since the PCA is sensitive to the initial variables’ variances,
the resulting matrix must be normalized to assure that they will contribute equally in the
analysis. A normalization is used, where each variable is centered on having a mean of 0
and rescaled to have standard deviation 1. The normalized matrix s of the strain history is
given as:

s =

 Si
(
tj
)
− Si(τn) · · · SN

(
tj
)
− SN(τn)

...
. . .

...
Si
(
tj+n−1

)
− Si(τn) · · · SN

(
tj+n−1

)
− SN(τn)

 (3)

where Si(τn) is the mean value for the sensors’ strain history during τn Next, the covariance
matrix C(τn) for all measured samples is constructed from the standardized matrix s
as follows:

C(τn) =

 cov(s1, s1) · · · cov(sN , s1)
...

. . .
...

cov(s1, sN) · · · cov(sN , sN)


with cov

(
sp, sq

)
= 1

n−1 ∑n
k=1

(
sp, k − µp

)
∗
(

sq, k − µq

)
, with p and q = 1 to N

(4)
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where µp is the mean of the data series sp, µq the mean of the data series sq, and * denotates
the complex conjugate. Finally, the eigenvalues λi and eigenvectors Ψi of the covariance
matrix are obtained by satisfying the equation:

[C(τn)− λi I] Ψi = 0, for i = 1 to N.

When their eigenvalues sort the eigenvectors’ eigenvalues in decreasing order, they
are arranged in order of significance, resulting in a N × N matrix, also called the principal
components (PC) matrix, where N is the number of variables. As explained before, the first
few columns contain most of the information about the original data variance. They can
be used to understand how each variable contributes to the overall behavior and how the
variables interact with each other.

5. Results from the Real-Size SHM

In this section, the detailed results from the novel real-time analysis for the sensors S02,
S03, and S04 is first shown, followed by the general study of sensors S01–S27, located in one
of the longitudinal quasi-distributed measuring lines. The real-time evaluation algorithm
is based on a three-step validation process. Three statistical parameters are continuously
calculated parallel to the reception of measurement data for all longitudinal direction
sensors (S01 to S54). Each step will be referenced as a filter, as summarized in Table 1. As
described in Section 4, the strain correlation coefficient ρ between neighboring sensors,
the maximal peak-to-peak amplitude u, and the statistical strain mode Mo are determined
for every one-minute time window τn. Lastly, The PCA results are used to evaluate the
correlation between the sensors and their contribution to the structural system’s behavior.

Table 1. Filter’s names and descriptions.

Filter’s Name Description

first filter correlation coefficient
second filter peak-to-peak amplitude
third filter statistical strain mode variation

5.1. Real-Time Analysis Algorithm

Figure 12a shows the box plot for the strain correlation coefficients ρ between sensors
S02 and S03 (CF_S02_S03), and sensors S03 and S04 (CF_S03_S04), where a total of 12,794
moving time windows τn were recorded from 14 July to 6 November 2020 (116 days). It can
be noticed that both pair of sensors have high correlation magnitudes, both with medians
of approximately 0.98, and narrow interquartile and score ranges. The number of outliers
is about 10% of the total cases, which is expected in large sample sets. The A magnified
box plot for CF_S03_S04 is given in Figure 12c, where the median, interquartile range and
extreme limits are depicted in detail. Figure 12b shows an example for the dependency
between the strain signals from sensors S02 and S03 during a time window τn, with the
calculated correlation coefficient ρ = 0.98.

When the first filter is applied, a total of 20 outliers representing 0.156% of the total
measured points remain below the first filter’s threshold (ρ < 0.9). In other words, the
correlation coefficients smaller than 0.9 are treated as potentially problematic, as they
indicate a loss of linearity behavior between two neighboring sensors that ought to be
otherwise linearly correlated and should thus be further analyzed. If only the first filter
were used for the real-time analysis, the bridge managers would have received 20 alarm
calls—around one call per week—for just two pairs of sensors. They would not have had
additional information to judge whether the alarms were related to unexpected structural
integrity changes or false calls (e.g., noise).



