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Abstract: Electricity is a vital resource for various human activities, supporting customers’ lifestyles
in today’s modern technologically driven society. Effective demand-side management (DSM) can
alleviate ever-increasing electricity demands that arise from customers in downstream sectors of a
smart grid. Compared with the traditional means of energy management systems, non-intrusive
appliance load monitoring (NIALM) monitors relevant electrical appliances in a non-intrusive manner.
Fog (edge) computing addresses the need to capture, process and analyze data generated and
gathered by Internet of Things (IoT) end devices, and is an advanced IoT paradigm for applications in
which resources, such as computing capability, of a central data center acted as cloud computing are
placed at the edge of the network. The literature leaves NIALM developed over fog-cloud computing
and conducted as part of a home energy management system (HEMS). In this study, a Smart HEMS
prototype based on Tridium’s Niagara Framework® has been established over fog (edge)-cloud
computing, where NIALM as an IoT application in energy management has also been investigated in
the framework. The SHEMS prototype established over fog-cloud computing in this study utilizes
an artificial neural network-based NIALM approach to non-intrusively monitor relevant electrical
appliances without an intrusive deployment of plug-load power meters (smart plugs), where a two-
stage NIALM approach is completed. The core entity of the SHEMS prototype is based on a compact,
cognitive, embedded IoT controller that connects IoT end devices, such as sensors and meters, and
serves as a gateway in a smart house/smart building for residential DSM. As demonstrated and
reported in this study, the established SHEMS prototype using the investigated two-stage NIALM
approach is feasible and usable.

Keywords: artificial intelligence; cloud computing; demand-side management; edge computing;
energy management system; non-intrusive appliance load monitoring; smart houses

1. Introduction

Recent distinct disciplines and breakthrough technologies, such as the Internet of
Things (IoT), artificial intelligence (AI), big data analytics, and fog (edge)-cloud computing,
are trending upwards in today’s modern technologically driven society. These technologies
are increasingly becoming fundamental constituents of cities, such as in smart houses,
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buildings, and factories. Electricity is a vital resource that supports day-to-day activities
and lifestyles, powering important infrastructure and services conducted for and used
by customers [1]. Worldwide energy consumption is expected to significantly increase
over the next few years [1,2]. Unlike alternative energy sources, such as wind and solar
energy, which are clean and renewable, fossil fuel exploitation to meet ever-increasing
electricity demands has a strong environmental impact on global warming and climate
change. In the last few years, traditional power grids have been reinforced into intelligent,
highly reliable, and fully automated grids [3]. The “smart grid” paradigm copes with
ever-increasing electricity demands by customers from downstream sectors of a grid, i.e.,
residential, commercial, and industrial sectors, to name but a few. In a smart grid, smart
meter data analytics holds tremendous potential for power utilities to (1) understand
the power demands of their customers and (2) manage, plan, and optimize their power
grid to be efficient and smart. Smart buildings, which integrate ongoing technological
IoT advancements with AI in a smart city in a smart grid, represent a research branch of
ubiquitous computing that involves the incorporation of AIoT (AI across IoT) technologies
into buildings to improve customers’ comfort, healthcare, safety, security, and energy effi-
ciency [1,4,5]. AIoT technologies support the intrusive deployment of controllers, sensors,
actuators, and other advanced metering devices that make smart buildings possible and
realizable. Among different types of buildings, smart houses have received great research
interest, particularly from the point of view of energy efficiency [1].

In smart houses, the advent of AIoT has enabled the development of smart home
energy management systems (HEMSs), relying on multiple IoT end devices such as sen-
sors/meters and actuators networked in the Internet. These devices communicate via
the Internet with a cloud-centered server serving as cloud computing, which is used for
data science analytics to optimize electricity demands based on demand response (DR)
prices. Most of the existing solutions in [6–18] have featured the viewpoints of HEMSs.
However, the authors of [6–9,11,13,18] implemented the HEMSs based on cloud computing.
The drawbacks of such a HEMS implemented by a centralized paradigm of AIoT will be
pointed out later in this section. Taking advantage of advanced metering infrastructure
(AMI), which allows bi-directional interaction between both demand and supply sides of
residential customers and power utilities for grid information retrieved from and gathered
in smart grids, power utilities can manage grid resources and infrastructure at a household
level in an optimal way. This kind of load management is particularly valuable for power
utilities, as it allows power utilities to predict future electricity demands and address
ever-increasing electricity demands requested by residential customers. Smart houses
using a HEMS that optimizes residential energy consumption in response to DR signals
to target efficient load management are one of the key enablers in a smart grid, not only
by supporting home energy management in terms of grid resources and infrastructure,
but also by contributing to energy efficiency overall. Conducted in a smart house, which
is equipped with a power utility-owned (commercial) smart meter and is linked via AMI
to a smart grid, a HEMS has the ability to interact with individual electrical appliances
via IoT devices such as power meters deployed and installed intrusively for them for the
purpose of load management. Such a system allows power utilities to come up with DR
policies for residential DSM. By doing so, the house environment conducting a HEMS
does not run on guesswork for its load management. DSM comprises a collection of ap-
proaches which are used to improve energy efficiency, such as “time of use” and DR for
demand-side regulation [19]. DR is an opportunity for customers to play a crucial role in
reducing or shifting their electricity use in response to time-based tariffs or other forms
of financial incentives [20]. Considering AMI in a smart grid, smart metering technology
enables the prediction of future electricity demands, which can be used by policymakers
to make decisions regarding increasing electricity demands. The ongoing development
and deployment of smart meters [21,22] has made DSM that deals with ever-increasing
electricity demands feasible [23,24]. HEMSs that optimize residential energy consumption
in response to DR signals for DSM play an important role in a smart grid.
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Figure 1 shows two different types of appliance load monitoring approaches, namely,
intrusive appliance load monitoring (IALM, refer to Figure 1a) and non-intrusive appliance
load monitoring (NIALM, refer to Figure 1b). The term “non-intrusive” points out the
distinction to IALM. Although HEMSs can be used for residential DSM in a smart grid,
households are instrumented (i.e., they are instrumental via deployment and installation
of plug-load power meters). Power meters (smart plugs) must be deployed and installed
intrusively for the relevant individual electrical appliances, as shown in Figure 1a. By con-
trast, NIALM, which is an efficient and cost-effective load monitoring approach developed
for energy disaggregation in residential DSM contexts [25], makes it feasible for customers
to keep track of fine-grained energy consumption of each relevant electrical appliance
in their household without an intrusive deployment and installation of plug-load power
meters. Based on individual characteristics of relevant electrical appliances, NIALM figures
out a breakdown of whole-house energy consumption, where circuit-level energy consump-
tion is decomposed into appliance-level (appliance-by-appliance) energy consumption
by means of complex AI applied to composite (aggregate) current and voltage signals
acquired by one single minimal set of plug-panel current and voltage sensors. NIALM can
be part of an HEMS in a smart house in a smart grid, which has gained popularity in recent
years for DSM (primarily in residential contexts). With NIALM, only one minimal set of
current and voltage sensors installed at the electrical service entry point of a practical field
of interest is required, as shown in Figure 1b. NIALM represents a minimum invasion of
privacy [24] for energy disaggregation. NIALM has become more and more widespread in
recent years [24].
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Figure 1. Appliance load monitoring approaches: (a) Intrusive appliance load monitoring (IALM); (b) non-intrusive
appliance load monitoring (NIALM). Besides IALM, NIALM conducted in a practical field of interest such as a smart house
can draw several inferences such as appliance-level energy consumption from total (circuit-level) energy consumption
acquired by only one minimal set of plug-panel current and voltage sensors (or alternatively retrieved from a single source
such as a power utility-owned smart meter [21,22]) instead of deployed and installed plug-load power meters (smart plugs)
for relevant individual electrical appliances.

