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Abstract: Monitoring continuous BP signal is an important issue, because blood pressure (BP) varies
over days, minutes, or even seconds for short-term cases. Most of photoplethysmography (PPG)-
based BP estimation methods are susceptible to noise and only provides systolic blood pressure (SBP)
and diastolic blood pressure (DBP) prediction. Here, instead of estimating a discrete value, we focus
on different perspectives to estimate the whole waveform of BP. We propose a novel deep learning
model to learn how to perform signal-to-signal translation from PPG to arterial blood pressure
(ABP). Furthermore, using a raw PPG signal only as the input, the output of the proposed model is
a continuous ABP signal. Based on the translated ABP signal, we extract the SBP and DBP values
accordingly to ease the comparative evaluation. Our prediction results achieve average absolute
error under 5 mmHg, with 70% confidence for SBP and 95% confidence for DBP without complex
feature engineering. These results fulfill the standard from Association for the Advancement of
Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) with grade A. From
the results, we believe that our model is applicable and potentially boosts the accuracy of an effective
signal-to-signal continuous blood pressure estimation.

Keywords: blood pressure estimation; photopletysmography; deep learning; LSTM; autoencoder;
signal-to-signal translation

1. Introduction

As a result of the reciprocal relationship between environmental, physical, and emo-
tional factors, blood pressure (BP) will always be a fluctuating hemodynamic phenomenon.
Take white-coat hypertension case as an example, a normotensive subject often diagnosed
as hypertensive over clinic BP measurement. The measurement hence becomes normal
again outside the medical environment. This indicates that the true subject’s BP is influ-
enced by the individual emotion that might be due to high anxiety. Therefore, instead of
monitoring BP intermittently, performing continuous BP monitoring is crucial to assess the
true subject’s BP amidst BP variability (BPV) [1,2].

Photoplethysmography (PPG) is widely used as a tool to detect the blood volume
changes in the microvascular. Due to its simplicity and noninvasiveness, PPG sensor has
been widely used in wearable devices, mostly for the fitness tracking feature [3]. The
morphological analysis of PPG has been applied in vascular assessment, such as evaluating
heart rate, vascular aging, and blood oxygen saturation [4,5]. While the PPG waveform
reflects the amount of blood in a measuring site, the amount of blood itself is closely related
to blood flow, which is formed from the pressure. Thus, PPG can be depicted as a potential
alternate to obtain the arterial blood pressure (ABP) for continuous BP monitoring.

The general PPG waveform mainly consists of four distinctive features, namely foot,
systolic peak, dicrotic notch, and diastolic peak, as shown in Figure 1. The PPG waveform
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is quite simple and straightforward, but sometimes is not informative. Frequently, the
subject’s age affects the distinctiveness of the features, such as dicrotic notch, which is
usually hard to detect in older subjects [5,6]. To conduct a better morphological analysis
of PPG, most studies extend to the derivative-based analysis. The first derivation of
PPG (dPPG) interprets the velocity of blood volume change and the index of blood flow.
Consequently, the acceleration of the blood volume change can be captured by the second
derivation (sdPPG) [4].
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Earlier findings [7,8] disclose the relationship between the second derivative of PPG
and blood pressure. Based on the studies, the change of PPG’s acceleration is highly related
to vessel condition, such as the vessel’s radius, thickness, and stiffness. Moreover, based
on [9], BP knowingly correlates with the pulse wave velocity (PWV), which comprises
same information from the vessel, represented as:

PWV =

√
E·h

2·r·ρ , (1)

where the vessel’s radius and thickness are denoted as r and h, respectively. The vessel’s
stiffness has a nonlinear relationship with the elastic modulus of the vessel wall, denoted
as E, and lastly, ρ denotes the density of blood in the vessel. Therefore, we can conclude
that the PPG’s derivatives can be utilized to preserve the informative features in the
PPG waveform.

Prior studies focusing on the BP estimation task can be observed dealing with two
kind of approaches, using either PPG signal only or PPG signal along with other signals.
In [9–11], feature-based methods from PPG and electrocardiogram (ECG) signals are carried
out. Using the same source from [12] for the ECG, PPG, and ABP signals as the training and
testing set, these studies extract informative features based on the physiological parameters
and the time-related indicators. The features serve as an input to machine learning and
deep learning model to predict the SBP and DBP. Despite the good result in DBP prediction,
these studies remain with high error in SBP prediction.

