Seismic Applications of Downhole DAS
Abstract
:1. Introduction
2. Vertical Seismic Profiling
2.1. Data Quality and Velocity Estimation
2.2. Structural Imaging
2.3. Time-Lapse Analysis
2.4. VSP Analysis with Passive Recording
3. Seismic Monitoring
3.1. Microseismic
3.2. Earthquake Seismology
4. Reservoir Characterization
4.1. Fracture Detection with Low-Frequency DAS
4.2. Analysis and Use of Guided Waves
4.3. Tube Wave Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rost, S.; Thomas, C. Array seismology: Methods and applications. Rev. Geophys. 2002, 40. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Ö. Seismic Data Analysis; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001. [Google Scholar]
- Wang, Y. Seismic Inversion: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Balch, A.H.; Lee, M.W.; Miller, J.J.; Ryder, R.T. The use of vertical seismic profiles in seismic investigations of the earth. Geophysics 1982, 47, 906–918. [Google Scholar] [CrossRef]
- Maxwell, S. Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservoirs; Society of Exploration Geophysicists: Denver, CO, USA, 2014. [Google Scholar]
- Hofstetter, R.; Malin, P.; Ben-Avraham, Z. Seismic Observations of Microearthquakes from the Masada Deep Borehole. Seism. Res. Lett. 2020, 91, 2298–2309. [Google Scholar] [CrossRef]
- Hauksson, E.; Teng, T.; Henyey, T.L. Results from a 1500 m deep, three-level downhole seismometer array: Site response, low Q values, and f_max. J. Geol. 1987, 77, 1883–1904. [Google Scholar]
- Prevedel, B.; Bulut, F.; Bohnhoff, M.; Raub, C.; Kartal, R.F.; Alver, F.; Malin, P.E. Downhole geophysical observatories: Best installation practices and a case history from Turkey. Acta Diabetol. 2015, 104, 1537–1547. [Google Scholar] [CrossRef] [Green Version]
- Hartog, A.H. Distributed sensors in the oil and gas industry. In Optical Fibre Sensors; del Villar, I., Matias, I.R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 151–191. [Google Scholar]
- Lellouch, A.; Yuan, S.; Spica, Z.; Biondi, B.; Ellsworth, W.L. Seismic Velocity Estimation Using Passive Downhole Distrib-uted Acoustic Sensing Records: Examples from the San Andreas Fault Observatory at Depth. J. Geophysics Res. Solid Earth 2019, 124, 6931–6948. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Martin, E.R.; Dreger, D.S.; Freifeld, B.; Cole, S.; James, S.R.; Biondi, B.L.; Ajo-Franklin, J.B. Fiber-Optic Network Observations of Earthquake Wavefields. Geophysics Res. Lett. 2017, 44, 11792–11799. [Google Scholar] [CrossRef] [Green Version]
- Walter, F.; Gräff, D.; Lindner, F.; Paitz, P.; Köpfli, M.; Chmiel, M.; Fichtner, A. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Martin, E.R.; Castillo, C.M.; Cole, S.; Sawasdee, P.S.; Yuan, S.; Clapp, R.; Karrenbach, M.; Biondi, B.L. Seismic monitoring leveraging existing telecom infrastructure at the SDASA: Active, passive, and ambient-noise analysis. Geophysics 2017, 36, 1025–1031. [Google Scholar] [CrossRef]
- Lellouch, A.; Schultz, R.; Lindsey, N.J.; Biondi, B.L.; Ellsworth, W.L. Low-Magnitude Seismicity with a Downhole Distributed Acoustic Sensing Array—Examples from the FORGE Geothermal Experiment. J. Geophys. Res. Solid Earth 2021, 126, 1–20. [Google Scholar] [CrossRef]
- Lior, I.; Sladen, A.; Rivet, D.; Ampuero, J.; Hello, Y.; Becerril, C.; Martins, H.F.; Lamare, P.; Jestin, C.; Tsagkli, S.; et al. On the Detection Capabilities of Underwater DAS. J. Geophys. Res. Solid Earth 2021, 1–20. [Google Scholar] [CrossRef]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lellouch, A.; Yuan, S.; Ellsworth, W.L.; Biondi, B. Velocity-Based Earthquake Detection Using Downhole Distributed Acoustic Sensing—Examples from the San Andreas Fault Observatory at Depth. Bull. Seism. Soc. Am. 2019, 109, 2491–2500. [Google Scholar] [CrossRef]