Edge computing overhauls cloud computing—a centralized paradigm of AIoT [26,27].
The studies in [6–18] have featured HEMSs. However, the HEMSs that were implemented
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in [6–9,11,13,18] are based on cloud computing for residential DSM. Additionally, in [10],
proposing a new framework of HEMSs based on both centralized energy disaggregation
and distributed appliance controls, no practical evaluation is demonstrated for the eval-
uation of the feasibility of the framework as a whole. Moreover, the HEMSs that were
implemented in [7–9] monitor relevant electrical appliances in an intrusive way. NIALM
approaches that monitor relevant electrical appliances in a non-intrusive fashion have been
developed significantly in [18,25,28–34]. These approaches can provide accurate energy
disaggregation in many practical cases. Nevertheless, they leave NIALM developed over
fog-cloud computing as part of an HEMS. The process of NIALM should be split into
two stages: the first stage is that AI training is run on a powerful backend server serving
as cloud computing for off-line training, and the second stage is that AI trained with a
satisfactory level of performance in the cloud is run on an ARM® (advanced reduced
instruction set computing machine) processor-based embedded system, i.e., the core entity
of a (residential) EMS, for the purpose of edge computing for on-line load monitoring.
Edge computing overhauls cloud computing, extending the capabilities of cloud com-
puting close to the edge of the network, and works as a collaborative learning technique
with cloud computing for IoT applications. This technology has recently been developed
and recognized as a promising, efficient decentralized paradigm of AIoT [26,35,36]. Edge
computing, which aims to displace data science analytics in the cloud as close as possible
to the edge of the network [27,37], can prevent network latency for latency-sensitive IoT
applications (where network connectivity is not always available) [38,39] and fulfill the
lack of location awareness as well as data mobility for IoT end devices [36] deployed in
practical fields of interest (i.e., real-time responsiveness from heterogeneous sensor data
for local interpretable and actionable data insights can be guaranteed). Edge computing
has been foreseen as a remedy to alleviate the various issues of cloud computing [40,41].
The contributions of this study are summarized as follows.

• A newly developed smart home energy management system (SHEMS) prototype
based on Tridium’s Niagara Framework® has been developed and established over fog
(edge)-cloud computing, which can scale to highly distributed systems made of tens
of thousands of nodes/IoT end devices by embedded systems running the framework
software for a large-scale implementation in energy management as an example.

• A two-stage NIALM has also been investigated in the framework, as shown in Figure 2.
The newly developed SHEMS prototype utilizes the investigated two-stage NIALM
to non-intrusively monitor relevant electrical appliances without an intrusive de-
ployment of plug-load power meters (smart plugs). The complete NIALM approach
comprises data acquisition, event detection and feature extraction, and load recogni-
tion, involving the following two stages:

(1) An off-line training stage is achieved through AI (a deep-learning (DL)-
accommodated artificial neural network (ANN)-based load recognizer in
this study) that is trained and validated with a satisfactory level of perfor-
mance in load recognition in cloud computing; and

(2) An on-line load monitoring stage is processed on-site on the core entity of
the SHEMS prototype, an ARM® processor-based embedded system, as edge
computing, where well-trained and -validated AI in the cloud is remotely
deployed over the Internet at the edge of the network (real-time actionable
insights can be made on-site).

In this study, the core entity of the SHEMS prototype, which operates as the operating
nucleus of home energy management, is based on a compact, cognitive embedded IoT
controller that connects IoT end devices such as sensors and meters. The controller serves
as a gateway/SCADA (supervisory control and data acquisition) in a smart house/smart
building for residential DSM. The core entity of the SHEMS prototype is named the
“edge smart energy management controller” (eSEMC for short). As demonstrated and
reported in this study, the established SHEMS prototype is feasible and usable, where the
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NIALM approach is realized completely over fog-cloud computing with Tridium’s Niagara
Framework® and LINE Notify for the third-party push notification service is integrated
within the framework.
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This study is structured as follows: the methodology of the SHEMS prototype having
the complete two-stage NIALM is presented in Section 2; Section 3 shows the experimen-
tation; finally, this study is concluded with some possible future research directions in
Section 4.

2. Methodology

The developed SHEMS prototype considering a two-stage NIALM approach over fog-
cloud computing is described in this section. Section 2.1 describes the SHEMS prototype
based on Tridium’s Niagara Framework®. Section 2.2 describes the considered two-stage
NIALM in the SHEMS prototype where it is established over fog-cloud computing.

