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Abstract: In this study, the possibility of non-destructive detection of tomato pesticide residues
was investigated using Vis/NIRS and prediction models such as PLSR and ANN. First, Vis/NIR
spectral data from 180 samples of non-pesticide tomatoes (used as a control treatment) and samples
impregnated with pesticide with a concentration of 2 L per 1000 L between 350–1100 nm were
recorded by a spectroradiometer. Then, they were divided into two parts: Calibration data (70%) and
prediction data (30%). Next, the prediction performance of PLSR and ANN models after processing
was compared with 10 spectral preprocessing methods. Spectral data obtained from spectroscopy
were used as input and pesticide values obtained by gas chromatography method were used as
output data. Data dimension reduction methods (principal component analysis (PCA), Random frog
(RF), and Successive prediction algorithm (SPA)) were used to select the number of main variables.
According to the values obtained for root-mean-square error (RMSE) and correlation coefficient (R)
of the calibration and prediction data, it was found that the combined model SPA-ANN has the
best performance (RC = 0.988, RP = 0.982, RMSEC = 0.141, RMSEP = 0.166). The investigational
consequences obtained can be a reference for the development of internal content of agricultural
products, based on NIR spectroscopy.

Keywords: pesticide residues; spectroscopy; PLS; soft computing; algorithm

1. Introduction

Tomato (Solanum lycopersicum) is one of the most widely used crops in the world,
which is rich in antioxidants such as carotenoids, total phenols, vitamin E, and vitamin
C [1]. Related empirical studies have shown that vitamin C affects the human immune
system and prevents diseases such as Alzheimer’s [2]. In addition, the prevention of
illnesses by fruits and vegetables also depends on antioxidants [3].

Tomatoes need intensive pest management due to their low resistance to pests and
diseases. The need to use pesticides can leave harmful residues in the product. Organophos-
phorus pesticides can be stable for a considerable time even after washing and cooking in
the product if used without observing its pre-harvest interval [4–6].

Today, many countries have restricted the use of pesticides, requiring the pesticide
maximum residue limit (MRL) in food [7], and the amount is specified for each crop [8–11].
Currently, there are several methods for determining the concentration of pesticides, includ-
ing GC, HPLC, thin layer chromatography, and capillary electrophoresis [12]. However,
due to time constraints and high costs, it is not possible to use these methods to control all
products [13].
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Many studies are currently underway to develop safe, rapid, reliable, and low-cost
methods for determining pesticide residues that can prevent the use of organic solvents and
reduce operator exposure to toxic substances. Spectroscopy-based methods are a potential
method that can solve the problems mentioned above.

NIRS is suitable non-destructive method for quantitative and qualitative analysis in
agriculture, chemistry, medicine, and other sciences [14–18]. This technique is faster and
cheaper than conventional methods and environmentally friendly and can usually be used
without the need to prepare samples [19–22]. This technology is based on the absorption of
radiation in the infrared region near the electromagnetic spectrum, which can be used to
control the quality of food products [23–25]. Furthermore, in some studies, this technology
has been used to detect pesticide residues in agricultural products [26–28].

Jun et al. [29] examined cadmium residue in tomato leaves using hyperspectral imag-
ing. In this method, WT and LSSVR were used to choose the best wavelength and create
a detection model. The best prediction performance for the detection of cadmium (Cd)
content in tomato leaves was obtained using the second derivative preprocessing method.

Chen et al. [30] used NIRS to determine organophosphate chemicals. PLSR was used
to create the prediction models. The best prediction result was obtained using PLSR with
MSC and the first derivative as the preprocessing method.

Fen et al. [31] used NIRS and ANN for non-destructive detection of a common pesti-
cide on the Longan surface. The results showed that the correct diagnosis ratio was 93%.

Jiang et al. [32] combined deep learning and machine vision to predict the pesticide.
The consequences showed that when the training epoch is 10, the precision of the test
set detection will be 90.09% and the average picture bandwidth detection precision will
be 95.35%.

Wei et al. [33] offered a technique for removing residues of pesticide in apple juice.
This technique can precisely identify and classify data about residues of pesticide in apples.

Soltani et al. [18] used NIRS technology with multivariate regression analysis to predict
pesticide residues in tomato. The best prediction results were obtained using the PLS model
based on the smoothing + moving average method (Rcv = 0.92, RMSECV = 4.25).

Xue et al. [34] used the PSO algorithm to predict dichlorvos residue on the orange
surface by Vis-NIR spectroscopy. The PSO-PLS model was able to predict the dichlorvos
residue with a correlation coefficient of 0.8732. They have stated that the selection of
wavelengths through a PSO algorithm increases the ability to predict when using the
PLS model.

According to previous studies, the NIRS can be used to predict pesticide residues
from other crops. To the best of our knowledge, there is no research to determine the
organophosphorus pesticides and their prediction methods in tomatoes.