- Dou, S.; Lindsey, N.; Wagner, A.M.; Daley, T.M.; Freifeld, B.; Robertson, M.; Peterson, J.; Ulrich, C.; Martin, E.R.; Ajo-Franklin, J.B. Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajo-Franklin, J.B.; Dou, S.; Lindsey, N.J.; Monga, I.; Tracy, C.; Robertson, M.; Tribaldos, V.R.; Ulrich, C.; Freifeld, B.; Daley, T.; et al. Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509–2519. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Ellsworth, W.L.; Lellouch, A.; Beroza, G.C. Depth Constraints on Coseismic Velocity Changes from Frequency-Dependent Measurements of Repeating Earthquake Waveforms. J. Geophys. Res. Solid Earth 2021, 126, 1–12. [Google Scholar] [CrossRef]
- Spica, Z.J.; Perton, M.; Martin, E.R.; Beroza, G.C.; Biondi, B. Urban Seismic Site Characterization by Fiber-Optic Seismology. J. Geophys. Res. Solid Earth 2020, 125, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, N.J.; Dawe, T.C.; Ajo-Franklin, J.B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 2019, 366, 1103–1107. [Google Scholar] [CrossRef]
- Cheng, F.; Chi, B.; Lindsey, N.J.; Dawe, T.C.; Ajo-Franklin, J.B. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Yuan, S.; Lellouch, A.; Gualtieri, L.; Lecocq, T.; Biondi, B. City-Scale Dark Fiber DAS Measurements of Infra-structure Use During the COVID-19 Pandemic. Geophysics Res. Lett. 2020, 47, 1–8. [Google Scholar] [CrossRef]
- Yuan, S.; Lellouch, A.; Clapp, R.G.; Biondi, B. Near-surface characterization using a roadside distributed acoustic sensing array. Lead. Edge 2020, 39, 646–653. [Google Scholar] [CrossRef]
- Williams, E.F.; Fernández-Ruiz, M.R.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.; González-Herráez, M.; Martins, H.F. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Stensrud, D.J. Characterizing Thunder-Induced Ground Motions Using Fiber-Optic Distributed Acoustic Sensing Array. J. Geophysics Res. Atmos. 2019, 124, 12810–12823. [Google Scholar] [CrossRef]
- Daley, T.M.; Freifeld, B.M.; Ajo-Franklin, J.; Dou, S.; Pevzner, R.; Shulakova, V.; Kashikar, S.; Miller, D.E.; Goetz, J.; Henninges, J.; et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead. Edge 2013, 32, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Daley, T.M.; Miller, D.E.; Dodds, K.; Cook, P.; Freifeld, B.M. Field testing of modular borehole monitoring with simul-taneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophys. Prospect. 2016, 64, 1318–1334. [Google Scholar] [CrossRef] [Green Version]
- Spikes, K.T.; Tisato, N.; Hess, T.E.; Holt, J.W. Comparison of geophone and surface-deployed distributed acoustic sens-ing seismic data. Geophysics 2019, 84, A25–A29. [Google Scholar] [CrossRef]
- Ukil, A.; Braendle, H.; Krippner, P. Distributed Temperature Sensing: Review of Technology and Applications. IEEE Sensors J. 2012, 12, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, A.; Newson, T.P. Contributed Review: Distributed optical fibre dynamic strain sensing. Rev. Sci. Instruments 2016, 87, 011501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, J.; Egorov, A.; Tertyshnikov, K.; Bona, A.; Pevzner, R.; Dean, T.; Freifeld, B.; Marshall, S. Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets—A CO2CRC Otway Project data example. Geophysics 2017, 36, 994a1–994a7. [Google Scholar] [CrossRef] [Green Version]
- Naldrett, G.; Parker, T.; Shatalin, S.; Mondanos, M. High-resolution Carina distributed acoustic fibre- optic sensor for permanent reservoir monitoring and extending the reach into subsea fields. First Break 2020, 38, 71–76. [Google Scholar] [CrossRef]
- Mateeva, A.; Lopez, J.; Chalenski, D.; Tatanova, M.; Zwartjes, P.; Yang, Z.; Bakku, S.; De Vos, K.; Potters, H. 4D DAS VSP as a tool for frequent seismic monitoring in deep water. Lead. Edge 2017, 36, 995–1000. [Google Scholar] [CrossRef]
