Detection of Negative Stress through Spectral Features of Electroencephalographic Recordings and a Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Preprocessing of the EEG Recordings
2.3. Power Spectral Density Computation
2.4. Rearrangement of EEG Channels in 2-D and 3-D Maps
2.5. AlexNet-Based CNN Models
2.6. Fine-Tuning and Learning Parameters of the AlexNet-Based Models
2.7. Experimental Setup and Performance Analysis
3. Results
3.1. AlexNet-Based 2-D CNN Models
3.2. AlexNet-Based 3-D CNN Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Epel, E.S.; Crosswell, A.D.; Mayer, S.E.; Prather, A.A.; Slavich, G.M.; Puterman, E.; Mendes, W.B. More than a feeling: A unified view of stress measurement for population science. Front. Neuroendocrinol. 2018, 49, 146–169. [Google Scholar]
- O’Connor, D.B.; Thayer, J.F.; Vedhara, K. Stress and health: A review of psychobiological processes. Annu. Rev. Psychol. 2021, 72, 663–688. [Google Scholar] [CrossRef]
- Zhong, S.; Shalev, I.; Koh, D.; Ebstein, R.P.; Chew, S.H. Competitiveness and stress. Int. Econ. Rev. 2018, 59, 1263–1281. [Google Scholar] [CrossRef]
- Vinkers, C.H.; van Amelsvoort, T.; Bisson, J.I.; Branchi, I.; Cryan, J.F.; Domschke, K.; Manchia, M.; Pinto, L.; de Quervain, D.; Schmidt, M.V.; et al. Stress resilience during the coronavirus pandemic. Eur. Neuropsychopharmacol. 2020, 35, 12–16. [Google Scholar] [CrossRef]
- Dhabhar, F.S. The short-term stress response—Mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front. Neuroendocrinol. 2018, 49, 175–192. [Google Scholar] [PubMed]
- Cruz-Pereira, J.D.; Rea, K.; Nolan, Y.M.; O’Leary, O.F.; Dinan, T.G.; Cryan, J.F. Depression’s unholy trinity: Dysregulated stress, immunity, and the microbiome. Annu. Rev. Psychol. 2019, 71, 49–78. [Google Scholar] [CrossRef]
- Robertson, A.R. What becomes of the frequent hospital attenders with centrally mediated gastrointestinal pain syndrome? Visc. Med. 2020, 36, 312–317. [Google Scholar] [CrossRef]
- Gross, J.J. Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology 2002, 39, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagh, K.P.; Vasanth, K. Electroencephalograph (EEG) based emotion recognition system: A review. In Innovations in Electronics and Communication Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 37–59. [Google Scholar]
- Egger, M.; Ley, M.; Hanke, S. Emotion recognition from physiological signal analysis: A review. Electron. Notes Theor. Comput. Sci. 2019, 343, 35–55. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Kaklauskas, A.; Bucinskas, V. Human emotion recognition: Review of sensors and methods. Sensors 2020, 20, 592. [Google Scholar]
- Alarcao, S.M.; Fonseca, M.J. Emotions recognition using EEG signals: A survey. IEEE Trans. Affect. Comput. 2017, 10, 374–393. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, C.; Dai, G.; Qin, F.; Zhang, J.; Kong, W. EEG classification of driver mental states by deep learning. Cogn. Neurodyn. 2018, 12, 597–606. [Google Scholar] [CrossRef]
- Ismail, W.W.; Hanif, M.; Mohamed, S.; Hamzah, N.; Rizman, Z.I. Human emotion detection via brain waves study by using electroencephalogram (EEG). Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Shon, D.; Im, K.; Park, J.H.; Lim, D.S.; Jang, B.; Kim, J.M. Emotional stress state detection using genetic algorithm-based feature selection on EEG signals. Int. J. Environ. Res. Public Health 2018, 15, 2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jebelli, H.; Hwang, S.; Lee, S. EEG-based workers’ stress recognition at construction sites. Autom. Constr. 2018, 93, 315–324. [Google Scholar] [CrossRef]
- Ahn, J.W.; Ku, Y.; Kim, H.C. A novel wearable EEG and ECG recording system for stress assessment. Sensors 2019, 19, 1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsalan, A.; Majid, M.; Butt, A.R.; Anwar, S.M. Classification of perceived mental stress using a commercially available EEG headband. IEEE J. Biomed. Health Inform. 2019, 23, 2257–2264. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Zhou, H.; Zhong, N. Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks. Appl. Sci. 2017, 7, 1060. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinform. 2018, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Raghu, S.; Sriraam, N.; Temel, Y.; Rao, S.V.; Kubben, P.L. EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Netw. 2020, 124, 202–212. [Google Scholar] [CrossRef]