Therefore, in this paper, we use NIRS and chemometric methods to create a prediction
model without destruction to detect the tomato pesticide residues. Spectral data obtained
with a spectroradiometer and reference data obtained by a gas chromatography equipment
were used as input and output of the models used in this study, respectively. PCA, SPA,
and RF algorithms were utilized to select the variable as input for artificial neural network
(ANN) and PLSR. First, all spectral data without dimension reduction and then spectral
data obtained from variable selection algorithms were used to predict the amount of
pesticide in tomatoes. Then 8 combined modes (PLS, ANN, PCA-ANN, RF-ANN, SPA-
ANN, PLS-PCA, PLS-RF, and PLS-SPA) were developed for pesticides residues prediction.
The use of several algorithms for variable selection to predict organophosphorus pesticide
in tomatoes has not been evaluated in previous research. New progress can be made in
improving food quality by this investigation.

2. Materials and Methods
2.1. Sample Preparation

180 samples of tomatoes (Queen) were randomly harvested from a greenhouse where
almost all their produce was uniform in size and stored until 5 ◦C until use. Pest control
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in tomatoes was non-chemical from the beginning of planting to the harvest stage. In
order to achieve different pesticide residual concentrations, the samples were infected with
Profenofos 40% (EC 40%) (C11H15BrClO3PS) with a Pre-Harvest Interval (PHI) of 14 days.
Therefore, the solution of Profenofos pesticide with a concentration of 2 per 1000 L of water
was prepared and sprayed on the samples. The samples were divided into 6 categories:
The first group (P0) was used without any spraying as control and non-pesticide samples;
second group two hours (P-2H); third group two days (P-2D); the fourth group is the same
as the third category, except that it was washed after spraying (P-2D-W); the fifth group for
one week (P-1W) and the sixth group for two weeks (P-2W) were subjected to VIS/NIR
spectroscopy after spraying with the prepared solution. All samples reached equilibrium
temperature in the laboratory before completing the measurements.

2.2. Vis/NIR Spectroscopy

Vis/NIR spectroscopy tests was performed using a PS-100 spectroradiometer (Apogee
Instruments, INC., Logan, UT, USA) with CCD detector, 2048 pixels, 1 nm resolution
and halogen-tungsten light source in the wavelength range of 350–1100 nm. Prior to
spectroscopy, black and white (reference) spectra were first defined and stored. In this
way, first by turning off the light source, the dark spectrum was taken, then in the light
source mode, a standard Teflon disk with the ability to reflect above 97 in the range of 300
to 1700 nm was used to achieve the reference spectrum. For each tomato sample from 4
different points of each sample with 8 scans, within the spectral range of the equipment
used, spectroscopy was performed with software Spectra-Wiz Spectrometer OS v5.33
(c) 2014 and the data were recorded after averaging. To find the spectral regions in the
pesticide solution a quartz cell and two single-stranded fiber optics P400-2-VIS-NIR was
used (Figure 1) [35]. Reference measurements were performed one day after spectroscopic
analysis [18].
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Figure 1. Measurement of Vis/NIR spectra of tomato samples in reflection mode and pesticide in passing mode.

2.3. Reference Measurements

After Vis/NIR spectroscopy, all tomatoes were prepared frozen to measure profenofos
by gas chromatographic reference method (Agilent 5977A Series GC/MSD—Santa Clara,
CA 95051, USA). To determine the retention time of the peak of the diagram obtained for
Profenofos pesticide, the Profenofos standard material (95%) prepared from Agricultural
Exir Company was injected into the chromatograph. For this purpose, sample preparation
was performed according to the British standard BS EN 15662 [36,37]. First, 10 g of the
homogenized sample was poured into a 50 mL centrifuge falcon. Then 10 mL of ethyl
acetate, 1.9 mL of distilled water and 5 g of nitrogen sulfate were added and stirred for
1 min. It was then centrifuged at 5000 rpm for 5 min and 6 mL of the extract formed on
top of the falcon was transferred to another glass falcon. It was shaken for 1 min and
centrifuged at 5000 rpm for 5 min. Then 4 mL of the upper extract of glass was poured into
another falcon and 50 µL of ethyl acetate was added. After filtration, 1 µL of extract was
injected into the equipment. The run conditions of the gas chromatography equipment are
fully described in Table 1.
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Table 1. GC run conditions.

Analytical Column HP-5 ms Ultra Inert 30 m × 250 µm, 0.25 µm (p/n 19091S-433UI)

Injection volume 1 µL
Injection mode Spitless

Inlet temperature 280 ◦C
Liner UI, split less, single taper, glass wool (p/n 5190-2293)

Plated seal kit Gold Seal, Ultra Inert, with washer (p/n 5190-6144)
Carrier gas Helium, constant flow, 1 mL/min

Oven program

60 ◦C for 1 min
then 40 ◦C/min to 170 ◦C
then 10 ◦C/min to 310 ◦C

then hold for 2 min

Transfer line temperature 280 ◦C

2.4. Remove the Outlier Data

The Monte Carlo cross-validation method was used to remove outliers. This method
can simultaneously detect spectral outliers and reference data [38]. Initially, the data were
randomly divided into two categories: Calibration set (70%) and prediction set (30%). Then,
PLS models were got with full cross-validation. When the RMSECV is minimized, the
best number of PC of the model is achieved. Next, the statistical characteristic parameters
of each model and the cumulative value of the sum of squares of predicted residual
errors of each sample were determined [39,40]. In this paper, outlier data (20 samples)
have been deleted by the method mentioned and the amount of R of the model has been
improved from 0.8113 to 0.8609 after their removal. Table 2 shows the reference values
(mean, standard deviation, and range) for the profenofos content (mg kg−1) in the tomato
samples used in this study. As can be seen, the values ranged from n.d (Not detected) to
42.9 mg/kg.