Sensors 2021, 21, 2871 18 of 32
Sensors 2021, 21, x FOR PEER REVIEW 19 of 33 
 

 

  
(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 12. Three-step real-time analysis demonstration—sensors S02, S03, and S04: (a) Correlation coefficients and points 
below the threshold after the first filter. The zoom window shows the amplified box plot for the correlation coefficients 
between sensors S03 and S04; (b) example of the correlation coefficient between sensors S02 and S03 during a one-minute 
time window with 12,000 samples; (c) correlation coefficients below the threshold after the second filter; (d) probability 
plot for the peak-to-peak amplitude u for sensor S04; (e) correlation coefficients below the threshold after the third filter; 
(f) correlation between the statistical strain mode Mo and the temperature for sensor S03. Analyzed data period: from 14 
July to 6 November 2020. 

Figure 12e shows the remaining points after applying the third filter, where four 
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from a demonstration during a visit at the bridge of the real-time analysis operation. A 
small weight was hanged on the gauge-length of sensor S03, causing a rapid perturbation 
on its measurement signal. Since the neighbor sensors S02 and S04 were not affected, a 
loss of linearity between sensor S03 and its neighbors was detected by the correlation co-
efficients CF_S02_S03 (ρ = 0.196) and CF_S03_S04 (ρ = 0.10), thus triggering the first filter 
(ρ < 0.9). The slight change in the gauge-length curvature due to the added weight also 

Figure 12. Three-step real-time analysis demonstration—sensors S02, S03, and S04: (a) Correlation coefficients and points
below the threshold after the first filter. The zoom window shows the amplified box plot for the correlation coefficients
between sensors S03 and S04; (b) example of the correlation coefficient between sensors S02 and S03 during a one-minute
time window with 12,000 samples; (c) correlation coefficients below the threshold after the second filter; (d) probability
plot for the peak-to-peak amplitude u for sensor S04; (e) correlation coefficients below the threshold after the third filter;
(f) correlation between the statistical strain mode Mo and the temperature for sensor S03. Analyzed data period: from 14
July to 6 November 2020.

Next, the second filter is applied, where the peak-to-peak strain amplitudes u of each
sensor are checked at the time-intervals corresponding to the detected small correlation
coefficients that went through the first filter. The peak-to-peak strain amplitude of a short
moving time-window, such as τn, is closely related to the traffic load; hence, values within
the normal range of traffic operation can be disregarded during the real-time analysis, and
only those with values above a specified limit should continue to be treated further. In
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this example, a peak-to-peak amplitude limit of u > 50 µm/m is applied for demonstration
purposes (during operation, the limit is set at u > 60 µm/m, given that, based on the entire
measurement history, there is a small than 1% probability that the peak-to-peak amplitude
will not exceed 60 µm/m). Figure 12a shows the box plots for the correlation coefficients
after removing the points that passed the first filter (ρ < 0.9) but were retained at the second
filter for u > 50 µm/m. Only eight remained after the second filter from the 20 points
below the first filter’s threshold. In Figure 12d, the cumulative distribution function of the
peak-to-peak strain amplitude is depicted. It can be noted that the adopted limit for u is
within the service traffic load for the measurement history, where there is a probability less
than 1% that u will exceed 50 µm/m.

Even though the number of distinguished points was considerably reduced after the
second filter, there is still insufficient information to call the remaining points problematic.
A peak-to-peak strain amplitude above the average traffic operation does not necessarily
mean that structural damages took place. The safety design checks require that the ultimate
loads be higher than expected service loads.

Finally, the third and last filter is applied. In this stage, the strain mode Mo at the
time window τn,i for each remaining point i is compared with the strain modes of the
time windows τn,(i−1) and τn,(i+1). Given that each strain sensor has its own temperature
sensor for temperature compensation, the drift in the strain signal offset over time can
be related to the structure’s deformation due to temperature variation. Thus, the signal
offset of each sensor for the time window τn can be determined from the statistical strain
mode. Since the traffic load is intermittent, and the crossing of a vehicle takes a few
seconds, the statistical mode for a short time window should represent the signal offset
for an “unloaded state”. The correlation between the strain mode (signal offset) and the
temperature at sensor S02 is shown in Figure 12f. A linear correlation can be observed, with
R2 ≈ 1 and αT = 13.33 × 10−6 ◦C−1. Therefore, the strain mode drift should not be higher
than the expected deformation due to the temperature variation for that same period, when
analyzing two consecutive short-time periods. Thus, if the strain mode variation ∆M0 is
higher than 25 µm/m (which is equivalent to a crack opening with a width of 0.0125 mm)
and ∆M0 > 15 µm/m · K × ∆T (Mo in µm/m and temperature in ◦C), the point is called
as problematic, and the system sends an alarm to the bridge managers.