Recent studies [11,13] try to compare the performance of BP assessment between
machine learning models that use the combination features from ECG and PPG signals
and models that use features from PPG only. It is reported from both studies that using
combination features from ECG and PPG signals results in a comparatively better perfor-
mance. However, the reported results could not surpass the other studies [6,7,14–16] that
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produce remarkable results using PPG signal only. Despite the simplicity of PPG waveform,
numerous features can be extracted from the time and frequency domain of an appropriate
PPG signal. Estimating BP with one signal only is also more convenient when considering
how the computational and hardware cost can be reduced. Hence, many studies try to
focus on the task by utilizing PPG signal only.

Our prior work [14] selects 59 out of 65 total features extracted from PPG signal as
the input of the deep neural network (DNN) model to predict SBP and DBP. The resulting
errors are exceptionally low from both SBP and DBP prediction. This result is outperformed
by [16], which selects 7 out of 22 features only as the input of recurrent neural network
(RNN) models, namely long short-term memory (LSTM) and gated recurrent units (GRU).
This may demonstrate the aptitude of RNN in solving sequence problem with less features
as the input. The smaller number of features may also save the computational cost of
the model.

Notwithstanding the effectiveness of using PPG signal for BP estimation, motion
artefacts are often found diminishing the signal quality which caused feature extraction
failure. Several studies [17–19] have attempted to use the raw signal and discard feature
engineering. The raw signal is preprocessed and segmented for some defined time length.
Subsequently, the signal segments are fed as inputs of the model. Several machine learning
regressor models, namely decision tree, support vector regression, adaptive boosting, and
random forest are being compared in [18] to predict SBP, DBP, and mean arterial blood
pressure (MAP) values. Convolutional layers and recurrent layer of GRU are applied
to build an end-to-end neural network model in [19] to estimate SBP and DBP values.
Again, using the recurrent layer helps the performance boosts. The notable performance,
however, lacks generality, since the data that they used are the least frequent compared to
the other works. Lastly, a deep learning model comprised of fully convolutional neural
networks is developed by [17], not only to estimate the SBP, DBP, and MAP, but also to
predict the waveshape of the ABP signal. To the best of our knowledge, unlike the already
mentioned works, this model is the only model that uses a signal-to-signal translation
approach in the field. This model, however, consists of two separate networks, which is
computationally expensive.

In this study, we develop a LSTM-based autoencoder to translate ABP signal from raw
PPG signal along with its derivations, and extract the SBP and DBP values from it. The
contribution of this study includes:

1. A unimodal which consists of LSTM and autoencoder as the signal-to-signal translator
to estimate ABP signal using raw PPG signal only.

2. Our model has the strong learning ability to estimate the ABP signal. The input
of the proposed model is raw PPG signal along with its derivatives, instead of the
hand-crafted feature of the PPG. There is no feature engineering needed for the
proposed model.

3. Instead of estimating discrete value (such as SBP and DBP), our model is able to
estimate the whole waveshape of the ABP signal, which provides more holistic
information of ABP if applied in the healthcare domain for patients with serious
cardiovascular disease (CVD).

The rest of this paper is organized into four sections. Section 2 explains the database,
preprocessing, and the model composition, along with the experimental setup. The experi-
mental results are presented in Section 3. Section 4 summarizes and discusses the result,
while Section 5 concludes this study.

2. Materials and Methods

In this study, PPG signals are acquired from Physionet’s MIMIC (Multiparameter
Intelligent Monitoring in Intensive Care) II online database [12]. The corresponding ABP
signals are also provided, which we use as a reference during the experiment. The sampling
frequency of both signals are 125 Hz, with the length of signals varying across 12,000 sub-
jects. It is important to note that this database obtains data from ICU, which likely contain
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abnormal BPV, due to influence from drugs [10]. We prepare the PPG signals through some
preprocessing, and left with data from 5289 subjects to further be used in the experiments.
The preprocessing steps and model building are summarized below.