- Correa, J.; Pevzner, R.; Bona, A.; Tertyshnikov, K.; Freifeld, B.; Robertson, M.; Daley, T. 3D vertical seismic profile acquired with distributed acoustic sensing on tubing installation: A case study from the CO2CRC Otway Project. Interpretation 2019, 7, SA11–SA19. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; Tao, G. Current and Future Applications of Distributed Acoustic Sensing as a New Reservoir Geophysics Tool. Open Pet. Eng. J. 2015, 8, 272–281. [Google Scholar] [CrossRef]
- Naruse, R.; Yuki, K.; Yusuke, M.; Xue, Z. Inside CT-DAS-VSP acquisition using a highly-deviated deep well, onshore Japan. In SEG Technical Program Expanded Abstracts 2018; Society of Exploration Geophysicists: Anaheim, CA, USA, 2018; pp. 5407–5411. [Google Scholar]
- Hartog, A.; Frignet, B.; Mackie, D.; Clark, M. Vertical seismic optical profiling on wireline logging cable. Geophys. Prospect. 2014, 62, 693–701. [Google Scholar] [CrossRef]
- Richter, P.; Parker, T.; Woerpel, C.; Wu, W.; Rufino, R.; Farhadiroushan, M. High-resolution distributed acoustic sensor using engineered fiber for hydraulic fracture monitoring and optimization in unconventional completions. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: San Antonio, TX, USA, 2019; pp. 4874–4878. [Google Scholar]
- Zhan, G.; Van Gestel, J.-P.; Johnston, R. DAS data recorded by a subsea umbilical cable at Atlantis field. In SEG Technical Program Expanded Abstracts 2020; Society of Exploration Geophysicists: Houston, TX, USA, 2020; pp. 510–514. [Google Scholar]
- Wapenaar, C.; Verschuur, D.J.; Herrmann, P.; Berkhout, A.J. Decomposition of multicomponent seismic data into pri-mary P-and S-wave responses. Geophys. Prospect. 1990, 38, 633–661. [Google Scholar] [CrossRef]
- Vidale, J.E. Complex polarization analysis of particle motion. Bull. Seismol. Soc. Am. 1986, 76, 1393–1405. [Google Scholar]
- Kuvshinov, B. Interaction of helically wound fibre-optic cables with plane seismic waves. Geophys. Prospect. 2016, 64, 671–688. [Google Scholar] [CrossRef]
- Ning, I.L.C.; Sava, P. High-resolution multi-component distributed acoustic sensing. Geophys. Prospect. 2018, 66, 1111–1122. [Google Scholar] [CrossRef] [Green Version]
- Wuestefeld, A.; Weinzierl, W. Design considerations for using Distributed Acoustic Sensing for cross-well seismics: A case study for CO2storage. Geophys. Prospect. 2020, 68, 1893–1905. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Rademacher, H.; Ajo-Franklin, J.B. On the Broadband Instrument Response of Fiber-Optic DAS Arrays. J. Geophysical Res. Solid Earth 2020, 125, 1–16. [Google Scholar] [CrossRef]
- Becker, M.W.; Coleman, T.I. Distributed Acoustic Sensing of Strain at Earth Tide Frequencies. Sensors 2019, 19, 1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paitz, P.; Edme, P.; Gräff, D.; Walter, F.; Doetsch, J.; Chalari, A.; Schmelzbach, C.; Fichtner, A. Empirical Investigations of the Instrument Response for Distributed Acoustic Sensing (DAS) across 17 Octaves. Bull. Seism. Soc. Am. 2021, 111, 1–10. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dean, T.; Cuny, T.; Hartog, A.H. The effect of gauge length on axially incident P-waves measured using fibre optic dis-tributed vibration sensing. Geophys. Prospect. 2016, 65, 184–193. [Google Scholar] [CrossRef]
- Olofsson, B.; Martinez, A. Validation of DAS data integrity against standard geophones—DAS field test at Aquistore site. Lead. Edge 2017, 36, 981–986. [Google Scholar] [CrossRef]
- Dean, T.; Cuny, T.; Constantinou, A.; Dickenson, P.; Smith, C.; Hamouche, E. Depth Calibration of Fibre-optic Distributed Vibration Sensing Measurements. First Break 2018, 36, 29–34. [Google Scholar] [CrossRef]
- Madsen, K.N.; Tøndel, R.; Kvam, Ø. Data-driven depth calibration for distributed acoustic sensing. Geophysics 2016, 35, 610–614. [Google Scholar] [CrossRef]