Figure 12e shows the remaining points after applying the third filter, where four points
remain after the application of the three-level filtering. These four points resulted from
a demonstration during a visit at the bridge of the real-time analysis operation. A small
weight was hanged on the gauge-length of sensor S03, causing a rapid perturbation on its
measurement signal. Since the neighbor sensors S02 and S04 were not affected, a loss of
linearity between sensor S03 and its neighbors was detected by the correlation coefficients
CF_S02_S03 (ρ = 0.196) and CF_S03_S04 (ρ = 0.10), thus triggering the first filter (ρ < 0.9).
The slight change in the gauge-length curvature due to the added weight also produced
an immediate peak-to-peak amplitude of 640 µm/m, which triggered the second filter
(u > 60 µm/m). Finally, after the initial perturbation caused by the hanging of the weight,
the system went back to equilibrium, and the strain mode from sensor S03 suffered a drift
of 222 µm/m (equivalent to a crack opening of w ≈ 0.1 mm) due to the gauge-length
elongation caused by the change on its curvature. Hence, the third and final filter was
triggered, and the algorithm sent an alarm about this unexpected event. The sudden event
of an unusual peak-to-peak amplitude associated with the loss of linearity could indicate
structural damage, such as the rupture of a prestressed tendon caused by, e.g., the passing
of an over-weighted truck or corrosion in the tendons. The follow-up mode drift suggests
that the gauge-length abruptly changed, which is a good indicator that a crack opening or
an unusual relative displacement between the sensor’s anchoring occurred.

To better understand the unexpected event depicted in Figure 12e, the strain data from
sensors S02 and S03 for the three consecutive one-minute time windows τn,(i−1), τn,i, and
τn,(i+1) (timestamps and duration in Table 2) is shown in Figure 13. For each time window,
the statistical strain mode Mo, and the mean temperature T for sensor S03 is shown, as well
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as the correlation coefficient ρ between sensors S02 and S03 (CF_S02_S03). The statistical
parameters are summarized in Table 3. The strain signals are depicted after removing the
strain offsets, which is done by subtracting the strain mode from the raw strain signal.

Table 2. Recorded time windows in Figure 13: Timestamps and duration.

Time Window Initial Timestamp Final Timestamp Duration

τn,(i−1) 10:31:48 10:32:48 00:01:00
τn,i 10:32:48 10:33:48 00:01:00

τn,(i+1) 10:33:48 10:34:48 00:01:00
Recorded on 8 September 2020. Time format: hh:mm:ss.
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Table 3. Statistic parameters for sensors S02 and S03 during the analysed time windows (Table 2).

Sens.

Time Window

τn,(i−1) τn,i τn,(i+1)

u
(µm/m)

Mo
(µm/m)

¯
T (◦C) ρ

u
(µm/m)

Mo
(µm/m)

¯
T (◦C) ρ

u
(µm/m)

Mo
(µm/m)

¯
T (◦C) ρ

S02 26.3 5.5 15.2
1.0

27.1 5.6 15.2
0.196

8.1 5.8 15.2
1.0S03 29.9 23.8 17.2 640.1 24.9 17.2 15.3 246.9 17.2

During the time window τn,i, the unexpected event in the sensor S03 signal begins at
timestamp 10:33:27 h. It can be observed that the sensor S03 strain signal displays unusual
behavior, which deviates from its neighbor sensor S02. The correlation coefficient identifies
the disagreement between sensors S02 and S03, with ρ = 0.196 at τn,i, therefore triggering
the first filter (ρ < 0.9) of the three-step real-time analysis. Next, the second filter examines
the peak-to-peak strain amplitude u during τn,i. A maximum u of 640 µm/m is recorded,
thus triggering the second filter (u > 60 µm/m). Finally, the last filter comes into action,
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where the sensor S03 strain mode variation ∆Mo and mean temperature variation ∆T
between the previous and the subsequent time windows are verified. It can be observed
that the strain mode and temperature variation between the previous time windows τn,(i−1)

and τn,i were ∆Moi,(i−1) = 1.1 µm/m and ∆Ti,(i−1) = 0.015 K, which is not sufficient to
trigger the third filter (∆Mo > 25 µm/m and ∆Mo > 15 µm/m·K × ∆T = 0.225 µm/m).
However, after the strain perturbation in sensor S03 at τn,i takes place, the strain mode
variation in the subsequent time window τn,(i+1) detects the new signal offset for sensor S03,
caused by the elongation of its gauge-length. The strain mode and temperature variation
between the subsequent time windows τn,(i+1) and τn,i were ∆Mo(i+1),i = 222 µm/m and
∆T(i+1),i = 0.021 ◦C, finally passing the third and last filter and triggering the alarm call.