2.1. The SHEMS Prototype Based on Tridium’s Niagara Framework®

An HEMS in a smart house for residential DSM in a smart grid works as a bi-directional
communication interface between demand and supply sides, where a power utility an-
alyzes residential energy consumption data from grid-tied smart houses that are aware
of DR signals and correspondingly optimize their power demands. A typical HEMS in
a smart house for residential DSM in a smart grid is mainly made up of the following
components: (1) a power company-owned (commercial) smart meter that communicates
with a power utility’s cloud server via AMI. The meter is used to continually gather
whole-house energy consumption data with a time resolution, for example, of 15 min
(as expected, the NIALM methodology can be applied to smart meter data); (2) a central
home gateway networked through the Internet with a 3rd-party cloud server where a
broad range of energy services such as energy savings and energy conservation is provided
for customers. The power utility’s cloud server features IP (internet protocol)-based DR
programs which are published to and received by customers/the central home gateway for
load management; and (3) the concerned/relevant electrical appliances that are monitored
by individual plug-load power meters (smart plugs) and operated efficiently in response to
DR programs for load management. As realized practically for residential DSM, an HEMS
communicates with a cloud-centered server where the system has not been designed and
implemented in consideration of fog-cloud computing. Additionally, the HEMS monitors
electrical appliances in an intrusive manner, as plug-load power meters (smart plugs) are
installed for individual relevant electrical appliances. Therefore, an SHEMS prototype
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considering NIALM over fog-cloud computing has been designed and implemented in this
study. Figure 3 shows the system architecture of the designed and implemented SHEMS
prototype based on the Niagara Framework® considering a two-stage NIALM approach
over fog-cloud computing. The prototype is based on Tridium’s Niagara Framework®. In
the framework in Figure 3, an ARM® processor-based embedded system, the core entity of
the SHEMS prototype, is configured and used as edge computing. Furthermore, a cloud-
centered machine, a laptop computer, is configured and used for cloud computing. The
embedded system is networked via the Internet with the cloud-centered machine for the
purpose of collaborative learning. Since the goal of residential DSM in a smart grid is to
optimize customers’ power demands by electrical appliances, the SHEMS using the two-
stage NIALM approach over fog-cloud computing identifies relevant electrical appliances
in a non-intrusive fashion. The Niagara Framework® [42] is a universal software infras-
tructure that allows companies/developers to build custom, web-enabled applications for
managing, automating, and controlling smart IoT devices in real time over the Internet.
Smart IoT devices include (1) monitoring and control devices, (2) sensors, (3) metering
systems, and (4) embedded controls on packaged equipment systems. In this study, the
Niagara Framework® is conducted and further developed for energy service—NIALM for
(residential) DSM, which is a part of building automation—automatic centralized control of
a building’s HVAC (heating, ventilation and air conditioning), lighting, and many other de-
vices. The Niagara Framework®, which uses the Java virtual machine (JVM) as its common
runtime environment across various operating systems on different hardware platforms,
is a Java software framework for integrating disparate building automation systems into
a single, manageable interface that can be run on multiple hardware platforms [42]. The
framework can scale from small embedded systems (embedded controllers developed as
IoT end devices) to high-end servers (central machines configured as the cloud). Embedded
systems that are configured, developed, and used in the framework are capable of running
JVM. This excludes low-end devices without a 32-bit processor and several megabytes
of RAM (random access memory). The framework can also scale to highly distributed
(geographically distributed) systems made of tens of thousands of nodes (IoT end devices)
running the framework software.

The Niagara Framework® can be hosted on a wide range of platforms, from small
embedded systems (embedded controllers) to high-end servers, as mentioned above.
Figure 3 also shows the simplest configuration of a single networked, embedded JACE®

(Java Application Control Engine) controller [42,43] that is integrated with a cloud-centered
machine for NIALM over fog-cloud computing in this study, where the single-networked,
embedded JACE® controller is based on the FIC MF0230 controller [43] developed by
First International Computer, Inc. [43]. Figure 4 shows the system configuration of the
designed and implemented SHEMS prototype based on the framework consisting of a
supervisor PC/laptop and a single-networked, embedded JACE® controller in Figure 3,
where multiple networked, embedded JACE® controllers can be combined and managed in
a distributed network for the purpose of monitoring multiple house environments, which
includes a supervisor PC (laptop, workstation or server-class machine) that operates as a
cloud-centered server for managing multiple-networked, embedded JACE® controllers as
edge computing and for providing potential for various user-centric IoT applications. In
Figure 4, the networked, embedded JACE® controller that collaborates together with the
supervisor PC/laptop working as the cloud in the framework acts as a gateway (SCADA)
named “eSEMC” for NIALM in this study for (residential) DSM.



Sensors 2021, 21, 2883 7 of 25

Sensors 2021, 21, x FOR PEER REVIEW 7 of 25 
 

 

BACnet (building automation and control network), DNP3 (distributed network protocol 
3), IEC 61850, and other legacy industrial communication protocols for the achievement 
of interoperability in (industrial) IoT, and is further analyzed in the cloud. Developed and 
conducted as edge computing, it can process collected data on-site for real-time actionable 
data insights provided for the purpose of automating the involved apparatus and ma-
chines intelligently. In this study, eSEMC working as edge computing in the framework 
is based on FIC’s MF0230 controller [43]. In this study, a two-stage NIALM approach has 
been developed in the framework over fog-cloud computing, where the immersion of AI 
into eSEMC, an ARM® processor-based embedded system, for the purpose of disaggre-
gating aggregated energy consumption data (or smart meter data) is achieved. eSEMC is 
referenced as a cognitive meter. 

Figure 4 also shows the Niagara software processes and communication protocols 
for the networked, embedded JACE® controller (i.e., eSEMC), which is remotely connected 
via the Internet with a supervisor PC/laptop running Workbench and managing the net-
worked, embedded JACE® controller in the framework. In the framework, the supervisor 
PC/laptop connected to the network is called a supervisor that acts as a cloud-centered 
server for managing the networked, embedded JACE® controller (multiple embedded 
JACE® controllers can be networked, combined, and managed in a distributed network 
for a large-scale demonstration of neighborhood-scale NIALM). In the framework, a wire-
less Wi-Fi AP (access point) router is configured. 

 
Figure 3. Developed smart home energy management system (SHEMS) prototype considering new two-stage NIALM 
over fog-cloud computing in this study, where the prototype is based on Tridium’s Niagara Framework®. The framework 
runtime is targeted for Java 8 SE compact3 profile compliant virtual machines (VMs). MATLAB® is suited and used as the 
cloud here. 

Figure 3. Developed smart home energy management system (SHEMS) prototype considering new two-stage NIALM
over fog-cloud computing in this study, where the prototype is based on Tridium’s Niagara Framework®. The framework
runtime is targeted for Java 8 SE compact3 profile compliant virtual machines (VMs). MATLAB® is suited and used as the
cloud here.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 4. Configuration of the Niagara Framework® that considers a supervisor PC/laptop and a single-networked, em-
bedded JACE® controller for SHEMS in this study. 

As shown in Figure 4, the four different Niagara software processes associated with 
the framework are (supervisor) station, Workbench, Daemon, and Web browser [42]. They 
are detailed below. 
 Station 

A station is an instance of the framework running on a platform—a supervisor or an 
embedded JACE® controller(s). It runs the Niagara components [42], pieces of self-describ-
ing software that can be assembled like building blocks to create new applications, of the 
(component-centric) framework. A station provides access for client browsers to view and 
control the Niagara components. 
 Workbench 

Workbench is an engineering tool, a JVM, that manages the Niagara components. A 
supervisor machine, which runs Workbench to accomplishes platform tasks such as 
launching and monitoring stations, has the tools to (1) serve as a central server (a single 
IP address) for delivering graphics and aggregated data for enterprise/user-centric IoT 
applications; (2) provide central database storage, a relational database management sys-
tem (RDBMS) such as MS SQL, Oracle, MySQL® or Hsql, for the purpose of collecting data 
from networked, embedded JACE® controller(s); (3) act as an archive destination/reposi-
tory for log and alarm data; and (4) provision (install/update) software modules including 
AI modules developed for an IoT application(s) in the cloud and deployed on-site on the 
networked, embedded JACE® controller(s) as edge computing. Based on this framework, 
for NIALM, this study develops AI that is trained in the cloud for off-line learning and is 
deployed via the Internet on the networked, embedded JACE® controller to support edge 
computing for on-line load monitoring. Niagara Cloud BaaS (backup as a service) [42] 
provides easy, secure, and scalable backups of Niagara stations on networked, embedded 
JACE® controllers (as edge IoT end devices) to Niagara Cloud. This service can be used to 
remotely backup networked, embedded JACE® controllers to a supervisor machine. Using 
Workbench on a supervisor machine as Niagara Cloud to networked, embedded JACE® 
controllers, one can configure automated backups by time or event triggers, or initiate a 
backup manually. For history databases, networked, embedded JACE® controllers as edge 

Figure 4. Configuration of the Niagara Framework® that considers a supervisor PC/laptop and a single-networked,
embedded JACE® controller for SHEMS in this study.