- Mateeva, A.; Lopez, J.; Potters, H.; Mestayer, J.; Cox, B.; Kiyashchenko, D.; Wills, P.; Grandi, S.; Hornman, K.; Kuvshinov, B.; et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys. Prospect. 2014, 62, 679–692. [Google Scholar] [CrossRef]
- Poletto, F.B.; Miranda, F. Seismic While Drilling: Fundamentals of Drill-Bit Seismic for Exploration; Elsevier: Amsterdam, Netherlands, 2004. [Google Scholar]
- Rector, J.W.; Marion, B.P. The use of drill-bit energy as a downhole seismic source. Geophysics 1991, 56, 628–634. [Google Scholar] [CrossRef]
- Landrø, M. Repeatability issues of 3-D VSP data. Geophysics 1999, 64, 1673–1679. [Google Scholar] [CrossRef]
- Hardage, B.A. Vertical Seismic Profiling: Principles, 3rd ed.; Pergamon Press: Oxford, UK, 2000. [Google Scholar]
- Stewart, R.R.; Huddleston, P.D.; Kan, T.K. Seismic versus sonic velocities: A vertical seismic profiling study. Geophysics 1984, 49, 1153–1168. [Google Scholar] [CrossRef]
- Tonn, R. The determination of the seismic quality factor Q from VSP data: A comparison of different computational methods 1. Geophys. Prospect. 1991, 39, 1–27. [Google Scholar] [CrossRef]
- Grechka, V.; Mateeva, A. Inversion of P-wave VSP data for local anisotropy: Theory and case study. Geophysics 2007, 72, D69–D79. [Google Scholar] [CrossRef]
- Crampin, S. Evaluation of anisotropy by shear-wave splitting. Geophysics 1985, 50, 142–152. [Google Scholar] [CrossRef]
- Hornby, B.E.; Jianhua, Y.; Sharp, J.A.; Ray, A.; Quist, Y.; Regone, C. VSP: Beyond time-to-depth. Lead. Edge 2006, 25, 446–452. [Google Scholar] [CrossRef]
- Willis, M.E.; Lu, R.; Campman, X.; Toksöz, M.N.; Zhang, Y.; de Hoop, M.V. A novel application of time-reversed acoustics: Salt-dome flank imaging using walkaway VSP surveys. Geophysics 2006, 71, A7–A11. [Google Scholar] [CrossRef] [Green Version]
- Hornby, B.E.; Yu, J. Interferometric imaging of a salt flank using walkaway VSP data. Geophysics 2007, 26, 760–763. [Google Scholar] [CrossRef]
- Xiao, X.; Leaney, S.W. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: Salt-flank imaging with transmitted P-to-S waves. Geophysics 2010, 75, S35–S49. [Google Scholar] [CrossRef]
- Booth, A.D.; Christoffersen, P.; Schoonman, C.; Clarke, A.; Hubbard, B.; Law, R.; Doyle, S.H.; Chudley, T.R.; Chalari, A. Distributed Acoustic Sensing of Seismic Properties in a Borehole Drilled on a Fast-Flowing Greenlandic Outlet Glacier. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Henninges, J.; Martuganova, E.; Stiller, M.; Norden, B.; Krawczyk, C. Vertical seismic profiling with distributed acoustic sensing images the Rotliegend geothermal reservoir in the North German Basin down to 4.2 km depth. Solid Earth 2020. [Google Scholar] [CrossRef]
- Hall, K.W.; Bertram, K.L.; Bertram, M.; Innanen, K.; Lawton, D.C. Simultaneous accelerometer and optical fibre mul-ti-azimuth walkaway VSP experiment, Newell County, Alberta, Canada. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: San Antonio, TX, USA, 2019; pp. 5340–5344. [Google Scholar]
- Mestayer, J.; Cox, B.; Wills, P.; Kiyashchenko, D.; Lopez, J.; Costello, M.; Bourne, S.; Ugueto, G.; Lupton, R.; Solano, G.; et al. Field Trials of Distributed Acoustic Sensing for Geophysical Monitoring. In SEG technical program expanded abstracts; Society of Exploration Geophysicists: San Antonio, TX, USA, 2011; pp. 4253–4257. [Google Scholar]
- Chen, J.; Ning, J.; Chen, W.; Wang, X.; Wang, W.; Zhang, G. Distributed acoustic sensing coupling noise removal based on sparse optimization. Interpretation 2019, 7, T373–T382. [Google Scholar] [CrossRef]
- Willis, M.E.; Wu, X.; Palacios, W.; Ellmauthaler, A. Understanding cable coupling artifacts in wireline-deployed DAS VSP data. In SEG Technical Program. Expanded Abstracts 2019; Society of Exploration Geophysicists: San Antonio, TX, USA, 2019; pp. 5310–5314. [Google Scholar] [CrossRef]