In Figures 14–16, the correlation coefficients for every pair of neighboring sensors
from S01 to S27 are represented in box plots for the period from 14 July to 6 November
2020 (116 days). In Figure 14, the first filter is displayed as a threshold line at ρ = 0.9.
From a total of over 184,000 measured time windows τn, 11,246 points were below the
threshold. Although about 94% of the measuring points did not pass the first filter, there
would still be many alarms, if only the first filter were used, triggering about 97 alarms
per day. Figure 15 shows in detail the correlation coefficient between sensors S14 and S15,
where the distribution density, as well as the enlarged box plot, are depicted. It can be
noticed that the mean and median values are close to one for well-correlated sensors, and
the data dispersion is small. When the second filter is applied (ρ < 0.9 and u > 60 µm/m),
as shown in Figure 16, 36 points remain below the threshold. Nonetheless, there would
be an alarm triggered every three days, considering just the first and the second filters.
Finally, when the third filter level is engaged, only six points remain Figure 16). Four out
of the six remaining points are related to the demonstration described earlier, where the
small weight was hanged on the sensor S3’s gauge-length, provoking a perturbation in its
strain signal and thus generating two alarms between sensors S02 and S03, and two alarms
between sensors S03 and S04. The other two outliers are associated with the correlation
coefficients CF_S12_S13 and CF_S13_S14.
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From Figure 14, it is seen that the sensors located along the spans—namely sensors
S01–S06, S10–S18, and S22–S27—are linearly correlated with their neighbor sensors, having
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medians and narrow interquartile ranges above 0.9 for the correlation coefficient, and a
small number of outliers. The similar behavior can be observed between sensors S07–S09
and S19–S21, located on the massive cross-section at the intermediate supports. However,
the first quartile of the correlation coefficients CF_S08_S09 and CF_S19_S20 is smaller than
0.9. Yet, the correlation coefficients for the sensors located at the transition between the
section with hollow-cores and the massive cross-sections (Figure 2) have a low correlation
level. The coefficient CF_S09_S10, e.g., has a median of 0.44 and dispersed data, which
can be seen from the wide interquartile ranging from 0.27 to 0.68. The low correlation
level at locations, where the structure’s flexural rigidity changes abruptly are expected on
statically indeterminate systems, since the internal loads and deformations distributions
are a function of the structural rigidity.

It can also be observed from Figure 14 that the correlation coefficients CF_S12_S13
and CF_S13_S14 have a large number of outliers when compared with the other sensors
located at the spans, with 4137 outliers out of 14,740 points (28%), and 3,590 outliers out
of 15,187 points (24%), respectively. Not only is the number of outliers high, but they are
in a great quantity smaller than 0.9. While the correlation coefficients for sensors S02–S04,
e.g., had only 0.156% of their outliers smaller than 0.9 (Figure 12a), the same rate goes
up to 5.163% for the correlation coefficients CF_S12_S13 and CF_S13_S14. Even though
the number of outliers with values smaller than 0.9 is high, both correlation coefficients
still have a median close to one and narrow interquartile ranges, suggesting a continuous
structural dynamic behavior along with sensors S12–S14. Moreover, the low correlated
points were always related to the strain signal from sensor S13, either due to a sudden drift
in its offset signal or to a low-frequency vibration event after a vehicle’s crossing. This
behavior could indicate that the segment covered by the sensor S13 has a higher level of
cumulative degradation than its neighbor sensors. Nonetheless, only two points related to
sensor S13 triggered the three-step real-time analysis, as shown in Figure 16.

5.2. PCA Post-Processing

The principal components analysis (PCA) is performed to evaluate each sensor’s
contribution to the system’s behavior and how they intercorrelate during the crossing of
vehicles. A single vehicle’s crossing is analyzed to demonstrate how the PCA works and
how the results are interpreted. The example event took place on 10 December 2019 and
comprises a time window τn with 5 s (1000 samples per sensors) of measurement data
during a heavy vehicle crossing in the northern direction. The longitudinal sensors are
divided into two groups for analysis according to their driving lanes location. Group A
includes sensors S01–S27, and group B contains sensors S28–S54 (Figure 3). The results will
be demonstrated only for group A strain lines, as shown in Figure 17.