A gateway, SCADA or data concentrator allowing for remotely monitoring and control-
ling relevant apparatus and machines involved in an automated process such as building
automation collects data to be converted among different protocols such as Modbus, BAC-
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net (building automation and control network), DNP3 (distributed network protocol 3),
IEC 61850, and other legacy industrial communication protocols for the achievement of
interoperability in (industrial) IoT, and is further analyzed in the cloud. Developed and
conducted as edge computing, it can process collected data on-site for real-time actionable
data insights provided for the purpose of automating the involved apparatus and machines
intelligently. In this study, eSEMC working as edge computing in the framework is based
on FIC’s MF0230 controller [43]. In this study, a two-stage NIALM approach has been
developed in the framework over fog-cloud computing, where the immersion of AI into
eSEMC, an ARM® processor-based embedded system, for the purpose of disaggregat-
ing aggregated energy consumption data (or smart meter data) is achieved. eSEMC is
referenced as a cognitive meter.

Figure 4 also shows the Niagara software processes and communication protocols for
the networked, embedded JACE® controller (i.e., eSEMC), which is remotely connected
via the Internet with a supervisor PC/laptop running Workbench and managing the net-
worked, embedded JACE® controller in the framework. In the framework, the supervisor
PC/laptop connected to the network is called a supervisor that acts as a cloud-centered
server for managing the networked, embedded JACE® controller (multiple embedded
JACE® controllers can be networked, combined, and managed in a distributed network for
a large-scale demonstration of neighborhood-scale NIALM). In the framework, a wireless
Wi-Fi AP (access point) router is configured.

As shown in Figure 4, the four different Niagara software processes associated with
the framework are (supervisor) station, Workbench, Daemon, and Web browser [42]. They
are detailed below.

• Station

A station is an instance of the framework running on a platform—a supervisor or
an embedded JACE® controller(s). It runs the Niagara components [42], pieces of self-
describing software that can be assembled like building blocks to create new applications,
of the (component-centric) framework. A station provides access for client browsers to
view and control the Niagara components.

• Workbench

Workbench is an engineering tool, a JVM, that manages the Niagara components.
A supervisor machine, which runs Workbench to accomplishes platform tasks such as
launching and monitoring stations, has the tools to (1) serve as a central server (a single
IP address) for delivering graphics and aggregated data for enterprise/user-centric IoT
applications; (2) provide central database storage, a relational database management system
(RDBMS) such as MS SQL, Oracle, MySQL® or Hsql, for the purpose of collecting data from
networked, embedded JACE® controller(s); (3) act as an archive destination/repository
for log and alarm data; and (4) provision (install/update) software modules including
AI modules developed for an IoT application(s) in the cloud and deployed on-site on the
networked, embedded JACE® controller(s) as edge computing. Based on this framework,
for NIALM, this study develops AI that is trained in the cloud for off-line learning and is
deployed via the Internet on the networked, embedded JACE® controller to support edge
computing for on-line load monitoring. Niagara Cloud BaaS (backup as a service) [42]
provides easy, secure, and scalable backups of Niagara stations on networked, embedded
JACE® controllers (as edge IoT end devices) to Niagara Cloud. This service can be used to
remotely backup networked, embedded JACE® controllers to a supervisor machine. Using
Workbench on a supervisor machine as Niagara Cloud to networked, embedded JACE®

controllers, one can configure automated backups by time or event triggers, or initiate a
backup manually. For history databases, networked, embedded JACE® controllers as edge
IoT end devices work with Niagara stations to collect data records at a regular specified
time interval. The local storage capacity for histories by Niagara stations installed on
networked, embedded JACE® controllers is also specified for data records that are collected
for and archived (exported/transferred) to Niagara Cloud. In this study, stores of NIALM
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data in a history database configured on the networked, embedded JACE® controller at the
edge of the network are committed regularly to Niagara Cloud where MySQL® is suited.

• Daemon

Daemon is a native process, which is used to boot stations and manage platforms (for
instance, platform configuration including IP settings is specified). Daemon functionality
is accessed through Workbench.

• Web browser

A standard web browser such as Internet Explorer (IE) or Chrome hosts one of
Niagara’s web user interfaces (UI) [42]. Niagara provides both server-side and client-side
technologies to build a web UI/human machine interface (HMI).

In the configuration of the framework in Figure 4, three network protocols integrate
the four different Niagara software processes. The three network protocols are Fox/Foxs
(Fox-secure) [42], Niagarad/platformtls (secure Niagarad) [42], and HTTP (HyperText
Transfer Protocol)/HTTPs (HyperText Transfer Protocol secure). These protocols are de-
tailed as follows.

• Fox/Foxs

Fox/Foxs is a proprietary TCP/IP (transmission control protocol/Internet protocol)
that is used for station-to-station and Workbench-to-station (i.e., the supervisor PC to the
controller) communication.

• Niagarad/platformtls

Niagarad/platformtls is a proprietary protocol, which is used for Workbench-to-
daemon communication. Additionally, in a supervisor station, it communicates with the
provisioning service, which automates the execution of software modules developed for
certain tasks and deployed on-site on remote-networked, embedded JACE® controllers.

• HTTP/HTTPs

HTTP/HTTPs is a standard protocol used by web browsers to access station web pages.
A web server can be configured on a supervisor PC, where RESTful (REpresentational
State Transfer) web service can be provided and where the protocol is based on HTTP.
Communications at the server side, a cloud-centered platform such as Microsoft Azure for
data storage and data science analytics, can rely on a variety of protocols including HTTP,
OPC (open platform communications), and SOAP (simple object access protocol)/MQTT
(message queueing telemetry transport)/REST). The Niagara MQTT driver can be used to
publish and subscribe Niagara points to Azure IoT hub, with the integration of Azure IoT
Hub with the Niagara MQTT client.

