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Abstract: A central authority, in a conventional centralized energy trading market, superintends
energy and financial transactions. The central authority manages and controls transparent energy
trading between producer and consumer, imposes a penalty in case of contract violation, and
disburses numerous rewards. However, the management and control through the third party pose
a significant threat to the security and privacy of consumers’/producers’ (participants) profiles.
The energy transactions between participants involving central authority utilize users’ time, money,
and impose a computational burden over the central controlling authority. The Blockchain-based
decentralized energy transaction concept, bypassing the central authority, is proposed in Smart
Grid (SG) by researchers. Blockchain technology braces the concept of Peer-to-Peer (P2P) energy
transactions. This work encompasses the SolarCoin-based digital currency blockchain model for SG
incorporating RE. Energy transactions from Prosumer (P) to Prosumer, Energy District to Energy
District, and Energy District to SG are thoroughly investigated and analyzed in this work. A robust
demand-side optimized model is proposed using Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) to maximize Prosumer Energy Surplus (PES), Grid revenue (GR), percentage
energy transactions accomplished, and decreased Prosumer Energy Cost (PEC). Real-time averaged
energy data of Australia are employed, and a piece-wise energy price mechanism is implemented in
this work. The graphical analysis and tabular statistics manifest the efficacy of the proposed model.

Keywords: blockchain; peer-to-peer; Solar Coin; energy transactions; energy districts;
central authority

1. Introduction

Smart Grid (SG) has changed the way electricity is generated and consumed due to the
adoption of the: (a) Advanced computational platform, (b) bi-directional communication
of energy, (c) satisfying consumers need through reduced energy cost, and (d) automated,
smart, secure network [1]. Energy Districts (EDs) permit small-scale Renewable Energy (RE)
consumers and prosumers to trade energy locally [2], an evolving concept of environment-
friendly energy transfer.
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In conventional centralized energy systems, a central authority manages the energy
transfer between consumers and prosumers. The central authority is responsible for
supervising agreements and accomplishing transparent trading among participants [3].
However, the outlook of energy with the concept of prosumers accompanied with SG is
complicated and challenging [4]. The intermittent RE resources demand for storage options
to store surplus energy within SG. Therefore, the most important feature of transportation
electrification is the Vehicle to Grid (V2G) concept that store the surplus energy and
ensure the provision of surplus energy to SG during high load demand. The storage
capability of V2G enhances the utilization of renewable energy sources within EDs [5,6].
The nonlinear and stochastic data within SG demands for advanced machine learning
methods. Machine learning is an efficient tool to design energy management model for
bidirectional energy and data flow between SG and ED [7]. The complex energy future
with the need of integrating more and more RE in the power grid cannot be effectively
managed through the conventional centralized system; thus, an alternative decentralized
market approach is required.

In a traditional centralized network, more time and money of consumers are wasted
involving a third party. The consumers encounter high transaction and management
costs and have no direct access to the energy market [8]. The critical centralized archi-
tecture results in a computational burden on central authority and is greatly at threat
of single-point failure [9]. The challenges associated with the conventional centralized
energy network can be addressed through a decentralized approach surpassing the central
authority. Blockchain technology is a widely emerging decentralized concept. Blockchain
provides a platform for consumers and prosumers to buy and sell energy in a peer-to-peer
(P2P) fashion [10] directly with each other and with the SG, bypassing the third party. P2P
energy transactions reduce the management and transaction cost and permit consumers
to have direct access to the energy market. Due to its decentralized nature blockchain is
immune to a single-point failure.

The cost of running decentralized networks and mining cryptocurrencies requires a
tremendous amount of energy resulting in an expensive decentralized blockchain network.
The high cost of mining cryptocurrencies restricts the blockchain network to the mon-
eyed community. Given the aforementioned issues incurred in decentralized blockchain
networks, advance research is focusing on a cryptocurrency that assists a cost-effective
network [11]. SolarCoin (SLR)-based blockchain is an evolving platform that addresses the
issue of high energy consumption of another cryptocurrencies-based blockchain [12]. A
cost-effective SLR blockchain network lays out an equal opportunity platform. Any person
owning some SLR stakes is invited to join the blockchain network. Besides cracking the
energy consumption problem, SLR encourages the transition from fossil fuel to clean green
energy. Small or large-scale solar energy producers registered with Solar Coin Foundation
(SCF) earns one SLR as a free incentive at the rate of one MW produced. Encouraging
the users to install and rely on solar panels rather than the conventional fossil fuel energy
method, through disbursing one SLR for each MWh as a free reward, is contributing
towards a carbon-free environment. SLRs can be exercised for any purpose or can be
converted to fiat currency [13].