First, the data set must be organized into a single matrix for the analyzed time window
τn, where each column corresponds to a sensor Si, and each line to an observation tn, where
i is the sensor’s number and n the data sample, as follows:

S(τ1000) =

 S1(t1) · · · S27(t1)
...

. . .
...

S1(t1000) · · · S27(t1000)


27 × 1000

, for i = 1 to 27 and n = 1 to 1000. (5)

After normalizing the data matrix, the covariance matrix is constructed, and its
eigenvalues and eigenvectors are obtained. There are many eigenvectors as there are
variables, and each eigenvector has many elements as the number of variables. Hence, the
eigenvectors form a 27 × 27 matrix, given that group A has 27 sensors.

The principal components (PC) matrix is obtained by sorting the eigenvectors by their
eigenvalues in decreasing order, where the first few principal components explain most of
the data variance. Figure 18 shows a scree plot with the decreasing rate at which the PCs
explain the variance. The first four PCs explain 95.14% of the total variance, the first and
the second being responsible for 82.87%.
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Figure 19 shows line plots for the first four PCs’ elements for each sensor in the
analyzed group A (S01 to S27). From now on, the elements of a PC will be designated
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as loading. The calculated loadings from the SHM data are plotted with circle markers
and full-line, while the loadings estimated from a calibrated FE model are plotted with
x-markers and dashed lines. The normalized root mean square error (NRMSE) between
the FE model results and the SHM measured data is 1.92% for the first PC; 2.46% for the
second PC, and the second PC; 2.75% for the third PC; and 3.13% for the fourth PC.
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It can be noted from Figure 19a that sensors S10–S18, located in the mid-span, have
positive loadings for the first PC, while all sensors located in one of the side spans or in
the columns’ region have negative loadings for the first PC. In addition, the line plot for
the first PC loadings is symmetric with respect to a vertical axis at sensor S14. Loadings
with the same signal mean that their variables are directly correlated, while variables that
have loadings with different signals are inversely correlated. Likewise, variables with
higher absolute loadings have a more considerable variance than variables with absolute
smaller loadings.

For example, the first PC loadings for sensors S03 and S13 are −0.17 and 0.24, respec-
tively. Since the original data set is composed by the longitudinal strain measurements
during a vehicle’s crossing, and we analyze the first PC, it is likely that the strain lines’
behavior from S03 and S13 is inversely correlated. In fact, it can be seen from Figure 17
that the strain lines S03 and S13 always have opposite signals and opposite inclinations.
Moreover, the absolute loading value for sensor S13 is larger than for sensor S03, reflecting
the more considerable variance of sensor S13.

The second PC (Figure 19b) is most likely related to the shear deformation during
the vehicle’s crossing. The second PC’s loadings have absolute maximal values at the
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intermediary columns (≈0.30) and close to the southern and northern abutment (≈0.25),
where the shear force is usually larger. Unlike the first PC, the second PC’s line plot is
symmetric about an origin defined by the horizontal zero-line and a vertical line at sensor
S14. When the vehicle approaches sensors S08 and S09 at the first column, for example,
the shear force reaches its maximal absolute value at that location. In contrast, the shear
force at the second column (sensors S19 and S20) is close to zero at the same timestep (since
the first column absorbs the shear load as the vehicle is standing on it). Likewise, as the
vehicle approaches the sensors S19 and S20 at the second column, the shear force at the
second column will reach its maximal value, while the shear force at the first column tends
to zero at the same moment. The second PC’s loadings at the two described regions have
approximately the same absolute value of 0.30, but with opposite signs. Furthermore, the
summation of the second PC’s loadings is zero, just as the summation of the shear energy
for a moving load crossing the structure should also be.

Although the third and fourth PCs (Figure 19c,d) explain together only 12.27% of the
system’s variance, their loadings are consistently distributed and resemble the bending
moment diagram (third PC), and the shear force diagram (fourth PC) for a static uniform
distributed loading.