One or more additional protocols (drivers) communicate with field-specific devices
such as power meters (Modbus)/smart inverters (DNP3) for renewables (Driver XYZ,
Protocol XYZ, and Fieldbus XYZ). In this study, a single-phase power meter (ICP DAS’s PM-
3114 (Wiring: 1P4W-4CT) [44]), an IoT end device, is wired to the networked, embedded
JACE® controller (an IoT device), configured, and used to acquire aggregated RMS (root
mean squared) power measurements, where acquired RMS power measurement data
are transmitted from the power meter to the networked, embedded JACE® controller
(eSEMC) via the serial Modbus RTU (remote terminal unit) protocol over RS-485 and are
then analyzed through the two-stage NIALM in the framework/SHEMS prototype for
(residential) DSM. Developed in this study, the networked, embedded JACE® controller
with an immersion of AI (ANN-based two-stage NIALM) as edge computing is used to
collect data (acquired aggregate RMS power measurements) and analyze collected data
on-site for (residential) DSM, and it converts collected data from the different protocols
if collected data to be further analyzed in the cloud are uploaded. In the framework,
eSEMC, the core entity of the SHEMS prototype in Figures 3 and 4, can be an ARM®

processor-based embedded system with a GPU (graphics processing unit) for the purpose
of conducting DL. For example, it can be an nVIDIA® Jetson Nano™ embedded system. In
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this sense, DL can be performed in consideration of edge computing to produce advanced
AI for use in neighborhood-level NIALM. In the cloud, Deep Learning Toolbox™ and
Parallel Computing Toolbox™ can be suited. Deep Learning Toolbox™ can provide a
framework for designing and implementing deep neural networks that can be accelerated
on a single- or multiple-GPU machine (with Parallel Computing Toolbox™) or even scaled
up to clusters. Parallel Computing Toolbox™ can let AI developers solve computationally
intensive problems based on multi-core computers, computer clusters, and/or GPUs.

Fog-cloud computing serves as converged computing for the purpose of knowledge
sharing that consolidates IoT data from distributed IoT data aggregation [45]. For user-
centric IoT applications developed in consideration of fog-cloud computing in smart
houses/buildings, smart factories/manufacturers, and smart cities considering DSM in a
smart grid, as expected, the developed SHEMS prototype will be able to perform converged
computing for the demonstration of knowledge sharing where the prototype will be
distributed over fog-cloud computing and be used to consolidate IoT data gathered from
multiple fields of interest in a smart grid. Based on Tridium’s Niagara Framework®,
the SHEMS prototype considering two-stage NIALM over fog-cloud computing in this
study is a preliminary design and implementation towards such a scenario as a next-
generation AMI. The two-stage NIALM over fog-cloud computing is presented in detail in
the following subsection.

2.2. Two-Stage NIALM over Fog-Cloud Computing

The presented NIALM approach is shown in Figure 5. Figure 5a depicts the two-stage
NIALM in simple terms, considering an event-based NIALM approach over fog-cloud com-
puting for collaborative learning, as illustrated in more detail in Figure 5b. The two-stage
NIALM approach mainly performs data acquisition, event detection and feature extraction,
and load recognition. Both composite electricity signals are simultaneously and continu-
ously acquired through data acquisition, where they are measured by a single minimal set
of current and voltage sensors, conditioned, and then digitized. Then, the acquired data
are analyzed through event detection and feature extraction for load recognition. In the
two-stage NIALM approach presented here, event detection is used to detect appliance
events by abrupt power changes, gather NIALM feature data through feature extraction,
and then label-gathered feature data for load recognition. For load recognition, AI that
operates via a DL approach based on a feed-forward, multi-layer ANN trained through
backpropagation here is used as a load recognizer in the two-stage NIALM, where the
AI-based load recognizer decomposes the acquired total energy consumption data based
on learned NIALM feature data. ANNs, connectionist systems, are computing systems
that are inspired by biological NNs. The used DL approach based on a feed-forward,
multi-layer ANN learns from on-site collected training data in the cloud. Load recognition
is performed online once the AI model has been well-trained and -validated offline (i.e., it
has been validated by test data with a satisfactory level of performance in load recognition).
When an appliance event where |∆P| (P refers to real power) is greater than or equal to a
pre-determined threshold, Pth, is detected at time slice t, the well-trained AI model takes
a feature reading and then recognizes it for relevant electrical appliances whose status is
currently “on” or “off” for the purpose of on-line load recognition.

In the presented two-stage NIALM approach, features extracted from acquired com-
posite current and voltage waveforms through feature extraction are |∆P| and ∆Q (Q
refers to reactive power), where ∆t is a slack parameter (which is chronologically scalable)
for transient-passing event detection illustrated in Figure 6. The feature extraction process
is based on the steady-state behavior of relevant electrical appliances.
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In this study, the SHEMS prototype considering the two-stage NIALM utilizes a DL
approach based on a feed-forward, multi-layer ANN that learns and distinguishes from
extracted composite NIALM feature data for energy disaggregation, where the connection-
ism is trained through backpropagation in cloud computing for off-line learning and the
well-trained and -validated connectionism is deployed remotely and executed on eSEMC
as edge computing for on-line load monitoring.
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Figure 6. Detecting an appliance event in acquired total energy consumption through transient-passing event detection.

ANNs have been developed from cognitive learning and information processing
theories, seeking to imitate the learning behavior of the human brain and create complex
interconnected neuronal structures. DL is usually based on an ANN architecture. The term
“deep” refers to the number of (hidden) layers in the architecture; traditional ANNs contain
only two or three layers, while deep NNs can have several layers, even hundreds. Figure 7
shows the general structure of an ANN. The general structure of an ANN is shown to
those seeking to innovate in the application of ANNs in load management. As shown in
Figure 7, a feed-forward, multi-layer ANN as a connectionism mimicking a biologic NN is
made of an input layer, a number of hidden layers, and an output layer. The size of the
input layer is dependent on the number of independent variables (i.e., extracted features)
of considered feature data to be fitted. The number of hidden layers and the number
of hidden neurons in each hidden layer can be experimented through hyperparameter
tuning, where hyperparameters, comprising the learning mechanism and the number of
epochs performed for iterative rounds of learning, affect how well the NN can represent its
considered feature data. The size of the output layer is, usually, dependent on the number
of dependent variables of considered feature data.
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NN considers dropout—a hyperparameter whose value is specified and used to control the learning
process of an NN—that can prevent overfitting [46] (another way used to prevent overfitting is
early stopping).

In this study, the F-measure, which is described in detail in the following subsection, is
conducted and used as the performance metric to indicate the performance of the AI-based
load recognizer in terms of load recognition.

2.3. Performance Evaluation by F-Measure for Load Recognition

As shown in Equation (1), the F-measure [47] is used to evaluate the performance,
in terms of load recognition, of the developed SHEMS prototype having the presented
two-stage NIALM.