Table 2. Reference values (mean, standard deviation (SD) and range) for profenofos content (mg/kg).

Profenofos (mg/kg)

Number Range Mean Standard Deviation

calibration 112 n.d. *–42.9 14.0 10.1
validation 48 n.d.–34.0 13.7 8.9

* Not detected.

2.5. Variable Selection Method
2.5.1. Random frog (RF) Algorithm

The RF algorithm is generally used in the set of meta-heuristic algorithms. This algo-
rithm is a useful wavelength selection method that calculates the probability of selection
for each variable [40]. In short, the random frog algorithm consists of three steps [41,42]: (1)
The random initialization of a subset of variable V0 containing the variables Q; (2) creating
a subset of the variable V * including the variable Q *; accepting V * as V1 with a certain
probability and considering V0 = V1; the above procedure is repeated until the end of N
and (3) calculating the probability of selecting each variable that can be used as a measure
of the importance of the variable. The schematic of the algorithm is shown in Figure 2.
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Figure 2. Flowchart of a random frog algorithm.

Figure 3 shows the appropriate wavelengths attained by the RF algorithm. In order to
have the large part of impressible data in the main spectrum, the selection threshold was
determined experimentally by 20% trial and error method and the wavelengths above this
selection threshold were selected as the number of characteristic wavelengths. Therefore,
28 wavelengths above the dotted line were used as the final wavelengths to predict pesticide
residues in tomatoes.
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2.5.2. SPA

SPA is a forward selection method that uses simple operations in a vector space to
minimize the linearity of variables. The useful variable can be selected in spectral data
analysis for multivariate calibration using this new method. This technique is widely
used in optimizing specific spectral wavelengths that evaluate variable subsets based
on RMSEC [43]. According to the change curve of RMSEC in relation to the number
of wavelengths, it was determined that by selecting 14 characteristic wavelengths, the
value of RMSE attained a lowest value of 0.141 (Figure 4). Thus, 14 effective wavelengths
were applied as input to the prediction model. The selected characteristic wavelength
distributions across the whole spectrum are shown in Figure 5. Wavelengths close to
650–700, 750–800 and 960–1000 were chosen to build the model. These wavelengths were
in some cases like the wavelengths of the RF algorithm.
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2.5.3. PCA

PCA is one of the most widely used multivariate statistical methods in chemistry [44,45].
The corresponding mathematical model for PCA is based on the decomposition of matrix
X into score matrix n × A (T) and loading matrix N × A (P) as Equation (1):

X = TP′+ F =
A

∑
a=1

ta p′a + F (1)

where X is the spectral data matrix, T is the score matrix for X, P is the loading matrix
for X, F is the residual or model error matrix, ta is the sample score vector on each PC for
X, and pa is the variable loading vector on each PC for X. In this study, the share of the
first principal component (PC1), the second principal component (PC2), the third principal
component (PC3) and the fourth component were 55%, 18%, 8%, and 6%, respectively.
In total, the cumulative share rate of these four components reached 87.00%. To avoid
under-fitting of the prediction model due to lack of components, and to prevent over-fitting
due to information of redundant components, finally 14 main components were selected as
input to the prediction model of the amount of pesticide residues in tomatoes.

2.6. Prediction Models
2.6.1. PLSR

PLSR is a method for relating two matrices X (predictor) and Y (response), by a linear
multivariate model, which also models the structure of X and Y [46]. It works well for
analyzing large, noisy, and collinear data. In this model, by increasing the number of
variables and related observations, the accuracy of the model parameters improves [47].
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This method, the least squares solution, is applied to several orthogonal components that
are a linear combination of independent variables and are created alternately with the aim
of maximizing the covariance of the linear transformation of independent variables and
dependent variables. It is very important to select the main factor when using PLSR for
regression analysis. Wrong selection of the number of main factors causes the model to
under-fitting or over-fitting, thus reducing the model prediction accuracy [48]. In this study,
the mentioned method in the wavelength range of 300–1100 nm was used for modeling
and analysis of spectral data. The fully cross-validation method was used to enhance the
selection and the number of main factors RF, SPA, and PCA were 28, 14, and 14, respectively.