2.1. Data Preprocessing
2.1.1. Denoising

Prior to any process to be carried out, PPG signals are being filtered using third order
Butterworth bandpass filter to remove both high and low-frequency noise. This filter is
highly used to produce PPG signals filtration in prior works such as [4,20,21]. In this study,
we specify the range of the passband from 0.5 to 8 Hz.

2.1.2. Z-Score Normalization

In this step, we modify the raw data (PPG signal) so that it fits to a normal distribution.
Suppose the mean of a signal is computed as µ and standard deviation as σ; then, we
transform our data so that the transformed data has zero mean and standard deviation of
one by:

x′ =
x− µ

σ
, (2)

where x is the original PPG signal and x′ is the normalized PPG signal. Here, the normal-
ization parameters are calculated for each signal separately. Moreover, we take the average
of each normalization parameter from all the data in the training stage and use it for all
signals in the testing stage.

2.1.3. Signal Alignment

In order to handle one known issue in the database which is waveform misalignment,
we measure a cross-correlation function g(∆t) to calculate the precise phase lag between
the PPG and the reference ABP signal [15]. The cross-correlation function is presented
as follows:

g(∆t) = ∑ ABP[t]PPG[t + ∆t] (3)

Here, signals are aligned for every segment with g(∆t) represents the result of cross-
correlation function, and ∆t is the time offset or the phase lag between ABP and PPG.
The most accurate ∆t corresponds to the biggest g(∆t). ∆t is generally bigger than 0 and
smaller than the duration of a single pulse. In Figure 2, we present an example of the
function g(∆t). If the peak of cross-correlation is at the center, then it indicates that the two
signals are the most synchronized. However, in Figure 2 we can see that there is a phase
lag of 0.28 s in the example record, which indicates that indeed one of the signals (in our
case is the ABP) leads the other signal. In such a case, we shift the PPG signal for 0.28 s in a
direction closer to 0, as demonstrated in Figure 3.
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2.1.4. First and Second Derivative of PPG Signal Extraction

The general PPG waveform is quite simple and straightforward, yet not always
informative [5]. Considering that the PPG represents how much amount the blood volume
changes, taking its first and second derivatives can significantly help in evaluating the
informative features in PPG waveform, such as the velocity and the accelerations of blood
volume changes [4,14]. We take the derivatives of PPG waveform and stack it along to be
the input of our model. Let x as a PPG data point at time i with h step size which is evenly
spaced; we calculate the derivatives by the equation as follows:

f ′(xi) ∼=
f (xi+1)− (xi−1)

2h
+ O(h2) (4)

2.1.5. Elimination of Inappropriate Signals

For training, we eliminate signals that do not meet our requirements, such as:

• Signal with systolic blood pressure (SBP) more than 180 mmHg or less than 80 mmHg.
SBP can be calculated following this equation:

SBP = max(ABP) (5)

• Signal with diastolic blood pressure (DBP) more than 130 mmHg or less than 60 mmHg.
DBP can be calculated following this equation:

DBP = min(ABP) (6)

• Signal with average Pearson’s correlation coefficient less than 0.8. After each beat
of the signal is aligned, we compute the correlation coefficient r to determine how
similar PPG and the reference ABP signal in terms of morphology by the equation as
follows [3]:

r =
n ∑ AP−∑ A ∑ P√

n ∑ A2 − (∑ A)2 −
√

n ∑ P2 − (∑ P)2
(7)

• Signal with undefined PPG systolic peak. We use heartpy toolkit [22] for the automatic
detection of PPG systolic peak. The cases of undetected systolic peak mostly happened
to PPG signals that have irregular waveform, which might be influenced by sensor
position change or movements. A few examples are shown in Figure 4.
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The final set consists of about 250,000 segments of signal extracted from all the subjects
randomly selected in the database. Figure 5 demonstrates the statistical information about
the distribution of the SBP and DBP in the final set.
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2.2. Model Building
2.2.1. LSTM