Extensive research works have been dedicated to blockchain technology over the last
few years [8–23]. Authors in [14] proposed IBM HyperLedger Fabric blockchain-based
P2P crowdsourced energy model. Authors in [15] presented demand-side management
permitting users to reduce their electricity bill through effective day-ahead scheduling of
energy consumption incorporating the blockchain technology. In [16], authors explored
ongoing blockchain-based microgrid projects and came with the idea of establishing a
blockchain-based microgrid. Authors in [8] came up with the architecture of solar energy
production and distribution incorporating Smart Contracts to establish an energy exchange
market. In [3], authors proposed the design and implementation of a Decentralized
Transactive platform encompassing fault detection. Authors in [17] proposed the design
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and implementation of local energy markets on a private blockchain and evaluation of an
economic market mechanism.

A case study incorporating implemented Ethereum-based Brooklyn Microgrid (BMG)
was evaluated by researchers in [2]. Authors in [18] proposed a privacy-preserving
blockchain-enabled trading model. The authors addressed the privacy protection of indi-
viduals on consortium blockchain-based energy trading systems through the introduction
of a noise-based privacy-preserving approach. In [19], authors evaluated blockchain-based
demand–response distributed energy management for SGs. Effective distributed man-
agement through the detection of energy unbalances and disbursement of rewards and
penalties was implemented using Smart Contracts. Authors in [20] proposed the imple-
mentation of blockchain technology to empower Machine-to-Machine (M2M) interactions
in a chemical industry based on a proof-of-concept. The employment of Smart Contracts
to enhance the speed, security, and scalability of blockchain-based energy exchange was
proposed by authors in [21]. Different blockchain solutions were tested on the Pacific
Northwest National Lab (PNNL)’s transactive campus to investigate and reduce possible
associated cyber risks.

Although the above-mentioned research works successfully explored and imple-
mented the characteristics and applications of blockchain technology in the energy market
and SG, they lack in dispensing (a) the SLR blockchain-based Mutual Energy Trade Model
(METM) incorporating demand-side management, (b) the evaluation of optimized energy
transactions accomplished in a blockchain network considering seasonal variations, and (c)
the implementation of energy transactions between prosumers, consumers, and multi-EDs
based on SLR blockchain. Moreover, free SLRs disbursement as an incentive for Solar
Energy Prosumers was not incorporated in previous works.

Significant contributions of this work based on the previous-mentioned issues are:

• SLR blockchain-based energy trade model is designed and analyzed that deploys
Smart Contracts to empower mutual energy transactions between Prosumer and
Consumer, Prosumer and Prosumer, multiple EDs, and between ED and SG. Three
EDs are considered in this work with each ED comprising of N-consumers and N-
prosumers. EDs are interfaced with SG as ED1 and ED2 are Solar Energy Districts and
ED3 is Wind Energy District.

• A demand-side multi-objective optimization model is implemented. The Australian-
based piece-wise real-time pricing scheme is considered. Price-based incentives are
considered for prosumers to achieve the objectives of maximizing Prosumer Energy
Surplus (PES), Grid Revenue (GR), percentage energy transactions accomplished, and
minimization of Prosumer Energy Cost (PEC).

• Incentives coupled with SLR blockchain are considered for Solar Energy Prosumers.
The performance of the proposed model is evaluated using a Genetic Algorithm and
Particle Swarm Optimization considering seasonal variations. In-depth tabular and
graphical comparison of GA optimized results and PSO is critically analyzed.

Table 1 summarizes the comparative analysis of selected research work conducted on
blockchain technology. Table 1 also highlights the contributions of this work compared to
existing research work. In Table 1, “X” represents the presence of the attributes and “8”
represents the absence of the attributes.