2.6.2. BP-ANN

BP-ANN, a multilayer feed-forward neural network trained by the post-propagation
error algorithm, is today the most widely used reductive neural network [40,49]. In this
paper, a BP feed-forward neural network with one and two hidden layers was modeled.
“tansig”, “logsig”, and “purlin” were used in the hidden and output layers as transfer
functions. The training function used in this model was “trainlm” and the maximum
number of repetitions was 3000. The optimal number of hidden layer neurons for RF-BP,
PCA-BP, and SPA-BP combined models was obtained by trial-and-error method, 8, 12, and
14, respectively.

2.7. Model Validation

Validation methods are important to assess calibration precision and avoid data over-
fitting. The predictive power of a calibration model can be evaluated by the R, RMSEP and
RMSEC between the predicted value and the measured value in the validation set [50]. In
this research, we used R and RMSEC-RMSEP values to evaluate the accuracy and overall
strength of the model, respectively. These indicators are defined as follows:

R =

√√√√ ∑n
i=1(ŷi − yi)

2

∑n
i=1(ŷi − ymean)

2 (2)

RMSEC =

√
1
nc

nc

∑
i=1

(ŷi − yi)
2 (3)

RMSECV = RMSEP =

√√√√ 1
np

np

∑
i=1

(ŷi − yi)
2 (4)

ŷi: Predicted value of ith observation.
yi: Measured value of ith observation.
ymean: Mean of the prediction or calibration set.
n, nc, np: The number of observations in the data set, calibration and prediction set,

respectively.
In general, a good model should have higher correlation coefficients, lower RMSEC,

lower RMSEP [51,52].

3. Results and Discussion
Pre-Processing Spectra

Due to the presence of noise in the initial and final parts of the diagram of absorption
spectra of tomato samples with different concentrations of pesticides, the spectrum range
from 460–1050 nm was considered (Figure 6). The following 10 spectral preprocessing
methods were applied to stabilize the models: Moving average, gaussian filter, median
filter, S-Golay, Maximum normalize, derivative-S-Golay, SNV, MSC, (Gaussian filter) +
(median filter), Normalize + Gaussian.
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Figure 6. Absorption spectra of tomato samples with different concentrations of pesticides.

The residual reference values of the pesticide obtained by the GC-MS destructive
test are between 42.9–“n.d” percent. Moreover, according to the prediction results of
the combined models, the values of pesticide residues in the calibration and prediction
data were between “n.d” up to 62.75%. The spectral diagram for tomatoes with different
concentrations of pesticides is shown in Figure 6. In the diagram, the peak points in the
visible and infrared region are closely visible. The peak points between 650–700, 750–800,
and 960–1000 are related to the absorption of red pigments, the second and third overtone
vibrations of OH and the first and second overtone vibrations of OH are related to water
absorption. The results of PLS models obtained with different preprocessing methods to
predict the Profenofos pesticide residues in tomato samples were shown in Table 3. Most
of the developed calibration models had an acceptable ability to predict pesticide residues
in samples with an RCV above 0.8. However, the best prediction results were obtained
using the PLS model based on the Smoothing + moving average method (Rcv = 0.92,
RMSECV = 4.25). Hence, this model was selected for further analysis. Shan et al. (2020),
Soltani et al. (2021), Yi et al. (2010) and Sharabiani et al. (2019) also used the method used in
this study to predict the amount of soil atrazine uptake, residual pesticides in strawberries,
the amount of nitrogen in orange leaves and the amount of wheat protein, respectively,
and achieved acceptable results [16,18,53,54].

Table 3. Results of different preprocessing methods for predicting Profenofos residues.

Pre-Processing RMSECV RCV LV

No preprocessing 5.7129 0.8609 15
Smoothing-moving average 4.2562 0.9254 13
Smoothing-gaussian filter 4.2680 0.9251 14
Smoothing-median filter 5.2481 0.8847 13

Smoothing 4.1379 0.9295 15
Maximum normalize 5.5788 0.8679 11
1derivative (S-Golay) 7.6328 0.7522 15

SNV 6.8656 0.7978 13
MSC 7.1441 0.7828 15

(Smoothing-Gaussian) + (smoothing median) 7.0276 0.7778 11
Normalize + Gaussian 5.9218 0.8490 10

Figure 7 shows the correlation diagrams of the predicted values versus the main
values of the models used.

The use of NIRS technology in the detection of pesticide residues in fruits and veg-
etables, as well as their qualitative prediction, provides the researcher with a myriad of
spectral data for analysis. Large amounts of spectral data complicate analysis, prediction
errors, as well as over-fitting and under-fitting correlation curves. As a result, we need
to reduce the data dimension. In this paper, it was found that the combined models used
to predict the amount of Profenofos pesticide residues in tomato based on RF, SPA, and
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PCA can achieve the same performance using only a few characteristic spectra, and in
some cases achieve better performance than the mode based on all spectral data (Figure 7).
Some variables selected using the frog (28 wavelength) and SPA (14 wavelengths) al-
gorithms were similar and the rest of the characteristic wavelengths were close to each
other. Table 4 shows the results of model evaluation indicators. According to the results
obtained in ANN-based combined models, using SPA algorithm with values of Rc = 0.989,
Rp = 0.982, RMSEC = 0.141 and RMSEP = 0.166 and using total spectral data with values
of Rc = 0.86, Rp = 0.81, RMSEC = 0.521 and RMSEP = 0.561, respectively, had the best
and worst performance in predicting Profenofos pesticide in tomatoes. Also, in PLS-based
combined models, the modes of using SPA, RF, PCA, and total spectral data had the best
and worst performance in predicting, respectively. In general, according to the results
obtained in terms of validation parameters, the best model proposed in this paper is the
SPA-ANN model.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 13 
 