- Schilke, S.; Donno, D.; Hartog, A.; Chauris, H. DAS and Its Coupling for VSP Applications Using Wireline Cable. In Proceedings of the European Association of Geoscientists & Engineers, Potsdam, Germany, 31 March 2017; p. 508. [Google Scholar] [CrossRef]
- Uematsu, Y.; Kobayashi, Y.; Mochiji, S.; Xue, Z. Improving Subsurface Images for Better Reservoir Management by CT-DAS-VSP in a Production Well Onshore Japan. In Proceedings of the Fifth EAGE Workshop on Borehole Geophysics, The Hague, The Netherlands, 18–21 November 2019; pp. 1–5. [Google Scholar]
- Zhan, G.; Kommedal, J.; Nahm, J. VSP field trials of distributed acoustic sensing in Trinidad and Gulf of Mexico. In SEG Technical Program. Expanded Abstracts 2015; Society of Exploration Geophysicists: New Orleans, LA, USA, 2015; pp. 5539–5543. [Google Scholar] [CrossRef]
- Jiang, T.; Zhan, G.; Hance, T.; Sugianto, S.; Soulas, S.; Kjos, E. Valhall dual-well 3D DAS VSP field trial and imaging for active wells. In SEG Technical Program. Expanded Abstracts 2016; Society of Exploration Geophysicists: Dallas, TX, USA, 2016; pp. 5582–5586. [Google Scholar]
- Lopez, J.; Mateeva, A.; Chalenski, D.; Przybysz-Jarnut, J. Valuation of distributed acoustic sensing VSP for frequent mon-itoring in deepwater. In SEG Technical Program Expanded Abstracts 2017; Society of Exploration Geophysicists: Houston, TX, USA, 2017; pp. 6044–6048. [Google Scholar]
- Kobayashi, Y.; Uematsu, Y.; Mochiji, S.; Xue, Z. A field experiment of walkaway distributed acoustic sensing vertical seismic profile in a deep and deviated onshore well in Japan using a fibre optic cable deployed inside coiled tubing. Geophys. Prospect. 2020, 68, 501–520. [Google Scholar] [CrossRef]
- Kiyashchenko, D.; Mateeva, A.; Duan, Y.; Johnson, D.; Pugh, J.; Geisslinger, A.; Lopez, J. Frequent 4D monitoring with DAS 3D VSP in deep water to reveal injected water-sweep dynamics. Lead. Edge 2020, 39, 471–479. [Google Scholar] [CrossRef]
- Duan, Y.; Li, Y.; Kryvohuz, M.; Mateeva, A.; Chen, T. 3D salt-boundary imaging with transmitted waves in DAS VSP data acquired in salt. In SEG Technical Program. Expanded Abstracts 2020; Society of Exploration Geophysicists: Houston, TX, USA, 2020; Volume 1, pp. 370–374. [Google Scholar]
- Riedel, M.; Cosma, C.; Enescu, N.; Koivisto, E.; Komminaho, K.; Vaittinen, K.; Malinowski, M. Underground Vertical Seismic Profiling with Conventional and Fiber-Optic Systems for Exploration in the Kylylahti Polymetallic Mine, Eastern Finland. Mineral 2018, 8, 538. [Google Scholar] [CrossRef] [Green Version]
- Stephen, K.D.; Kazemi, A. Improved normalization of time-lapse seismic data using normalized root mean square re-peatability data to improve automatic production and seismic history matching in the Nelson field. Geophys. Prospect. 2014, 62, 1009–1027. [Google Scholar] [CrossRef]
- Pevzner, R.; Urosevic, M.; Popik, D.; Shulakova, V.; Tertyshnikov, K.; Caspari, E.; Correa, J.; Dance, T.; Kepic, A.; Glubokovskikh, S.; et al. 4D surface seismic tracks small supercritical CO2 injection into the subsurface: CO2CRC Otway Project. Int. J. Greenh. Gas. Control. 2017, 63, 150–157. [Google Scholar] [CrossRef]
- Harris, K.; White, D.; Samson, C. Imaging the Aquistore reservoir after 36 kilotonnes of CO2 injection using distributed acoustic sensing. Geophysics 2017, 82, M81–M96. [Google Scholar] [CrossRef]
- White, D.; Harris, K.; Roach, L.A.; Robertson, M. 7 years of 4D seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada. In SEG Technical Program. Expanded Abstracts 2019; Society of Exploration Geophysicists: San Antonio, TX, USA, 2019; pp. 4918–4922. [Google Scholar] [CrossRef]