F − measure = 2
Precision × Recall
Precision + Recall

(1)

In Equation (1), precision stands for a ratio of the total number of correctly predicted
positives to the total number of predicted positives. Recall (also known as the sensitivity or
hit rate) accounts for a ratio of the total number of correctly predicted positives to the total
number of actual positives. More details about precision and recall can be found in [47]. In
summary, the F-measure is the harmonic mean of precision and recall, which is commonly
used to evaluate a recognizer learning from a class-imbalanced dataset. A recognizer
producing no false positives reaches a perfect precision. It also reaches a perfect recall
when no false negatives are produced. Thus, a F-measure shown in Equation (1) and used
to evaluate a recognizer can reach the best value, with perfect precision and recall, at 1.0.
Besides the F-measure, we conduct receiver operating characteristic (ROC) curves [47] to
evaluate the performance, in terms of load recognition, of the developed SHEMS prototype
with the presented two-stage NIALM. A ROC curve consisting of the false-positive rate
(FPR) and true-positive rate (TPR) produces a graph showing the performance, in terms of
recognition, of a recognizer where it is examined at all recognition thresholds or with its
different configuration settings [47]. In an ROC curve, an error to a trained and validated
recognizer can be computed through the Euclidean distance, from obtained (FPR, TPR) to
the perfect recognition (FPR = 0, TPR = 1) [29,30]. Equations (2) and (3) define FPR and
TPR, respectively. TPR is referred to as recall.

FPR =
FP

FP + TN
, (2)

TPR =
TP

TP + FN
, (3)
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In Equations (2) and (3), TP (true positives): the data observations are recognized, and
they are associated to reality. TN (true negatives): the data observations are recognized, and
they are associated to non-existence with the real. FP (false positives): the data observations
are recognized as positives, but they are erroneously recognized against reality. Lastly, FN
(false negatives): the data observations are recognized as negatives, but they are incorrectly
recognized to existence in reality.

3. Experimentation

In this section, the developed SHEMS prototype utilizing the presented two-stage
NIALM approach over fog-cloud computing is demonstrated. Figure 8 shows its experi-
mental setup, where it was experimentally evaluated in a laboratory environment. In this
experiment, electrical appliances that were targeted, learned, and recognized through AI
include a laptop, hair dryer, steamer, electric fan, and vacuum cleaner.

As presented in Section 2.2, the AI model used in the presented two-stage NIALM
over fog-cloud computing is a DL approach based on a feed-forward, multi-layer ANN.
As shown in Figure 8, a supervisor PC was configured as cloud AI and used to train and
test the presented two-stage NIALM over fog-cloud computing for off-line learning of the
targeted electrical appliances. A networked, embedded JACE® controller (i.e., eSEMC) was
configured as edge AI and used to execute a well-trained and -tested feed-forward, multi-
layer ANN developed in the cloud and deployed on-site on the controller for on-line load
monitoring of the targeted electrical appliances. A single-phase power meter (ICP DAS’s
PM-3114 (Wiring: 1P4W-4CT) [44]) was installed and used for the purpose of acquiring
aggregated RMS power measurements, where the acquired RMS power measurement
data were transmitted from the power meter to the networked, embedded eSEMC (JACE®

controller/FIC’s MF0230) via the serial Modbus RTU protocol over RS-485. The received
data were then recognized by a feed-forward, multi-layer ANN for on-line load monitoring,
which was trained and validated with a satisfactory level of performance in terms of load
recognition in the cloud for off-line learning.
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In the design and implementation of the feed-forward, multi-layer ANN used as
the load recognizer of the two-stage NIALM over fog-cloud computing here, the feedfor-
wardnet() function in Deep Learning Toolbox™ [48] in MATLAB® was used to create a
two-layered feed-forward (shallow) ANN where (1) the connectionism was specified by
one hidden layer with nine hidden artificial neurons, which was determined through trial
and error. (2) The learning algorithm was based on the error backpropagation algorithm.
(3) The cost function was the mean squared error (MSE) function. (4) The learning rate
specified was 0.01, and (5) the specified maximum number of training epochs was 1000.
The train() function was used to train the specified two-layered feed-forward ANN applied
on training and test data. This function, train(), trains a shallow neural network, where
an early stopping mechanism is provided and used to prevent overfitting. In this mech-
anism, the available dataset is divided into three subsets. The first subset is the training
dataset, which is used to compute the gradient and update the network’s weight and bias
coefficients. The second subset is the validation dataset. During the training process, the
network trained for and applied on validation data is monitored. The error, MSE, obtained
by the network monitored (i.e., applied on validation data) normally decreases in the initial
phase of the training process. However, the error typically begins to rise when the network
begins to overfit. When the error increases for a specified number of epochs, the training
process is stopped. Additionally, the resulting weight and bias coefficients by the network
trained and validated at the minimum of the error are returned. The third subset is the test
dataset. During the training process, if the error obtained by the network validated for and
applied on test data reaches a minimum, against the minimum of the error by the network
applied on validation data, at a significantly different epoch, then this might indicate a
poor division of the available dataset. For DL models [49], such as convolutional NNs, one
should refer to the trainNetwork() function instead. ANNs, connectionisms as parallelisms,
are inherently parallel algorithms. In Deep Learning Toolbox™ in MATLAB®, ANNs can
be trained in parallel on CPU workers or GPU(s) with hundreds or even thousands of
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CPU cores involved in tens of thousands of concurrent threads. In this manner, parallel
Computing Toolbox™ in MATLAB® is required, and is used to allow ANNs to run across
multiple CPU cores as workers on a single computer [50]. In this experiment, after the
connectionism was well-trained and -tested in the cloud for off-line learning of the two-
stage NIALM over fog-cloud computing, the connectionism was deployed on-site on the
networked, embedded eSEMC working as edge computing for on-line load monitoring
of the two-stage NIALM over fog-cloud computing. This process was used to obtain the
on/off status of a targeted electrical appliance where its appliance event is detected and
associated with its features reading to be taken, normalized, and recognized.

In this experiment, we divided a whole dataset into two disjoint parts of a training
dataset and a test dataset. The training dataset, an available dataset for train(), was used
to train the connectionism, while the test dataset was used to evaluate the trained, val-
idated and tested connectionism in its performance in terms of load recognition. The
obtained recognition rate was referred to as the outside-test recognition rate or the holdout
recognition rate [51]. The so-called two-fold cross validation or the two-way outside-test
recognition rate can be owned, where the whole dataset is divided into two disjointed parts
of a training dataset and a test dataset with an equal size.