 

MSC 7.1441 0.7828 15 
(Smoothing-Gaussian) + (smoothing median) 7.0276 0.7778 11 

Normalize + Gaussian 5.9218 0.8490 10 

Figure 7 shows the correlation diagrams of the predicted values versus the main val-
ues of the models used. 

 
Figure 7. Correlation diagrams of the predicted values versus the main values of the models used. 

The use of NIRS technology in the detection of pesticide residues in fruits and vege-
tables, as well as their qualitative prediction, provides the researcher with a myriad of 
spectral data for analysis. Large amounts of spectral data complicate analysis, prediction 
errors, as well as over-fitting and under-fitting correlation curves. As a result, we need to 

Figure 7. Correlation diagrams of the predicted values versus the main values of the models used.



Sensors 2021, 21, 3032 10 of 13

Table 4. Results of validation parameters of combined models.

Combined Models
Validation Parameters

Rc Rp RMSEC RMSEP

PLS 0.79 0.85 0.66 0.62
PCA-PLS 0.88 0.85 0.53 0.55
SPA-PLS 0.89 0.80 0.46 0.59
RF-PLS 0.91 0.91 0.40 0.36
ANN 0.86 0.81 0.52 0.56

PCA-ANN 0.93 0.89 0.36 0.40
SPA-ANN 0.98 0.98 0.14 0.16
RF-ANN 0.91 0.89 0.40 0.54

In a similar study the feasibility of using NIRS to detect the soluble solids content
(SSC) of Malus micro malus Makino were studied using SPA, SVR, PLSR, and BP-ANN.
The comparison studies confirmed that the optimal fusion model of SPA-SVR had the best
performance (RC = 0.9629, RP = 0.9029, RMSEC = 0.199, RMSEP = 0.271) [42]. In other
study, a new method of variable interval selection based on random frog (RF), known
as Interval Selection based on Random Frog (ISRF), is developed. The results show that
the proposed method is very efficient to find the best interval variables and improve the
model’s prediction performance and interpretation [55]. The results of various studies show
that the use of soft computing has been an effective method in the qualitative diagnosis of
products. This is evidence of the confirmation of the results obtained from our study.

4. Conclusions

In this paper, a rapid and non-destructive near-infrared method was used to predict the
profenofos pesticide residues in tomatoes. Spectral data obtained with a spectroradiometer
and reference data obtained by a gas chromatography equipment were used as input and
output of the models used in this research, respectively. PCA, SPA, and RF algorithms
were used to select the variable as input for artificial neural network (ANN) and PLSR.
First, all spectral data without dimension reduction and then spectral data obtained from
variable selection algorithms were used to predict the amount of pesticide in tomatoes.
Afterwards, 8 combined modes (pls, ANN, PCA-ANN, RF-ANN, SPA-ANN, PLS-PCA,
PLS-RF, and PLS-SPA) were developed for prediction. Finally, the prediction accuracy of
different combined models was compared and the best case was introduced. Based on what
was said in the previous sections of the paper, it was found that it is possible to predict the
amount of pesticide residues in tomatoes using the spectrum in the range of 460–1050 nm.
Accordingly, it was determined that the use of variable selection methods had a better
performance in predicting the amount of pesticide residues than the use of all spectral data.
Finally, according to the results of the validation parameters of the combined models used,
the SPA-ANN combined model with values of Rc = 0.989, Rp = 0.982, RMSEC = 0.141 and
RMSEP = 0.166 had the best performance in predicting Profenofos pesticide in tomatoes.

At the end of the article, it can be mentioned that NIRS technology, in addition to
advantages such as a non-destructive method, low cost measurement, high speed and
online uses in the processes of quality determination. However, this method has some
disadvantages, which are: NIRS requires chemometric techniques to provide the reference
data for calibration and validation of experimental results, and the large number of samples
with large variations to extract accurate information.
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Abbreviations

MRL Maximum Residue Limit
EU European Union
VIS/NIRS Visible/Near InfraRed Spectroscopy
PCA Principal Component Analysis
PLSR Partial Least Squares Regression
ANN Artificial Neural Network
R Regression Coefficient
RMSE Root Mean Square Error
GC Gas Chromatography
HPLC High-Performance Liquid Chromatography
WT Wavelet Transform
LSSVR Least-Square Support Vector Machine Regression
PSO Particle Swarm Optimization
RPD Residual Prediction Deviation
PLS-DA Partial Least Squares-Discriminant Analysis
PHI Pre-Harvest Interval
LOD Limit of detection
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9. Knežević, Z.; Serdar, M. Screening of fresh fruit and vegetables for pesticide residues on Croatian market. Food Control 2009, 20,
419–422. [CrossRef]