- Tertyshnikov, K.; Pevzner, R.; Freifeld, B.; Ricard, L.; Avijegon, A. Watching the leakage: DAS seismic monitoring of the shallow CO2 controlled-release experiment at the South West Hub In-situ Laboratory. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: San Antonio, TX, USA, 2019; pp. 4888–4892. [Google Scholar] [CrossRef]
- Bakku, S.K.; Fehler, M.; Wills, P.; Mestayer, J.; Mateeva, A.; Lopez, J. Vertical seismic profiling using distributed acoustic sensing in a hydrofrac treatment well. In SEG Technical Program. Expanded Abstracts 2014. Society of Exploration Geophysicists: Denver, CO, USA, 2014; pp. 5024–5028. [Google Scholar] [CrossRef] [Green Version]
- Meek, R.; Hull, R.; Woller, K.; Wright, B.; Martin, M.; Bello, H.; Bailey, J. Estimation of Hydraulic Fracture Height and Pressure Deflation Using a Pulsed Vertical Seismic Profile and a DAS Fiber in the Midland Basin. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 22–24 July 2019; pp. 1174–1182. [Google Scholar]
- Binder, G.; Titov, A.; Liu, Y.; Simmons, J.; Tura, A.; Byerley, G.; Monk, D. Modeling the seismic response of individual hydraulic fracturing stages observed in a time-lapse distributed acoustic sensing vertical seismic profiling survey. Geophysics 2020, 85, T225–T235. [Google Scholar] [CrossRef]
- Titov, A.; Binder, G.; Liu, Y.; Jin, G.; Simmons, J.; Tura, A.; Monk, D.; Byerley, G.; Yates, M. Modeling and interpretation of scattered waves in interstage distributed acoustic sensing profiling survey. Geophysics 2021, 86, D93–D102. [Google Scholar] [CrossRef]
- Pevzner, R.; Gurevich, B.; Pirogova, A.; Tertyshnikov, K.; Glubokovskikh, S. Repeat well logging using earthquake wave amplitudes measured by distributed acoustic sensors. Lead. Edge 2020, 39, 513–517. [Google Scholar] [CrossRef]
- Maxwell, S. Microseismic: Growth born from success. Lead. Edge 2010, 29, 338–343. [Google Scholar] [CrossRef]
- Chambers, K.; Dando, B.D.E.; Jones, G.A.; Velasco, R.; Wilson, S.A. Moment tensor migration imaging. Geophys. Prospect. 2014, 62, 879–896. [Google Scholar] [CrossRef]
- Eisner, L.; Duncan, P.M.; Heigl, W.M.; Keller, W.R. Uncertainties in passive seismic monitoring. Lead. Edge 2009, 28, 648–655. [Google Scholar] [CrossRef]
- Eisner, L.; Hulsey, B.J.; Duncan, P.; Jurick, D.; Werner, H.; Keller, W. Comparison of surface and borehole locations of induced seismicity. Geophys. Prospect. 2010, 58, 809–820. [Google Scholar] [CrossRef]
- Chambers, K.; Kendall, J.-M.; Brandsberg-Dahl, S.; Rueda, J. Testing the ability of surface arrays to monitor microseismic activity. Geophys. Prospect. 2010, 58, 821–830. [Google Scholar] [CrossRef]
- Baird, A.F.; Stork, A.L.; Horne, S.A.; Naldrett, G.; Kendall, J.-M.; Wookey, J.; Verdon, J.P.; Clarke, A. Characteristics of microseismic data recorded by distributed acoustic sensing systems in anisotropic media. Geophysics 2020, 85, KS139–KS147. [Google Scholar] [CrossRef]
- Webster, P.; Wall, J.; Perkins, C.; Molenaar, M. Micro-seismic detection using distributed acoustic sensing. In SEG Technical Program Expanded Abstracts 2013; Society of Exploration Geophysicists: Houston, TX, USA, 2013; pp. 2459–2463. [Google Scholar] [CrossRef]
- Hull, R.A.; Meek, R.; Bello, H.; Miller, D. Case history of DAS fiber-based microseismic and strain data, monitoring hor-izontal hydraulic stimulations using various tools to highlight physical deformation processes (Part A). In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017; pp. 3050–3062. [Google Scholar]
- Webster, P.; Molenaar, M.; Perkins, C. DAS Microseismic Fiber-Optic Locating DAS Microseismic Events and Errors. CSEG Recorder 2016, 38–39. Available online: https://search.proquest.com/openview/8d477d31956825c13eb091f6f14f2c35/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 2 June 2018).