The rest of the paper is organized as follows. Section 2 presents the proposed SLR
blockchain-based METM. A blockchain-based optimization model is discussed in Section 3.
Section 4 covers the performance evaluation accompanied by the data analysis, seasonal
variations, blockchain implementation, and tabular statistics. The paper concludes with a
summary and future directions in Section 5.
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Table 1. Literature Review

Ref. DSM BC SLR-BC SLRD O-PEC O-PES O-GR O-ET

[2] 8 X 8 8 8 8 8 8

[3] 8 X 8 8 8 8 8 8

[5] 8 X 8 8 8 8 8 8

[11] 8 X 8 8 8 8 8 8

[12] X X 8 8 X 8 8 X
[13] 8 X 8 8 8 8 8 8

[14] X X 8 8 X 8 8 X
[15] 8 X 8 8 8 8 8 8

[16] X X 8 8 X 8 8 X
[17] 8 X 8 8 8 8 8 8

[18] 8 X 8 8 8 8 8 8

TW X X X X X X X X
Abbreviations: DSM: Demand-side Management; BC: Blockchain; SLR-BC: SolarCoin Blockchain; SLRD: SolarCoin
Disbursement; O-PEC: Optimized Prosumer Energy Cost; O-PES: Optimized Prosumer Energy Surplus; O-GR;
Optimized Grid Revenue; O-ET: Optimized Energy Transactions; TW: This Work.

2. SolarCoin (SLR) Blockchain-Based Mutual Energy Trade Model (METM)

This section presents the proposed SLR Blockchain-based METM. The pricing mecha-
nism and mutual energy contracts employed in this work are also explicated in this section.

2.1. System Model

Figure 1 presents the proposed blockchain-based energy model, which comprises
three distributed EDs: Two Solar EDs and a wind ED. Each Solar ED includes N-consumers
and N-Solar Energy Prosumers (SEPs). Similarly, Wind ED incorporates N-Wind Energy
Prosumers (WEPs) accompanied by N-consumers. The energy demand of three EDs cannot
be met alone through RE and are interfaced with SG. Three EDs also support SG during
peak hours. The energy transactions between multiple prosumers, consumers, EDs, and
SG are carried on a P2P SLR blockchain platform, as shown in Figure 1.

Transactions executed on a digital network eliminating the third party contribute to
a cost-effective system. SEPs and WEPs produce energy, satisfy their load requirements,
and share the surplus, unused energy with neighboring consumers. Blockchain permits
prosumers and consumers to trade energy transparently and securely without relying on
the grid. Consumers and Prosumers on the network can buy energy at a reduced cost and
are paid for selling excess energy to neighboring users and the grid. Participants on the
blockchain network are referred to as nodes. SLR is exchanged among the nodes of the
network as a result of energy transactions.

In Figure 1, SEPs and WEPs update their status on the network claiming to sell energy.
Consumers wanting to buy energy put requests on the network.

Prosumers and consumers on the blockchain network undertake an agreement under
the umbrella of a contract without the need of trusting each other. The nodes must
fulfill contract conditions to carry out energy transactions. The contract will be executed
automatically after the conditions are satisfied. The system (a) connects prosumer and
consumer on the network and scrutinizes (b) energy availability according to consumer’s
request, (c) Consumer’s balance, and SLRs at hand. On satisfactory execution of the
contract, the transaction record is dispensed to each node of the network for verification.
After verification, the transaction is accomplished, and a block of the transaction is added
to the chain of the network.
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2.2. Pricing Mechanism

The Queensland, Australia-based piece-wise energy price mechanism is implemented
in this work. In this pricing mechanism, consumers are charged according to (a) the
amount of energy utilized and (b) the day and time of energy utilization. Consumers
encounter high energy utilization rates during peak hours. Low energy utilization rates
are offered during off-peak hours. No peak hour utilization rates are charged on week-
ends [22]. The pricing mechanism incorporated in this work is illustrated in Table 2.
In Queensland, on 26 February 2020, peak and off-peak utilization rates charged were
$325.87/MWhr and $151.73/MWhr, respectively [23]. One USD (United States Dollar) is
equal to 34.06690740614567 SLRs as of 23 February 2021 [24].
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Table 2. The implemented energy price mechanism.