10. Claeys, W.L.; Schmit, J.-F.; Bragard, C.; Maghuin-Rogister, G.; Pussemier, L.; Schiffers, B. Exposure of several Belgian consumer
groups to pesticide residues through fresh fruit and vegetable consumption. Food Control 2011, 22, 508–516. [CrossRef]

11. Omirou, M.; Vryzas, Z.; Papadopoulou-Mourkidou, E.; Economou, A. Dissipation rates of iprodione and thiacloprid during
tomato production in greenhouse. Food Chem. 2009, 116, 499–504. [CrossRef]

12. Gambacorta, G.; Faccia, M.; Lamacchia, C.; Di Luccia, A.; La Notte, E. Pesticide residues in tomato grown in open field. Food
Control. 2005, 16, 629–632. [CrossRef]

13. Luypaert, J.; Zhang, M.; Massart, D. Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative
analysis of green tea, Camellia sinensis (L.). Anal. Chim. Acta 2003, 478, 303–312. [CrossRef]

14. Peng, Y.; Lu, R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids
content. Postharvest Biol. Technol. 2008, 48, 52–62. [CrossRef]

http://doi.org/10.1007/s11947-016-1820-0
http://doi.org/10.1093/ajcn/78.3.454
http://www.ncbi.nlm.nih.gov/pubmed/12936929
http://doi.org/10.1016/j.lwt.2007.03.002
http://doi.org/10.1016/j.chroma.2011.06.066
http://doi.org/10.1080/02652030902783350
http://doi.org/10.1080/03601230903471845
http://doi.org/10.1016/j.foodcont.2008.07.014
http://doi.org/10.1016/j.foodcont.2010.09.037
http://doi.org/10.1016/j.foodchem.2009.03.007
http://doi.org/10.1016/j.foodcont.2004.07.002
http://doi.org/10.1016/S0003-2670(02)01509-X
http://doi.org/10.1016/j.postharvbio.2007.09.019


Sensors 2021, 21, 3032 12 of 13

15. Peng, Y.; Zhang, J.; Wu, J.; Hang, H. Hyperspectral scattering profiles for prediction of the microbial spoilage of beef. In Sensing
for Agriculture and Food Quality and Safety; International Society for Optics and Photonics: Bellingham, WA, USA, 2009.

16. Sharabiani, V.R.; Nazarloo, A.S.; Taghinezhad, E. Prediction of Protein Content of Winter Wheat by Canopy of Near Infrared
Spectroscopy (NIRS), using Partial Least Squares Regression (PLSR) and Artificial Neural Network (ANN) models. Yüzüncü Yıl
Üniversitesi Tarım Bilimleri Derg. 2019, 29, 43–51. [CrossRef]

17. Soltani, A.; Noguchi, N. Multivariate analyzing and artificial neural networks for prediction of protein content in winter wheat
using spectral characteristics. Sci. Bus. Soc. 2018, 3, 153–157.

18. Nazarloo, A.S.; Sharabiani, V.R.; Gilandeh, Y.A.; Taghinezhad, E.; Szymanek, M.; Sprawka, M. Feasibility of using VIS/NIR
spectroscopy and multivariate analysis for pesticide residue detection in tomatoes. Processes 2021, 9, 196. [CrossRef]

19. Jamshidi, B.; Mohajerani, E.; Jamshidi, J.; Minaei, S.; Sharifi, A.; Malvajerdi, A.S. Non-destructive detection of pesticide residues
in cucumber using visible/near-infrared spectroscopy. Food Addit. Contam. A 2015, 32, 857–863. [CrossRef]

20. Sánchez, M.-T.; Flores-Rojas, K.; Guerrero, J.E.; Garrido-Varo, A.; Pérez-Marín, D. Measurement of pesticide residues in peppers
by near-infrared reflectance spectroscopy. Pest Manag. Sci. 2010, 66, 580–586. [CrossRef]

21. Jamshidi, B. Non-destructive safety assessment of agricultural products using Vis/NIR spectroscopy. NIR News 2017, 28, 4–8.
[CrossRef]

22. Yazici, A.; Tiryaki, G.Y.; Ayvaz, H. Determination of pesticide residual levels in strawberry (Fragaria) by near-infrared spectroscopy.
J. Sci. Food Agric. 2020, 100, 1980–1989. [CrossRef] [PubMed]

23. Hu, L.; Yin, C.; Ma, S.; Liu, Z. Vis-NIR spectroscopy combined with wavelengths selection by PSO optimization algorithm for
simultaneous determination of four quality parameters and classification of soy sauce. Food Anal. Methods 2019, 12, 633–643.
[CrossRef]

24. Quiñones, M.d.C.S.; M artínez, L.A.O.; Herrera, S.M.G.; Quiñones, O.M.R.; Lared, R.F.G. Near-Infrared Spectroscopy (NIRS)
applied to legume analysis: A Review. Spectroscopy 2018, 8.