Figure 20 shows a bi-plot, where the loadings of the 27 sensors for the first two PCs
are plotted as vectors in the new coordinate system formed by the first and second PCs
axis. The direction and length of the vectors indicate how each variable contributes to the
two PCs. The variables’ vectors are systematically distributed in the bi-plot’s quadrants.
Sensors S01 to S06 located at the bridge’s first span are in the second quadrant, sensors
S22 to S27 located at the third span are in the third quadrant, sensors S10 to S18 located at
the mid-span are symmetrically distributed about the first PC axis in the first and fourth
quadrants. Sensors S07 to S09 and S19 to S21 located at the massive section at the columns
are in the third and second quadrants, respectively.
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Figure 20 shows each observation’s scores for the first and second PCs as red dots.
The scores are a linear combination of the variables at each observation, weighted by their
respective loadings, and then scaled with respect to the maximum vectors’ length. Since
there are 1000 observations (1000 samples per sensor in the original dataset), there are
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1000 pair of scores with scaled coordinates in the first and second PCs axis. The scores’
path is related to the vehicle’s movement and indicates the direction of most variance after
each observation. As it can be seen, the first score is located close to the origin. As the
vehicle enters the bridge, the scores’ path enters into the second quadrant, moving in the
same direction as the vectors for sensors S01–S06. At some point, the scores’ path changes
its direction towards the origin as the vehicle closes to the first column. After the vehicle
enters the mid-span, the scores move inside the fourth quadrant, where sensors S10–S13
are located. When the vehicle reaches the bridge’s midpoint at sensor S14, the scores’ path
changes once again its direction towards the origin inside the first quadrant, where sensors
S15–S18 are. Lastly, the scores’ path moves in the same direction as the vectors for sensors
S22–S27 in the third quadrant, and changes its directions towards the origin as the vehicle
moves to the end of the bridge.

Finally, the same correlation coefficients calculated by the novel real-time analysis
algorithm (as explained and demonstrated in Sections 4.1 and 5.1) can be extracted from the
covariance matrix of the data matrix S(τ1000) defined in Equation (5). Thus, the correlation
coefficient between two neighbouring sensors is given by the element cov(si, si+1) of the
covariation matrix C(τ1000) of the data matrix S(τ1000), with i = 1 to N − 1, where N is
the number of sensors (Equation (4)). The correlation coefficient CF_S02_S03 shown in
Figure 12a, for example, is equivalent to the covariance element cov(s2, s3).

Figure 21 shows the correlation coefficients calculated by the novel real-time analysis
algorithm for the heavy vehicle’s crossing, defined in Figure 17. Likewise, the corre-
sponding covariance elements are calculated using the calibrated FE model and plotted
for comparison. The calculated correlation coefficients from the SHM measurement data
are plotted with circle markers and full-line. In contrast, the estimated values from the
calibrated FE model are plotted with x markers and dashed lines. The normalized root
mean square error (NRMSE) between the FE model results and the SHM measured data
is 1.92%.
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analysis algorithm, while the estimated values from the FE model were extracted from the elements
of the covariance matrix C(τ1000) of the data matrix S(τ1000).
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6. Research Constraints

The deployed monitoring system is a compelling demonstration of a real-case SHM
application. The authors sought to address the main weaknesses that restrict the transfer
from research to industrial practice. However, some limitations should be noted. The first
is the sensors’ placement that prioritizes the longitudinal length coverage, leaving some
regions unattended, such as the deck slab’s sides and the columns. The second limitation
concerns the absence of a load test to calibrate the system. Although the consistency
between the measured data and what the structural theory predicts is undoubted, it is not
yet possible to directly relate the measured strains to the crossing vehicle’s actual weight.
Moreover, the system operates for approximately one year now, limiting the conclusions
about the structure’s behavior to this short period.

7. Conclusions

In this work, the authors presented a novel real-time analysis algorithm for detect-
ing unexpected events on a real-sized prestressed concrete bridge, subjected to random-
dynamic loads and temperature variation, and a post-processing method based on the
principal component analysis (PCA). The methods were demonstrated on a high sensor-
count SHM system based on long-gauge FBG sensors installed on a real-sized prestressed
bridge in Neckarsulm, Germany. Additionally, the authors describe the data management
system developed to enable data condensation and translate the measurement data to
reliable and meaningful information.