In this experiment, a total of 1206 data observations were collected on-site for off-
line learning in the presented two-stage NIALM approach over fog-cloud computing for
residential DSM, where the specified two-layered feed-forward ANN was trained, in the
cloud, on 845 randomly sampled training data observations (~70% of the whole dataset).
The trained ANN was then tested on the remaining 361 test data observations. In this
experiment, a threshold, Pth, of 20.0 W was specified for transient-passing event detection,
which is described in Section 2.2. Additionally, ∆t was specified as 7 s for feature extraction.
Figure 9 shows the training trajectory of the specified two-layered feed-forward ANN,
where the achieved MSE was 0.0013 with an initial MSE of 1.35. The specified two-layered
feed-forward ANN can be trained across all available CPU workers on the supervisor
PC. In the presented two-stage NIALM approach over fog-cloud computing, the power-
intensive electrical appliances should not be operated at the same time, so the conductor of
the electrical wiring is not overloaded.
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Figure 9. Training trajectory of the developed feed-forward, multi-layer ANN in this experiment,
where the training process terminates at the 141-th epoch.

Tables 1 and 2 tabulate the load recognition results obtained by the trained feed-
forward ANN applied on the training and test datasets, respectively. Tables 3 and 4 show
TPR values vs. FPR values for ROC curves obtained by the well-trained and -tested feed-
forward ANN applied on the class-imbalanced data set in this experiment.
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Table 1. Load recognition results obtained by the specified and trained feed-forward ANN in training.

Precision Recall F-Measure The Number of Training Data Observations

laptop 1.0 1.0 1.0 29
hair dryer 1.0 1.0 1.0 333
steamer 1.0 0.95 0.97 73

electric fan 0.99 1.0 0.99 397
vacuum cleaner 1.0 1.0 1.0 13
average/total 1.0 1.0 1.0 845

Table 2. Load recognition results obtained by the specified and trained feed-forward ANN in test.

Precision Recall F-Measure The Number of Test Data Observations

laptop 1.0 1.0 1.0 11
hair dryer 1.0 1.0 1.0 149
steamer 1.0 1.0 1.0 24

electric fan 1.0 1.0 1.0 172
vacuum cleaner 1.0 1.0 1.0 5
average/total 1.0 1.0 1.0 361

Table 3. Obtained TPR values vs. FPR values for ROC curves by the well-trained and -tested feed-
forward ANN applied on the class-imbalanced training data in this experiment, where the AUC
values are also shown for each class.

FPR TPR AUC 1

laptop 0.0 1.0 1.0
hair dryer 0.0 1.0 1.0
steamer 0.0 0.95 0.97

electric fan 0.01 1.0 0.99
vacuum cleaner 0.0 1.0 1.0

1 The maximum AUC (area under the curve) is 1, which corresponds to a perfect recognizer—100% sensitivity of
no false negatives and 100% specificity of no false positives.

Table 4. Obtained TPRs vs. FPRs for ROC curves, by the well-trained and -tested feed-forward ANN
applied on the class-imbalanced test data in this experiment, where for the five load classes’ AUCs
obtained are also shown.

FPR TPR AUC

laptop 0.0 1.0 1.0
hair dryer 0.0 1.0 1.0
steamer 0.0 1.0 1.0

electric fan 0.0 1.0 1.0
vacuum cleaner 0.0 1.0 1.0

Tables 1 and 2 show that the data observations represent a class-imbalanced dataset.
Accuracy alone does not show the full story by a recognizer trained on class-imbalanced
data, where to each class there may exist a significant disparity between class positives
(status on) and class negatives (status off). Therefore, the F-measure was conducted and
used to fully evaluate the load recognizer, the trained feed-forward ANN, addressing
the class-imbalanced dataset. Various metrics in addition to the F-measure have been
developed. For AUCs in Tables 3 and 4, one ROC curve can be shown per class. As reported
in this section, the developed SHEMS prototype utilizing the presented two-stage NIALM
over fog-cloud computing was able to distinguish from the targeted electrical appliances
with an excellent level of performance in load recognition. As demonstrated here, the
developed SHEMS prototype considering the presented two-stage NIALM over fog-cloud
computing can discriminate relevant electrical appliances for (residential) DSM and is able
to accommodate all types of ANNs including DNNs where their weight coefficients can be
trained through distributed GPU computing in the cloud in the framework. The aim of this
study is to develop an SHEMS prototype based on Tridium’s Niagara Framework®, where
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novel two-stage NIALM over fog-cloud computing is completed. The complete NIALM
involves the following two stages. (1) An off-line training stage is achieved through AI (an
ANN-based load recognizer in this study); AI is trained and validated with a satisfactory
level of performance in load recognition in cloud computing. (2) An on-line load monitoring
stage is processed on-site on the core entity of the SHEMS prototype (the networked,
embedded eSEMC) as edge computing. Figure 10 shows the remote deployment of the
well-trained and -tested feed-forward ANN in this experiment, where the well-trained
and -tested feed-forward ANN in cloud computing was packaged as an executable Jar
(Java ARchive) file, and was uploaded via Niagara Workbench to the remote networked,
embedded eSEMC for on-line load monitoring in the presented two-stage NIALM over
fog-cloud computing, as shown in Figure 10a. As shown in Figure 10b, the well-trained and
-tested feed-forward ANN was deployed remotely on the networked, embedded eSEMC
working as edge computing for on-line load monitoring in the presented two-stage NIALM
over fog-cloud computing.

Figure 11 shows the UI developed in Niagara Workbench for the established SHEMS
prototype having the presented two-stage NIALM over fog-cloud computing in this study,
where (1) AI, the presented two-stage NIALM, is enabled with a threshold, Pth, of 20.0 W
specified for transient-passing event detection of the two-stage NIALM; (2) all data can
be recorded; and (3) power line branches can be recorded, monitored non-intrusively,
and scheduled.

Regarding the push notification service in the developed SHEMS prototype with the
presented two-stage NIALM over fog-cloud computing in this study, a practical paradigm
of LINE Notify [52] was created, as shown in Figure 12 showing that appliance event
messages were received, in a created LINE group, by a LINE-Notify mobile phone over the
Internet for load recognition through on-line load monitoring in the presented two-stage
NIALM approach in this study.
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Figure 12. Appliance event messages received, in a created LINE group, by a LINE-Notify mobile
phone over the Internet for load recognition via on-line load monitoring in the presented two-stage
NIALM approach for load management/residential DSM in this study.

Members who are added in the LINE group can receive appliance event messages, by
the SHEMS prototype using the two-stage NIALM, through integrated LINE Notify for
load management/residential DSM in this study.

4. Discussion

The objective of this study is to develop an SHEMS prototype based on Tridium’s
Niagara Framework®, where novel two-stage NIALM over fog-cloud computing has been
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completed. The prototype developed with the complete NIALM over fog-cloud computing
is shown in Figure 8. The complete NIALM involves the following two stages:

(1) An off-line training stage is achieved through AI in the cloud. In this study, a DL
approach based on a feed-forward, multi-layer ANN is considered for load recog-
nition. As outlined in [46], providing a thorough investigation of DL/DNNs in its
applications, mechanisms and uses in a variety of smart-world systems, DL/DNNs
can improve investigation.