- Molteni, D.; Williams, M.J.; Wilson, C. Detecting microseismicity using distributed vibration. First Break. 2017, 35, 51–55. [Google Scholar] [CrossRef]
- Karrenbach, M.; Kahn, D.; Cole, S.; Ridge, A.; Boone, K.; Rich, J.; Silver, K.; Langton, D. Hydraulic-fracturing-induced strain and microseismic using in situ distributed fiber-optic sensing. Lead. Edge 2017, 36, 837–844. [Google Scholar] [CrossRef]
- Lellouch, A.; Lindsey, N.J.; Ellsworth, W.L.; Biondi, B.L. Comparison between Distributed Acoustic Sensing and Geophones: Downhole Microseismic Monitoring of the FORGE Geothermal Experiment. Seism. Res. Lett. 2020, 91, 3256–3268. [Google Scholar] [CrossRef]
- Mondanos, M.; Coleman, T. Application of distributed fibre-optic sensing to geothermal reservoir characterization and monitoring. First Break. 2019, 37, 51–56. [Google Scholar] [CrossRef]
- Karrenbach, M.; Cole, S.; Ridge, A.; Boone, K.; Kahn, D.; Rich, J.; Silver, K.; Langton, D. Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing. Geophysics 2019, 84, D11–D23. [Google Scholar] [CrossRef]
- Verdon, J.P.; Horne, S.A.; Clarke, A.; Stork, A.L.; Baird, A.F.; Kendall, J.-M. Microseismic monitoring using a fibre-optic Distributed Acoustic Sensor (DAS) array. Geophysics 2020, 85, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Stork, A.L.; Baird, A.F.; Horne, S.A.; Naldrett, G.; Lapins, S.; Kendall, J.-M.; Wookey, J.; Verdon, J.P.; Clarke, A.; Williams, A. Application of machine learning to microseismic event detection in distributed acoustic sensing data. Geophysics 2020, 85, KS149–KS160. [Google Scholar] [CrossRef]
- Binder, G.; Chakraborty, D. Detecting microseismic events in downhole distributed acoustic sensing data using convolu-tional neural networks. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: San Antonio, TX, USA, 2019; pp. 4864–4868. [Google Scholar]
- Cole, S.; Karrenbach, M.; Kahn, D.; Rich, J.; Silver, K.; Langton, D. Source parameter estimation from DAS microseismic data. In SEG Technical Program Expanded Abstracts 2018; Society of Exploration Geophysicists: Anaheim, CA, USA, 2018; pp. 4928–4932. [Google Scholar]
- Cole, S.; Karrenbach, M. Multi-well DAS Observations for Hydraulic Fracture Monitoring. In Proceedings of the Fifth EAGE Workshop on Borehole Geophysics, The Hague, The Netherlands, 18–20 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Karrenbach, M.; Ridge, A.; Cole, S.; Boone, K.; Rich, J.; Silver, K.; Langton, D. DAS Microseismic Monitoring and Integration with Strain Measurements in Hydraulic Fracture Profiling. In Proceedings of the 4th Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017. [Google Scholar]
- Jin, G.; Roy, B. Hydraulic-fracture geometry characterization using low-frequency DAS signal. Geophysics 2017, 36, 975–980. [Google Scholar] [CrossRef]
- Jin, G.; Mendoza, K.; Roy, B.; Buswell, D.G. Machine learning-based fracture-hit detection algorithm using LFDAS signal. Geophysics 2019, 38, 520–524. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, Z.; Stefani, J.; DiSiena, J.; Bevc, D.; Ning, I.L.C.; Hughes, K.; Tan, Y. Modeling of fiber-optic strain responses to hydraulic fracturing. Geophysics 2020, 85, A45–A50. [Google Scholar] [CrossRef]
- Sherman, C.; Mellors, R.; Morris, J.; Ryerson, F. Special section: Distributed acoustic sensing and its oilfield potential Geomechanical modeling of distributed fiber-optic sensor measurements. Interpretation 2019, 7, 21–27. [Google Scholar] [CrossRef]
- Wu, Y.; Richter, P.; Hull, R.; Farhadiroushan, M. Hydraulic frac-hit corridor (FHC) monitoring and analysis with high-resolution distributed acoustic sensing (DAS) and far-field strain (FFS) measurements. First Break. 2020, 38, 65–70. [Google Scholar] [CrossRef]