Time of Utilization Amount of Energy
Consumed (MWhr)

Energy Price in
Dollars ($/MWhr)

Energy Price in SLRs
(SLR/MWhr)

Off-peak 0.2 151.73 × 0.2 = 30.3 30.3 × 94.0733 = 2854
On-peak 0.2 325.87 × 0.2 = 65.1 65.1 × 94.0733 = 6131

The proposed blockchain-based EDs offer consumers lower energy prices than the
conventional grid. Prosumers rate their surplus energy 10 percent lower than rates of-
fered by the traditional grid. Energy exported to SG is 10 percent higher than the nor-
malized rates. Table 3 demonstrates the pricing mechanism exercised on the proposed
blockchain platform.

Table 3. Implemented price mechanism in a blockchain.

Time of Utilization Amount of Energy
Consumed (MWhr)

Energy Price in
Dollars ($/MWhr, 10
Percent Discounted

Rates)

Energy Price in SLRs
(SLR/MWhr)

Off-peak 0.2 27.2 2556
On-peak 0.2 58.5 5517

2.3. Mutual Energy Contract (MEC)

The nodes of the network agree upon and sign a desired and flexible mutual energy
contract to carry out energy transactions without involving a third party. This energy
contract across the blockchain platform is referred to as Smart Contract (SC), which is
an enforced agreement holding certain rules that need to be followed by every node of
the network. SC empowers transparent and trusted energy transactions among nodes of
the network and behaves as the controlling entity of a decentralized network [19]. SC is
immutable, self-executing, written in the form of code, and is stored on the blockchain [25].

Prosumer mode: Whenever the energy produced by a participant of the network is
more than the energy demand, participants announce themselves as prosumers to sell
extra, unused energy to grid or neighboring users.

Prosumer mode ≈ Pgen
h > Pdem

h (1)

where Pgen
h and Pdem

h refer to prosumer’s energy generation and demand at hour
h, respectively.

Consumer mode: Whenever the energy produced by the participants is not enough to
satisfy their energy demand, participants announce themselves as consumers and put an
energy request on the network.

Consumer mode ≈ Pgen
h < Pdem

h (2)

Prosumer energy rate: On the blockchain network, prosumers sell energy at a rate
10 percent less than the normalized rates. Consumers buy energy from prosumers on the
network at a price offered less than the traditional grid. Prosumers export energy to SG at
a rate 10 percent higher than the normalized rates.

PPr
h ≈

{
for C, 10% < PR

h

for SG, 10% > PR
h (3)

where PPr
h is the real-time energy Price (Pr) offered by the Prosumer (P) to Consumer (C)

and SG in a blockchain network at hour h. PR
h is the real-time energy price offered by the

grid at hour h.
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Incentives: Solar energy prosumers are rewarded 1 SLR for each MW solar energy
produced from the SCF [13].

Energy Transactions: In our proposed model, energy transactions are carried out in
four different categories under SC.

(a) Prosumer-to-Consumer (P-C): On the digital blockchain network, prosumers share
the information of their energy generation. Consumers reach the prosumer to satisfy
load requirements, without relying on the grid.

H

∑
h=1

Cdem
h ←

H

∑
h=1

PESh (4)

where Cdem
h demonstrates the Consumer energy demand at hour h, PESh refers to Pro-

sumer Energy Surplus (PES) at hour h. Arrow indicates the C energy demand satisfying
through PES.

(b) Prosumer-to-Prosumer (P-P): Whenever the prosumers’ energy produced from RE
is not enough to meet their load requirements, prosumers import energy from other
prosumers in an ED.

H

∑
h=1

P1,dem
h ↔

H

∑
h=1

P2,dem
h (5)

where P1,dem
h, P2,dem

h indicate the first and second Prosumer energy demand at hour h,
respectively. The arrow specifies mutual energy trade between two prosumers.

(c) Energy District-to-Energy District (ED-ED): An ED fulfills its load requirements from
other ED at times of reduced energy generation from RE.

H

∑
h=1

ED1,dem
h ↔

H

∑
h=1

ED2,dem
h (6)

where ED1,dem
h, ED2,dem

h points out the first ED’s and 2nd ED’s energy demand at hour
h, respectively.

(d) Energy District-to-Smart Grid (ED-SG): The bi-directional feature and addition of
prosumer to SG is beneficial to both SG and prosumer. At times of minimum RE
generation, EDs import deficient energy from SG, while at times of maximum RE
production, EDs sell surplus and unused energy to SG and are incentivized with SLRs.