25. Williams, P. Near Infrared Technology: Getting the Best Out of Light; African Sun Media: Stellenbosch, South Africa, 2019.
26. Saranwong, I.; Kawano, S. Rapid determination of fungicide contaminated on tomato surfaces using the DESIR-NIR: A system

for ppm-order concentration. J. Near Infrared Spectrosc. 2005, 13, 169–175. [CrossRef]
27. Teye, E.; Huang, X.-Y.; Afoakwa, N. Review on the potential use of near infrared spectroscopy (NIRS) for the measurement of

chemical residues in food. Am. J. Food Sci. Technol. 2013, 1, 1–8.
28. Watanabe, E.; Kobara, Y.; Baba, K.; Eun, H. Determination of seven neonicotinoid insecticides in cucumber and eggplant by

water-based extraction and high-performance liquid chromatography. Anal. Lett. 2015, 48, 213–220. [CrossRef]
29. Jun, S.; Xin, Z.; Xiaohong, W.; Bing, L.; Chunxia, D.; Jifeng, S. Research and analysis of cadmium residue in tomato leaves based

on WT-LSSVR and Vis-NIR hyper-spectral imaging. Spectrochimica Acta A Mol. Biomol. Spectrosc. 2019, 212, 215–221. [CrossRef]
30. Chen, J.; Peng, Y.; Li, Y.; Wang, W.; Wu, J. A method for determining organophosphorus pesticide concentration based on

near-infrared spectroscopy. Trans. ASABE 2011, 54, 1025–1030. [CrossRef]
31. Fen, D.; Tiansheng, H.; Kun, Z.; Ya, H. Nondestructive detection of pesticide residue on longan surface based on near infrared

spectroscopy. In Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation,
Institute of Electrical and Electronics Engineers (IEEE), Changsha, China, 11–12 May 2010; Volume 2, pp. 781–783.

32. Jiang, B.; He, J.; Yang, S.; Fu, H.; Li, T.; Song, H.; He, D. Fusion of machine vision technology and AlexNet-CNNs deep learning
network for the detection of postharvest apple pesticide residues. Artif. Intell. Agric. 2019, 1, 1–8. [CrossRef]

33. Wei, Z. Determination of organophosphorus pesticides in cider by GC-MS coupled with cloud point extraction. Sci. Technol. Food
Ind. 2017, 23, 225–231.

34. Xue, L.; Cai, J.; Li, J.; Liu, M. Application of Particle Swarm Optimization (PSO) algorithm to determine dichlorvos residue on the
surface of navel orange with Vis-NIR spectroscopy. Procedia Eng. 2012, 29, 4124–4128. [CrossRef]

35. González-Martín, M.; Revilla, I.; Vivar-Quintana, A.; Salcedo, E.B. Pesticide residues in propolis from Spain and Chile. An
approach using near infrared spectroscopy. Talanta 2017, 165, 533–539. [CrossRef] [PubMed]

36. Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast, and easy multiresidue method employing acetonitrile
extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC
Int. 2003, 86, 412–431. [CrossRef] [PubMed]

37. Ciscato, C.; Barbosa, C.; Gebara, A. Analysis of Pesticide Residues in Mango by GC/MS/MS with Bond Elut QuEChERS EN Kits.
Available online: https://www.agilent.com/cs/library/applications/5991-6054EN.pdf (accessed on 26 April 2021).

38. Xiao-yu, Y.; Gui-shan, L.; Jia-xing, D.; Ya-bin, C.; Meng-meng, F.; Chao, M.; Jian-guo, H. A rapid evaluation of vc content on
lingwu long jujube using hyperspectral technique. Spectrosc. Spectr. Anal. 2019, 39, 230–234.

39. Liu, Z.; Cai, W.; Shao, X. Outlier detection in near-infrared spectroscopic analysis by using Monte Carlo cross-validation. Sci.
China Ser. B Chem. 2008, 51, 751–759. [CrossRef]

40. Gao, Q.; Wang, M.; Guo, Y.; Zhao, X.; He, D. Comparative analysis of non-destructive prediction model of soluble solids content
for malus micro malus makino based on near-infrared spectroscopy. IEEE Access 2019, 7, 128064–128075. [CrossRef]

41. Maldonado, A.I.L.; Rodriguez-Fuentes, H.; Contreras, J.A.V. Hyperspectral Imaging in Agriculture, Food and Environment; BoD–Books
on Demand: Norderstedt, Germany, 2018.