- Ieracitano, C.; Mammone, N.; Bramanti, A.; Hussain, A.; Morabito, F.C. A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing 2019, 323, 96–107. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.; Subha, D.P. Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 2018, 161, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.L.; Hagiwara, Y.; Raghavendra, U.; Yuvaraj, R.; Arunkumar, N.; Murugappan, M.; Acharya, U.R. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput. Appl. 2018, 32, 10927–10933. [Google Scholar] [CrossRef]
- Aloysius, N.; Geetha, M. A review on deep convolutional neural networks. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 0588–0592. [Google Scholar]
- Suhaimi, N.S.; Mountstephens, J.; Teo, J. EEG-based emotion recognition: A state-of-the-art review of current trends and opportunities. Comput. Intell. Neurosci. 2020, 2020, 8875426. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.H.; Shin, S.B.; Kim, S.D. Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system. Sensors 2018, 18, 1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Song, D.; Zhang, P.; Hou, Y.; Hu, B. Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring. Int. J. Data Min. Bioinform. 2017, 18, 1–27. [Google Scholar] [CrossRef]
- Mishra, A.; Ranjan, P.; Ujlayan, A. Empirical analysis of deep learning networks for affective video tagging. Multimed. Tools Appl. 2020, 79, 18611–18626. [Google Scholar] [CrossRef]
- Anzellotti, S.; Coutanche, M.N. Beyond functional connectivity: Investigating networks of multivariate representations. Trends Cogn. Sci. 2018, 22, 258–269. [Google Scholar] [CrossRef]
- Sala-Llonch, R.; Bartrés-Faz, D.; Junqué, C. Reorganization of brain networks in aging: A review of functional connectivity studies. Front. Psychol. 2015, 6, 663. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, G.; Santhanam, P.; Hu, X. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. Neuroimage 2011, 54, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Rabinovich, M.I.; Muezzinoglu, M.K. Nonlinear dynamics of the brain: Emotion and cognition. Physics-Uspekhi 2010, 53, 357–372. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Bashivan, P.; Rish, I.; Yeasin, M.; Codella, N. Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks. In Proceedings of the International Conference on Learning Representations 2016, San Juan, PR, USA, 2–4 May 2016. [Google Scholar]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, B.; Martínez-Rodrigo, A.; Zangróniz, R.; Pastor, J.M.; Alcaraz, R. Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings. Entropy 2016, 18, 221. [Google Scholar] [CrossRef]
- García-Martínez, B.; Martínez-Rodrigo, A.; Zangróniz, R.; Pastor, J.M.; Alcaraz, R. Symbolic analysis of brain dynamics detects negative stress. Entropy 2017, 19, 196. [Google Scholar] [CrossRef] [Green Version]
- Klem, G.H.; Lüders, H.O.; Jasper, H.; Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. 1999, 52, 3–6. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Kwak, N. Independent component analysis by lp-norm optimization. Pattern Recognit. 2018, 76, 752–760. [Google Scholar] [CrossRef]
- Pedroni, A.; Bahreini, A.; Langer, N. Automagic: Standardized preprocessing of big EEG data. Neuroimage 2019, 200, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Nolan, H.; Whelan, R.; Reilly, R.B. FASTER: Fully automated statistical thresholding for EEG artifact rejection. J. Neurosci. Methods 2010, 192, 152–162. [Google Scholar] [CrossRef]
- Sandwell, D.T. Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys. Res. Lett. 1987, 14, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.P. Map Projections–A Working Manual; US Government Printing Office: Washington, DC, USA, 1987; Volume 1395.