Sequence data, namely time series and natural language, hold a long-term dependency
which requires that important information from any state is preserved. RNN are supposed
to overcome the shortcoming that traditional neural network has in handling problems
related to these sequential data [23]. However, as the sequence gets longer, the performance
of RNN is deteriorating in some way. LSTM is one kind of RNN that is tailored to address
this issue [24]. As depicted in Figure 6, the LSTM module, or so-called memory cell,
comprises a unique composition that allows information to persist and pass on over time.
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The form of LSTM memory cell is designed to have a forget gate ( f ), an input gate (i), an
output gate (o), and a cell state (c).
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The cell state allows information to surge along it, while the gates are in charge of
regulating the interaction between the memory units to determine whether the information
needs to be added or removed. In particular, following the flow of LSTM memory cell,
the forget gate can decide to detach information from the cell state. It looks at the output
of previous memory cell at time t− 1 and the current input at time t to output a number
between 0 to 1 with a sigmoid (σ) function. Next, the input gate determines whether
the new input is going to be stored in the cell state or not. Beside utilizing a sigmoid (σ)
function that decides which values are going to be updated, it also uses hyper tangent
(tanh) function to output a vector of candidate values (C̃) that is going to be stored in the
cell state. The result from forget gate is multiplied with the cell state from previous memory
cell and added to the multiplication of input gate and the candidate value accordingly to
update the cell state. Lastly, the output gate filters the information from cell state as the
output, by first using the sigmoid function and multiplying it by the hyper tangent of the
updated cell to push the output values to be in the range of [−1, 1].

2.2.2. Autoencoder

The autoencoder is a kind of artificial neural network (ANN) that learns in an un-
supervised technique. Often, we find autoencoder is utilized as generative model or to
solve machine translation and image segmentation tasks [25]. The autoencoder has an
essential composition which comprises three consecutive layers, as shown in Figure 7,
to output exactly the same data as the input that it is being fed to [26]. The concept of
autoencoder is unusually straightforward. The training procedure can be dissembled into
two phases, encoding and decoding. In the encoding phase, the encoder first receives the
input data in input layer, learns the compressed representation, and map it into the hidden
layer. Inversely, decoder reconstructs the input data from the compressed representation in
hidden layer during the decoding phase. To suppress the disparity between the original
input and the output, the autoencoder measures the reconstruction error by computing
the difference between the original input and the output. In this sense, focusing on re-
ducing the reconstruction error that has the same input and output takes autoencoder to
self-supervised learning, since the data we process provides the supervision.
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Figure 7. Autoencoder architecture. The encoding phase is represented in the black-line box and the
decoding phase is represented in the red-line box.

2.2.3. LSTM-Based Autoencoder

Here, we propose a new approach for BP estimation model derived from an improved
autoencoder model. Since PPG and ABP are both one-dimensional time-series signals, we
believe that RNN is a more suitable tool for modelling such data. Hence, instead of using
the original feed-forward neural network as the base of the autoencoder, we adopt LSTM
and enable it to learn the features from the sequence in BP estimation task. The proposed
model can be seen in Figure 8.
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2.2.4. Transfer Learning

In machine learning, we study how to utilize knowledge from a source field and
transfer it to the target field by doing transfer learning. A neural network is similar to the
processing mechanism of the human brain, which comprehends an iterative and abstraction
process. Following the assumption that the forepart of a network can be considered as a
feature extractor while the extracted features are versatile, we can do transfer learning by
reusing the partial network that trained in the source field and transfer it to be a part of a
network that will be in the target domain [25]. In this study, we first train our autoencoder
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to reconstruct the PPG waveform input. We freeze the encoding part and only let the next
part be trained for constructing the ABP waveform afterwards. Taking this application
can help our network to learn the intermediate waveform representations explicitly. The
training flow of our model is illustrated in Figure 9.
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2.2.5. Experimental Setup

In our proposed model, there are two layers of LSTM, with 128 hidden nodes for each
phase. We apply dropout layer in the end of decoding phase with a rate of 0.2 to prevent
overfitting. Our model’s learning rate is set to 0.0025 and uses Adam optimizer for the
training process. The maximal epochs for the training are set to 50 for both source field and
target field. We built our model in Python using Keras with Tensorflow 2.2 as the backend.
Using four GPU machines (NVIDIA Titan X from Taipei, Taiwan), it takes up to 9 h to train
both the PPG to PPG translation model and the PPG to ABP translation model.