- Ichikawa, M.; Uchida, S.; Katou, M.; Kurosawa, I.; Tamura, K.; Kato, A.; Ito, Y.; De Groot, M.; Hara, S. Case study of hydraulic fracture monitoring using multiwell integrated analysis based on low-frequency DAS data. Geophysics 2020, 39, 794–800. [Google Scholar] [CrossRef]
- Buchanan, D.J. The propagation of attenuated sh channel waves. Geophys. Prospect. 1978, 26, 16–28. [Google Scholar] [CrossRef]
- Li, Y.-G.; Aki, K.; Adams, D.; Hasemi, A.; Lee, W.H.K. Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. J. Geophys. Res. Solid Earth 1994, 99, 11705–11722. [Google Scholar] [CrossRef]
- Krohn, C.E. Cross-well continuity logging using guided seismic waves. Lead. Edge 1992, 11, 39–45. [Google Scholar] [CrossRef]
- Li, J.; Hanafy, S.; Schuster, G. Wave-equation dispersion inversion of guided P waves in a waveguide of arbitrary geometry. J. Geophysical Res. Solid Earth 2018, 123, 7760–7764. [Google Scholar] [CrossRef] [Green Version]
- Lellouch, A.; Biondi, B.; Horne, S.; Meadows, M.A.; Nemeth, T. DAS observation of guided waves in a shale reservoir generated by perforation shots. Lead. Edge 2019, 38, 858–864. [Google Scholar] [CrossRef]
- Huff, O.; Lellouch, A.; Luo, B.; Jin, G.; Biondi, B. Validating the origin of microseismic events in target reservoir using guided waves recorded by DAS. Lead. Edge 2020, 39, 776–784. [Google Scholar] [CrossRef]
- Lellouch, A.; Biondi, E.; Biondi, B.L.; Luo, B.; Jin, G.; Meadows, M.A. Properties of a deep seismic waveguide measured with an optical fiber. Phys. Rev. Res. 2021, 3, 013164. [Google Scholar] [CrossRef]
- Luo, B.; Jin, G.; Lellouch, A. Estimation of seismic velocity and layer thickness of Eagle Ford Formation using microseismic guided waves in downhole distributed acoustic sensing records. In SEG Technical Program. Expanded Abstracts 2020; Society of Exploration Geophysicists: Houston, TX, USA, 2020; pp. 535–539. [Google Scholar] [CrossRef]
- Lellouch, A.; Meadows, M.A.; Nemeth, T.; Biondi, B. Fracture properties estimation using distributed acoustic sensing recording of guided waves in unconventional reservoirs. Geophysics 2020, 85, M85–M95. [Google Scholar] [CrossRef]
- Liang, C.; O’Reilly, O.; Dunham, E.M.; Moos, D. Hydraulic fracture diagnostics from Krauklis-wave resonance and tube-wave reflections. Geophysics 2017, 82, D171–D186. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, J.; Greenwood, A.; Minato, S.; Barbosa, N.D.; Caspari, E.; Holliger, K. Bayesian full-waveform inversion of tube waves to estimate fracture aperture and compliance. Solid Earth 2020, 11, 657–668. [Google Scholar] [CrossRef]
- Schumann, H.; Jin, G. Inferring near-well conductivity from DAS-recorded tube waves generated by perforation shots. In SEG Technical Program. Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2020; pp. 455–459. [Google Scholar] [CrossRef]
- Borodin, I.; Segal, A. Real-time hydraulic fracture monitoring and wellbore characterization with distributed acoustic sensing of pumping noise. Lead. Edge 2020, 39, 785–792. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lellouch, A.; Biondi, B.L. Seismic Applications of Downhole DAS. Sensors 2021, 21, 2897. https://doi.org/10.3390/s21092897
Lellouch A, Biondi BL. Seismic Applications of Downhole DAS. Sensors. 2021; 21(9):2897. https://doi.org/10.3390/s21092897
Chicago/Turabian StyleLellouch, Ariel, and Biondo L. Biondi. 2021. "Seismic Applications of Downhole DAS" Sensors 21, no. 9: 2897. https://doi.org/10.3390/s21092897
APA StyleLellouch, A., & Biondi, B. L. (2021). Seismic Applications of Downhole DAS. Sensors, 21(9), 2897. https://doi.org/10.3390/s21092897