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Polat, H.; Danaei Mehr, H. Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture. Appl. Sci. 2019, 9, 940. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, X.; Li, Y.; Wang, M.; Huang, B.; Yao, S.; Shen, L. Three dimensional convolutional neural network-based classification of conduct disorder with structural MRI. Brain Imaging Behav 2020, 14, 2333–2340. [Google Scholar] [CrossRef]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 28, pp. 1310–1318. [Google Scholar]
- Gross, J.J. Handbook of Emotion Regulation; Guilford Publications: New York, NY, USA, 2013. [Google Scholar]
- Hasan, M.J.; Kim, J.M. A hybrid feature pool-based emotional stress state detection algorithm using EEG signals. Brain Sci. 2019, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Li, C.; Song, R.; Cheng, J.; Liu, Y.; Wan, F.; Chen, X. EEG-based emotion recognition via channel-wise attention and self attention. IEEE Trans. Affect. Comput. 2020. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhang, P.W.; Mao, Z.J.; Huang, Y.F.; Jiang, D.M.; Zhang, Y.N. Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access 2019, 7, 44317–44328. [Google Scholar] [CrossRef]
- Güntekin, B.; Başar, E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 2014, 58, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Martini, N.; Menicucci, D.; Sebastiani, L.; Bedini, R.; Pingitore, A.; Vanello, N.; Milanesi, M.; Landini, L.; Gemignani, A. The dynamics of EEG gamma responses to unpleasant visual stimuli: From local activity to functional connectivity. Neuroimage 2012, 60, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, D.; Wei, L.; Tang, Y.; Wang, J. Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clin. Neurophysiol. 2015, 126, 2078–2089. [Google Scholar] [CrossRef]
- Lin, C.T.; King, J.T.; Fan, J.W.; Appaji, A.; Prasad, M. The influence of acute stress on brain dynamics during task switching activities. IEEE Access 2018, 6, 3249–3255. [Google Scholar] [CrossRef]
- Oathes, D.J.; Ray, W.J.; Yamasaki, A.S.; Borkovec, T.D.; Castonguay, L.G.; Newman, M.G.; Nitschke, J. Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band. Biol. Psychol. 2008, 79, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, X.; Zhu, J.; Mao, W.; Sun, S.; Wang, Z.; Xia, C.; Hu, B. Depression recognition using machine learning methods with different feature generation strategies. Artif. Intell. Med. 2019, 99, 101696. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wong, C.M.; Zheng, Y.; Wan, F.; Mak, P.U.; Pun, S.H.; Vai, M.I. EEG-based emotion recognition under convolutional neural network with differential entropy feature maps. In Proceedings of the 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, CIVEMSA 2019—Proceedings, Tianjin, China, 14–16 June 2019; pp. 1–5. [Google Scholar]
- Pantho, M.J.H.; Bhowmik, P.; Bobda, C. Towards an Efficient CNN Inference Architecture Enabling In-Sensor Processing. Sensors 2021, 21, 1955. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2015. [Google Scholar] [CrossRef]
- Wai, Y.J.; Yussof, Z.M.; Salim, S.I.M. A scalable FPGA based accelerator for Tiny-YOLO-v2 using OpenCL. Int. J. Embed. Syst. 2019, 8, 206. [Google Scholar] [CrossRef]
- Xilinx. Kria K26 System-on-Module Home Page. Available online: https://www.xilinx.com/products/som/kria/k26c-commercial.html (accessed on 26 April 2021).
- Mincholé, A.; Rodriguez, B. Artificial intelligence for the electrocardiogram. Nat. Med. 2019, 25, 22–23. [Google Scholar] [CrossRef] [PubMed]
DMD | DMDi | AEP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Se (%) | Sp (%) | Acc (%) | Se (%) | Sp (%) | Acc (%) | Se (%) | Sp (%) | Acc (%) | ||
Mean | 77.26 | 43.36 | 61.29 | 74.76 | 48.42 | 62.35 | 66.95 | 53.49 | 60.61 | |
Std | 2.42 | 3.17 | 2.43 | 3.35 | 11.48 | 1.75 | 13.68 | 16.83 | 2.07 | |