42. Zhao, Y.-R.; Yu, K.-Q.; He, Y. Hyperspectral imaging coupled with random frog and calibration models for assessment of total
soluble solids in mulberries. J. Anal. Methods Chem. 2015, 2015. [CrossRef] [PubMed]

http://doi.org/10.29133/yyutbd.447926
http://doi.org/10.3390/pr9020196
http://doi.org/10.1080/19440049.2015.1031192
http://doi.org/10.1002/ps.1910
http://doi.org/10.1177/0960336016687519
http://doi.org/10.1002/jsfa.10211
http://www.ncbi.nlm.nih.gov/pubmed/31849062
http://doi.org/10.1007/s12161-018-01407-1
http://doi.org/10.1255/jnirs.470
http://doi.org/10.1080/00032719.2014.938346
http://doi.org/10.1016/j.saa.2018.12.051
http://doi.org/10.13031/2013.37087
http://doi.org/10.1016/j.aiia.2019.02.001
http://doi.org/10.1016/j.proeng.2012.01.631
http://doi.org/10.1016/j.talanta.2016.12.061
http://www.ncbi.nlm.nih.gov/pubmed/28153295
http://doi.org/10.1093/jaoac/86.2.412
http://www.ncbi.nlm.nih.gov/pubmed/12723926
https://www.agilent.com/cs/library/applications/5991-6054EN.pdf
http://doi.org/10.1007/s11426-008-0080-x
http://doi.org/10.1109/ACCESS.2019.2939579
http://doi.org/10.1155/2015/343782
http://www.ncbi.nlm.nih.gov/pubmed/26451273


Sensors 2021, 21, 3032 13 of 13

43. Luo, W.; Du, Y.-Z.; Zhang, H.-L. Discrimination of varieties of cabbage with near infrared spectra based on principal component
analysis and successive projections algorithm. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2016, 36, 3536–3541. [PubMed]

44. Wang, Y.; Sun, F.; Li, X. Compound dimensionality reduction based multi-dynamic kernel principal component analysis
monitoring method for batch process with large-scale data sets. J. Intell. Fuzzy Syst. 2020, 38, 471–480. [CrossRef]

45. Brereton, R. Principal component analysis: The method. In Chemometrics. Data Analysis for the Laboratory and Chemical Plant; R.G.
Brereton, Ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2003; pp. 191–223.

46. Miller, J.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Pearson Education: London, UK, 2018.
47. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.

[CrossRef]
48. Nturambirwe, J.F.I.; Nieuwoudt, H.H.; Perold, W.J.; Opara, U.L. Non-destructive measurement of internal quality of apple fruit

by a contactless NIR spectrometer with genetic algorithm model optimization. Sci. Afr. 2019, 3, e00051. [CrossRef]
49. Khoshnoudi-Nia, S.; Moosavi-Nasab, M. Comparison of various chemometric analysis for rapid prediction of thiobarbituric acid

reactive substances in rainbow trout fillets by hyperspectral imaging technique. Food Sci. Nutr. 2019, 7, 1875–1883. [CrossRef]
[PubMed]

50. Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit quality evaluation using spectroscopy technology: A review. Sensors 2015, 15,
11889–11927. [CrossRef] [PubMed]

51. Lin, S.; Huang, X. Advances in computer science, environment, ecoinformatics, and education, Part III. In Proceedings of the
International Conference, CSEE 2011, Wuhan, China, 21–22 August 2011.

52. Shao, Y.; He, Y. Visible/Near infrared spectroscopy and chemometrics for the prediction of trace element (Fe and Zn) levels in
rice leaf. Sensors 2013, 13, 1872–1883. [CrossRef] [PubMed]

53. Shan, R.; Chen, Y.; Meng, L.; Li, H.; Zhao, Z.; Gao, M.; Sun, X. Rapid prediction of atrazine sorption in soil using visible
near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 224, 117455. [CrossRef]

54. Yi, S.; Deng, L.; He, S.; Zheng, Y.; Zhang, X. Research on nitrogen content of leaf of Jincheng orange cultivar using visible near
infrared spectroscopy model. J. Fruit Sci. 2010, 27, 13–17.

55. Sun, J.; Yang, W.; Feng, M.; Liu, Q.; Kubar, M.S. An efficient variable selection method based on random frog for the multivariate
calibration of NIR spectra. RSC Adv. 2020, 10, 16245–16253. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/30198665
http://doi.org/10.3233/JIFS-179421
http://doi.org/10.1016/S0169-7439(01)00155-1
http://doi.org/10.1016/j.sciaf.2019.e00051
http://doi.org/10.1002/fsn3.1043
http://www.ncbi.nlm.nih.gov/pubmed/31139402
http://doi.org/10.3390/s150511889
http://www.ncbi.nlm.nih.gov/pubmed/26007736
http://doi.org/10.3390/s130201872
http://www.ncbi.nlm.nih.gov/pubmed/23377188
http://doi.org/10.1016/j.saa.2019.117455
http://doi.org/10.1039/D0RA00922A

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Vis/NIR Spectroscopy 
	Reference Measurements 
	Remove the Outlier Data 
	Variable Selection Method 
	Random frog (RF) Algorithm 
	SPA 
	PCA 

	Prediction Models 
	PLSR 
	BP-ANN 

	Model Validation 

	Results and Discussion 
	Conclusions 
	References