3. Results

In this section, the BP estimation performances are compared with the past studies by
the mean absolute error (MAE), as defined in Equation (8):

MAE =
1
N ∑N

i=1|ei|, (8)

and the root mean square error (RMSE), as defined in Equation (9):

RMSE =

√
1
N ∑N

i=1 ei
2, (9)

where e is the error or difference between the observed and the prediction BP value in
mmHg. We conduct a fair experiment by completely disjoining our data partition with
ratios of 70%, 10%, 20%, for the training, validation, and testing process, respectively. The
testing results are presented in Table 1.
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Table 1. Performance comparison (in terms of MAE and RMSE) between different methods.

Method Dataset
SBP (mmHg) DBP (mmHg)

MAE RMSE MAE RMSE

[7] 910 subjects 8.54 10.9 4.34 5.8
[19] 90 subjects 3.95 - 2.14 -
[16] 500 subjects 3.25 - 1.43 -
[14] 9000 subjects 3.21 4.63 2.23 3.21
[17] 942 subjects 5.73 - 3.45 -

Proposed model 5289 subjects 4.05 5.25 2.41 3.17

Here, we select previous studies that also use PPG and ABP signals from the same
dataset in this paper to compare. Moreover, despite using the same dataset, some methods
are based on feature engineering, while others are not. Liu et al. [7] introduce 14 features
from the second derivative of PPG signal and add up 21 features from prior work [27] as
the input for support vector machine regressor (SVR). The reported result shows better
performance than using 21 features only based on the MAE and RMSE. Wang et al. [19]
demonstrates an exceptional result using free handcrafted feature engineering method and
only relies on the convolutional layer as the feature extractor. However, this study uses the
least number of subjects, which cannot ensure the robustness in term of generalizability.
ElHajj et al. [16] have the remarkable result with the least error of DBP prediction using
7 features as the input of the GRU model. Despite that, the number of subjects is also
small compared to ours. Our latest work [14] presents 65 features and select 59 features
as the input of four layers deep neural network (DNN) model to achieve the smallest
SBP prediction error with the largest number of subjects. Ibtehaz et al. [17] have the most
similar objective to our study, which is trying to translate PPG signals to ABP signals. In
their study, the model is mainly consisting of an approximation network and a refinement
network. The two networks use two different image segmentation models that have been
modified to handle one-dimensional data instead of two.

The results of the comparison between our proposed network and the British Hy-
pertension Society (BHS) [28] standard are presented in Table 2. This standard grades BP
measurement system, based on the cumulative error, to be less than their three different
thresholds (5 mmHg, 10 mmHg, and 15 mmHg) [28]. In accordance with it, the BP estima-
tion from proposed LSTM-based autoencoder is apparent to be consistent with the grade A
for both a diastolic and systolic one.

Table 2. Performance comparison with the BHS standard.

Cumulative Error ≤5 mmHg ≤10 mmHg ≤15 mmHg

Our result
SBP 70.6% 94.1% 98.6%
DBP 91.1% 99.1% 99.8%

BHS
Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

Lastly, the evaluation of our proposed model based on Association for the Advance-
ment of Medical Instrumentation (AAMI) [29] standard is presented in Table 3. To satisfy
this standard, the test has to be conducted on more than 85 subjects with average prediction
result error and standard deviation error (STD) below 5 mmHg and 8 mmHg, respectively.
With respect to the mentioned criterion, our model satisfies all the standard with MAE
and STD of 4.05 and 4.42 for SBP prediction also MAE and STD of 4.60 and 3.47 for DBP
prediction, respectively.



Sensors 2021, 21, 2952 11 of 15

Table 3. Performance comparison with the AAMI standard.

MAE (mmHg) STD (mmHg) # Subjects

Our result
SBP 4.05 4.60 5289
DBP 2.41 3.11 5289

AAMI <5 <8 >85

4. Discussion

In this study, a self-supervised deep learning model for continuous BP estimation was
proposed using PPG exclusively as the input. Due to its versatility and non-invasiveness,
PPG becomes a widely preferred technology for obtaining information about the cardio-
vascular and respiration system. Features extracted from PPG have been proven to exhibit
intrinsic physiological appliance, which is ideal for BP estimation [30]. Nevertheless, there
had been some disputes about how susceptible PPG is influenced under various scenarios,
which makes feature extraction impractical. Different from the feature-based BP estimation
models, we do not perform feature engineering, in consideration of envisaging PPG in the
wild, which might suffer physiological information loss.