(2) An on-line load monitoring stage is processed on-site on the core entity of the pro-
totype as edge computing. The core entity of the prototype is based on an ARM®

processor-based embedded system. Moreover, in the on-line load monitoring stage, a
third-party push notification service by LINE Notify for receiving recognized appli-
ance events in load management is integrated in the framework.

As experimentally evaluated in Section 3, the developed SHEMS prototype with the
presented two-stage NIALM over fog-cloud computing was able to distinguish from the
targeted electrical appliances with an average F-measure of 1.0 achieved in load recognition.
The F-measure, which is the harmonic mean of precision and recall, was used to fully
evaluate the performance of the prototype in load recognition. This is because the addressed
NIALM is a class-imbalanced load classification problem. Besides the F-measure, AUCs
representing the degree or measure of separability that the higher the AUC, the better the
classification model is at predicting negative observations as class negatives and positive
observations as class positives were also used. Additionally, Figure 10 shows the remote
deployment of the well-trained and -tested classification model in the NIALM over fog-
cloud computing, where the model was trained well in cloud computing, packaged as
an executable Jar file, and uploaded via Niagara Workbench to the remote networked,
embedded eSEMC working as edge computing for on-line load monitoring in the NIALM
over fog-cloud computing. As shown in Figure 11, a UI developed in Niagara Workbench
for the developed prototype with the NIALM over fog-cloud computing has been provided.
It was provided for the design and implementation of the NIALM. Finally, for the third-
party push notification service, LINE Notify for receiving appliance events recognized
through on-line load monitoring in the NIALM for load management/residential DSM in
this study has been integrated with the prototype in the framework, as shown in Figure 12.

5. Conclusions and Future Work

Electricity is an essential resource in today’s modern technologically driven society. In
recent years, NIALM has become an alternative approach for efficient and cost-effective
load monitoring for DSM in a smart grid. NIALM is an energy disaggregation technique
that is used to analyze aggregated current and voltage measurements via a single min-
imal set of plug-panel current and voltage sensors for relevant electrical appliances for
the purpose of load management. This study has developed an SHEMS prototype using
novel two-stage NIALM over fog-cloud computing. The developed prototype is based
on Tridium’s Niagara Framework®. In the two-stage NIALM presented in the prototype,
a complete NIALM pipeline over fog-cloud computing has been investigated in consid-
eration of data acquisition, event detection and feature extraction, and load recognition
involving (1) off-line learning achieved by AI (a DL approach based on a feed-forward,
multi-layer ANN) in cloud computing and (2) on-line load monitoring performed on-site
on a networked, embedded eSEMC (which is the core entity of the SHEMS prototype with
an immersion of well-trained AI) as edge computing and alerted through LINE Notify for
third-party push notification service. The preliminary NIALM process shown in Figure 5a
needs to be performed when a new electrical appliance is installed, where a re-training
process for the trained ANN is involved with user intervention in the off-line learning
stage of the two-stage NIALM. As demonstrated and reported in this study, the developed
SHEMS prototype utilizing the presented two-stage NIALM over fog-cloud computing was
able to distinguish from the targeted electrical appliances with an average F-measure of 1.0
achieved in load recognition. Additionally, the remote deployment of the well-trained and
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-tested model in cloud computing has been demonstrated, where the model was deployed
remotely on the networked, embedded eSEMC working as edge computing for on-line load
monitoring in the presented two-stage NIALM over fog-cloud computing. In addition, the
LINE Notify-integrated third-party push notification service for receiving recognized ap-
pliance events in load management has been implemented in the framework. In summary,
the developed SHEMS prototype with the presented two-stage NIALM over fog-cloud
computing is feasible and usable. It can discriminate between electrical appliances in a
non-intrusive way for (residential) DSM, where all types of ANNs including DNNs where
their weight coefficients can be trained through distributed GPU computing in the cloud
in the framework can be accommodated for further research. The choice of AI models
for load recognition is not the main focus of this study. As outlined in [46], providing a
thorough investigation of DL/DNNs in its applications, mechanisms and uses in a variety
of smart-world systems, DL/DNNs can improve investigation.

The Niagara Framework® conducted in this study can provide a scalability to a highly
distributed system architecture, handling tens of thousands of IoT nodes (i.e., networked,
embedded JACE® controllers running the framework software) in practice. As expected in
the future, the developed SHEMS prototype based on the Niagara Framework® will be de-
signed and implemented in a large-scale demonstration of the presented two-stage NIALM
over fog-cloud computing to provide an intelligent power infrastructure, called iPower, for
managing electricity consumption, where neighborhood-level NIALM gathering NIALM
feature data from and leveraging gathered feature data across multiple practical fields of
interest will be investigated in a big-data approach for (residential) DSM. Additionally,
a stress test will be examined. As electrical appliances draw distorted, non-sinusoidal
currents due to their inherent physical characteristics or the presence of power electronics,
harmonics [28] in composite current signals can be extracted through fast Fourier transform
(FFT) and used as additional electrical features, input variables of an AI model used as a
load recognizer for NIALM, to distinguish electrical appliances that are identical in ∆P and
∆Q draws. With the use of FFT extracting harmonics/total harmonic distortion (THD) from
acquired composite current signals, the sampling rate of data acquisition can be specified
at 1 kHz or higher, which complies with the Nyquist–Shannon sampling theorem, where
the Nyquist–Shannon sampling theorem shows that, to be able to sample a signal, the
sampling frequency specified needs to be at least twice the frequency of the signal we are
trying to sample. FFT applied on the sampled signal will only be capable of detecting
frequencies up to half the sampling frequency. Harmonics/THD can be considered in
the future as an additional set of steady-state electrical features for load recognition in
the presented two-stage NIALM over fog-cloud computing (most electrical appliances,
such as refrigerators [32], have distinguishable characteristic patterns. However, not all
electrical appliances, such as kettles and washing machines, have distinguishable char-
acteristic patterns [53], which makes load recognition in NIALM a difficult task). Finally,
providing for domestic customers and further developed in the future, the presented two-
stage NIALM over fog-cloud computing can provide services, such as the provision of
services in the fault detection and diagnosis of rotating machinery, for industrial as well
as commercial customers, where the prediction of the remaining useful life of relevant
equipment monitored and modeled with the past trends from gathered historical data can
be achieved.
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Nomenclature

DSM demand-side management
NIALM non-intrusive appliance load monitoring
IoT Internet of Things
SHEMS smart home energy management system
AI artificial intelligence
AIoT AI across IoT
AMI advanced metering infrastructure
DR demand response
IALM intrusive appliance load monitoring
ARM Advanced Reduced instruction set computing Machine
ANN artificial neural network
SCADA supervisory control and data acquisition
eSEMC edge smart energy management controller
JVM Jave virtual machine
JACE Java application control engine
RDBMS relational database management system
REST REpresentational State Transfer
DL deep learning
FPR false positive rate
TPR true positive rate
ROC receiver operating characteristic
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