Mean | 65.30 | 56.16 | 61.00 | 68.23 | 52.67 | 60.90 | 65.12 | 51.58 | 58.74 | |
Std | 3.58 | 7.15 | 0.42 | 12.79 | 19.20 | 1.54 | 4.49 | 4.32 | 0.09 | |
Mean | 68.29 | 50.48 | 59.90 | 63.23 | 58.97 | 61.23 | 61.95 | 59.79 | 60.94 | |
Std | 6.45 | 7.52 | 1.05 | 3.93 | 6.74 | 0.48 | 10.16 | 12.76 | 1.02 | |
Mean | 81.8 | 83.2 | 82.4 | 79.9 | 82.9 | 81.3 | 82.5 | 82.7 | 82.6 | |
Std | 1.98 | 2.77 | 0.69 | 1.49 | 1.37 | 0.45 | 2.18 | 2.23 | 0.53 | |
Mean | 85.24 | 84.25 | 84.77 | 80.67 | 82.60 | 81.58 | 83.66 | 84.52 | 84.06 | |
Std | 0.62 | 3.02 | 0.44 | 1.52 | 2.86 | 0.66 | 0.39 | 0.95 | 0.35 |
DMD | DMDi | AEP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Se (%) | Sp (%) | Acc (%) | Se (%) | Sp (%) | Acc (%) | Se (%) | Sp (%) | Acc (%) | ||
Mean | 69.13 | 47.77 | 59.07 | 80.95 | 32.11 | 57.94 | 81.48 | 29.20 | 56.85 | |
Std | 10.71 | 11.18 | 1.25 | 11.37 | 29.33 | 1.44 | 20.22 | 28.48 | 1.39 | |
Mean | 74.70 | 44.86 | 60.65 | 74.70 | 44.86 | 60.60 | 87.04 | 21.32 | 56.09 | |
Std | 13.20 | 39.65 | 2.27 | 13.20 | 39.65 | 2.27 | 14.48 | 39.41 | 1.65 | |
Mean | 55.49 | 64.73 | 59.84 | 71.49 | 39.73 | 56.53 | 61.20 | 53.00 | 57.34 | |
Std | 8.31 | 9.50 | 0.72 | 21.32 | 38.92 | 0.66 | 5.43 | 10.86 | 0.48 | |
Mean | 76.83 | 76.88 | 76.85 | 80.56 | 73.80 | 77.38 | 75.84 | 80.22 | 77.90 | |
Std | 3.64 | 6.18 | 0.22 | 1.14 | 1.31 | 1.54 | 0.20 | 1.58 | 0.29 | |
Mean | 76.75 | 80.91 | 78.71 | 80.03 | 79.79 | 79.92 | 76.83 | 76.88 | 76.85 | |
Std | 2.29 | 1.43 | 0.18 | 1.11 | 4.75 | 2.29 | 3.64 | 6.18 | 0.23 |
Initials Weights | DMD | DMDi | AEP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Se (%) | Sp (%) | Acc (%) | Se (%) | Sp (%) | Acc (%) | Se (%) | Sp (%) | Acc (%) | ||
Known | Mean | 87.11 | 84.77 | 86.12 | 85.25 | 84.32 | 84.87 | 83.48 | 85.25 | 84.18 |
(with TL) | Std | 0.71 | 1.18 | 1.25 | 1.37 | 1.77 | 1.44 | 0.88 | 1.48 | 1.39 |
Random | Mean | 82.42 | 83.27 | 82.87 | 77.32 | 84.71 | 81.23 | 75.32 | 85.15 | 80.52 |
(without TL) | Std | 5.39 | 6.90 | 4.05 | 3.42 | 2.86 | 3.6 | 3.42 | 4.31 | 2.14 |
Work | Experiment | Classifier | Results |
---|---|---|---|
Jebelli et al. [16] | 7 subjects 14 EEG channels Construction work | SVM | Max : 80.32% |
Shon et al. [15] | 32 subjects 32 EEG channels Videoclips | k-NN | Max : 71.76% |
Ahn et al. [17] | 7 subjects 2 EEG channels Eyes open and close | SVM | Max : 77.90% |
Arsalan et al. [18] | 28 subjects 4 EEG channels Resting pre and post-activity | SVM, NB and MLP | 57–71% with all frequency bands |
Hasan & Kim [52] | 32 subjects 32 EEG channels Videoclips | k-NN | Max : 73.38% |
This work | 32 subjects 32 EEG channels Videoclips | 2-D AlexNet 3-D AlexNet | Max : 84.77% Max : 86.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Rodrigo, A.; García-Martínez, B.; Huerta, Á.; Alcaraz, R. Detection of Negative Stress through Spectral Features of Electroencephalographic Recordings and a Convolutional Neural Network. Sensors 2021, 21, 3050. https://doi.org/10.3390/s21093050
Martínez-Rodrigo A, García-Martínez B, Huerta Á, Alcaraz R. Detection of Negative Stress through Spectral Features of Electroencephalographic Recordings and a Convolutional Neural Network. Sensors. 2021; 21(9):3050. https://doi.org/10.3390/s21093050
Chicago/Turabian StyleMartínez-Rodrigo, Arturo, Beatriz García-Martínez, Álvaro Huerta, and Raúl Alcaraz. 2021. "Detection of Negative Stress through Spectral Features of Electroencephalographic Recordings and a Convolutional Neural Network" Sensors 21, no. 9: 3050. https://doi.org/10.3390/s21093050
APA StyleMartínez-Rodrigo, A., García-Martínez, B., Huerta, Á., & Alcaraz, R. (2021). Detection of Negative Stress through Spectral Features of Electroencephalographic Recordings and a Convolutional Neural Network. Sensors, 21(9), 3050. https://doi.org/10.3390/s21093050