4.1. Basis for PPG and ABP Signal Coherence

We carry out an in-phase analysis where PPG and ABP have been aligned in the
preprocessing part. Using the Pearson’s correlation coefficient r, we can see the similarity
between the two signals in terms of morphology. From the overall 12,000 subjects, first
we obtained 4,028,466 segments and selected the segment with r more than 0.8. Here, we
attained 3,841,600, which means that 95% of the input signal is highly correlated with the
reference signal. The average morphology correlation between PPG and ABP signal is 0.84
and Figure 10 shows one example of the segment that had quite a high positive similarity,
with morphology correlation between the signals of 0.977. This finding reinforces our study
in performing BP estimation without having to do complex feature engineering.
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4.2. Model Performance

LSTM has a complex cell architecture which carries more weight than the conventional
feed-forward neural network. Such a characteristic enables our model to analyze and
ultimately capture more information from the sequence signal. Unlike the feed-forward
neural network, LSTM also handles varying length series straightforwardly, which is able
to deal with our task efficiently. In our case, we can view our goal as a signal-to-signal
translation, since an arbitrarily long PPG input sequence is mapped to ABP sequence
as output, with the same length as the input. From Figure 11, the results show that the
Pearson’s correlation’s r is equal to 0.92 between observed and predicted SBP, and that
r is equal to 0.93 between the observed and predicted DBP, indicating a high correlation
between our estimation result with the ground truth.
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In autoencoder, first, we need the encoder to understand the morphology of the PPG
signal. It further creates the learned representation of what the PPG signals looks like.
Consequently, we need the decoder to be capable of reconstructing the representation of
PPG signal back into the PPG signal. By doing this iteratively through training, the encoder
becomes conversant in creating the learned representation of PPG signal. Figure 12 shows
the examples of PPG to PPG reconstruction model training results. Since the encoder part
has been trained correctly, the decoder’s task is changed to convert the representation
of PPG signal into an ABP signal. Thus, we do transfer learning for the encoder part to
be used in the proposed model for estimating the ABP signal. Figure 13 demonstrates
our ABP sequence prediction result using the transfer learning method, which has high
resemblance to the observed sequence obtained from the source dataset. In this sense, it is
certain that an LSTM-based autoencoder can perceive the information in the PPG signal
and translate it to the corresponding ABP signal.
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11, (c) segment id 400, (d) segment id 2662, (e) segment id 9000, (f) segment id 132,290.

In our experiment, the number of subjects we use is much bigger than those used
in some prior studies mentioned in Table 1 as a comparison. Although we have slightly
higher error, our approach can estimate the whole waveform of an ABP signal period. The
estimated waveform contains more information that can be used as reference for doctors to
make a medical diagnosis. Compared to [17], that has the closest objective to the proposed
method, our prediction has lower error on both SBP and DBP. With respect to it, our model
shows acceptable robustness and accuracy over a fairly large number of subjects being
used. In addition to that, we also emphasize the data quality, as we rely on clean PPG and
ABP signal with a high correlation for our model training. Figure 14 demonstrates the
distribution of absolute error across 250,000 records of SBP and DBP. It can be seen that
the absolute error values follow the half normal distribution around zero. Nevertheless,
the elimination process of abnormal (hypertensive and hypotensive) SBP and DBP values
relatively reduce the dataset up to 90%. Hence, our limitation lies on the average number
of records in each subject, which is relatively small despite the large number of subjects
that we use. A training model with such data can cause the proposed approach to not be
valid in some unusual cases. Given this, a wider range of SBP and DBP values might be
conducted for future works with more intricate computational and analysis to support the
model’s performance.
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5. Conclusions

An LSTM-based autoencoder model to translate PPG signals toward ABP signals for
blood pressure estimation has been developed. Our model omits the impractical complex
feature engineering approach, which sometimes cannot be conducted due to the various
scenario during acquisition that might influence the PPG signal’s quality. The model
provides a fairly accurate and promising result over a very large number of subjects being
examined. According to the BHS standard, our proposed model achieves grade A for both
SBP and DBP estimation. We also fulfill the requirement of the AAMI standard consistently
for both standards. In future works, we would like to explore our model robustness with a
wider range of SBP and DBP values, especially by including abnormal BP cases.
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