The proposed real-time analysis’s efficacy was demonstrated by analyzing the history
of the three-step validation parameters extracted from the measured data from 14 July to 6
November 2020. First, the three-step validation filtering was described in the example of
the data from sensor S03. The steps were:

1. Filtering the correlation coefficients between sensor S03 and its neighbors,
2. filtering relevant peak-to-peak amplitudes, and
3. filtering the strain mode variation,

Leaving at the end one alarm call related to an unexpected event, provoked on sensor
S03 during a visit to the bridge. Next, the unexpected event at sensor S03 was shown,
where the strain signals from sensors S02 and S03 were plotted for the one-minute time
window that trigged the event, explaining in detail the flow of the three-step validation
process. Finally, the overall results for all sensors in the quasi-distributed line S01–S27
during the three-step validation process were presented.

Additionally, the strain signals from sensors S01 to S27 were analyzed using the PCA
during a heavy vehicle crossing. The first four principal components were used to evaluate
the dependency between the strain sensors’ measurements and highlight the correlation
coefficient analysis’s reliability to detect behavior changes.

From the results presented in this work, the following conclusions are drawn:

• A robust data management system is essential to handle a high sensor-count monitor-
ing system’s raw data in a real-case SHM application. The data management solution
must be able to pre-process the raw data and store it on a reliable database and allow
the efficient data selection for post-processing and visualization. Automated scripts
should carry out both pre- and post-processing to optimize the speed and the reli-
ability of the data handling. The monitoring system in Neckarsulm generates over
70 thousand measurement points per second, leading to about 600 GB of raw data
per month, from which less than 3 GB of meaningful information are permanently
stored in the database and are available for post-processing. It would be unbearable
to manage such volume of data manually or using traditional spreadsheet software.

• The area coverage and sensor-count are essential aspects to be considered during the
development and deployment of a real-size SHM system. A large area of the structure
must be measured to correctly depict its behavior and allow the detection of local
damages, such as cracks and ruptures in prestressed tendons. The adopted solution



Sensors 2021, 21, 2871 29 of 32

with long-gauge FBG sensors offers a comprehensive area-coverage. Local damage can
be detected within every two-meter segment along the two quasi-distributed sensor
arrays in the longitudinal direction, and within every 1.35-m segment of the five quasi-
distributed sensing arrays in the transverse direction. Moreover, the quasi-distributed
sensing arrays can be used to analyze the cross-correlation between the sensors to as-
sess how each structure’s segment interacts with one another. This analysis allows the
call of unexpected structural behavior and the long-term evaluation of the structural
integrity by checking for deviations in the cross-correlation relationships.

• One important contribution of the novel damage detection algorithm is its implemen-
tation inside the data acquisition software, enabling the execution of robust analysis
during runtime. The data evaluation is performed parallel to the measurements,
before data storage and data transfer takes place. Therefore, large amounts of data
can be analyzed to detect anomalous behavior as soon as the sensors measure them,
without the need and the computational effort to store and transfer thousands of
measurement lines for later processing.

• The principal component analysis is a powerful method to reduce large datasets into
smaller ones that still hold essential information about the original data. For example,
it was possible to reduce a 27 by 1000 matrix of strain measurement points, generated
during the crossing of a heavy vehicle, into a 27 × 27 principal components matrix.
The first four principal components explain over 95% of the strain data’s variance,
and allow an assessment of how each variable contributes to the overall behavior and
how they interact with one another. The normalized root-mean-square error (NRMSE)
between the PCA of the measured data and the estimated results from the calibrated FE
model showed that the monitoring system itself is consistent. The strain measurements
are closely and regularly correlated, which endorses the use of correlation coefficients
as the critical parameter in the proposed real-time analysis algorithm.

The proposed real-time analysis algorithm is able to address many known limitations
of a real-case SHM deployment. First of all, the algorithm runs automatically in real-
time during the acquisition software’s runtime without the need for human interference
and can detect unexpected changes with low false call rate by the minute. Secondly,
the algorithm can tell the unexpected changes’ location with a resolution as small as the
sensor’s gauge-lengths in combination with the high sensor-count and quasi-distributed
sensing arrays. Moreover, the three-step validation process for alarm triggering is not
tied to pre-defined failure modes, absolute limit values, or other known switches. On the
contrary, it responds to random and dynamic loads, and it is free from environmental
influences, such as temperature variation.

Another significant point is that the real-time analysis results can be stored and
used later for post-processing. The results’ series can then be used to evaluate long-term
structural changes. Finally, the proposed algorithm delivers a reliable notification system
that allows bridge managers to track unexpected events with valuable information for
decision-making.
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