H

∑
h=1

EDdem
h ↔

H

∑
h=1

SGdem
h (7)

where SGdem
h refers to Smart Grid’s energy demand at hour h.

Constraints: The following constraints are encoded in our implemented SC.

(a) Prosumers and consumers must be connected on the blockchain network.

H

∑
h=1

Pc
h =

H

∑
h=1

Cc
h = 1 (8)

where Pc
h, Cc

h in Equation (8) refers to prosumer and consumer connectivity in the
blockchain network at hour h, respectively.

H

∑
h=1

PESh ≥
H

∑
h=1

Cdem
h (9)
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(b) Prosumers must have enough surplus energy to satisfy the consumer’s load require-
ment.

(c) The consumer must not be a defaulter (must have enough SLR to import energy).

H

∑
h=1

Caccounth ≥
H

∑
h=1

PPr
h (10)

where Caccounth demonstrates the consumer’s account status at hour h and PPr
h refers to

th ereal-time energy price offered by prosumer at hour h.

(d) Prosumer must sell energy at a reduced rate.

H

∑
h=1

PPr
h ≤

H

∑
h=1

PR
h (11)

where PR
h in Equation (11) indicates the real-time energy price encounters by the consumer

from the grid.

3. Blockchain-Based Robust Optimization Model

The advanced technical appliances contribute to an elevated consumers’ energy con-
sumption profile. The increased energy consumption overturns high energy costs. An
effective Demand-Side Management (DSM) technique curtails the consumer’s energy con-
sumption and the energy cost incurred by the consumer is substantial. The bi-directional
communication in SG assists for an effective DSM [26]. Moreover, it empowers RE pro-
sumers to import surplus energy to neighboring users and the grid.

In this paper, the implemented pricing mechanism assists in the execution of DSM.
Consumers are encouraged to shift their energy consumption pattern towards off-peak
periods due to low energy prices offered during off-peak hours. The implementation of the
DSM technique results in (a) reduced consumer’s energy cost, (b) increased production
of Prosumer Energy Surplus through maximum utilization of RES, and (c) increased Grid
Revenue as a result of maximum RE import to the grid. The multi-objective optimiza-
tion problem is solved using demand-response algorithms. The Genetic Algorithm (GA)
Optimization and the Particle Swarm Optimization (PSO) algorithm are implemented in
this work.

3.1. Prosumer Energy Surplus (PES)

The prosumer energy generated from solar or wind suffers from fluctuations. At
times, the energy generated through RE exceeds the prosumer’s energy demand, enabling
prosumers to merchandise this excess energy with the neighboring user. This generated
energy that outstrips prosumers’ energy demand is referred to as Prosumer Energy Surplus
(PES) [27].

PES = Pgen − Pdem (12)

The system defined in this work maximizes the PES considering certain constraints.
The optimization problem of PES is formulated as:

max
H

∑
h=1

(
Ph

gen − Ph
dem

)
(13)

Subject to:
0 ≤

(
Ph

gen

)
≤

(
Ph

gen,max

)
(14)

0 ≤
(

Ph
dem

)
≤

(
Ph

dem,max

)
(15)
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where Ph
gen refers to prosumers’ energy generated from wind or solar at hour h and Ph

dem
speaks for prosumers’ actual energy demand at hour h. Ph

gen,max and Ph
dem,max identifies

the prosumers’ maximum energy generation and demand, respectively. Equation (13)
represents the objective function, and Equations (14) and (15) are inequality constraints of
an optimization problem.

3.2. Prosumer Energy Cost (PEC)

The prosumer energy demand that exceeds wind- or solar-generated energy compels
the prosumer to import this deficient energy from the grid or neighboring users to meet
energy requirements. The imported energy cost incurred by the prosumer is referred to as
Prosumer Energy Cost (PEC).

PEC = Pdem − Pgen (16)

The presented model focuses on minimizing PEC through optimization of the pro-
sumer energy demand. The mathematical formulation of the optimization problem for
PEC is expressed as:

min
H

∑
h=1

Ph
R ∗

(
Ph

dem − Ph
gen

)
(17)

Subject to:
0 ≤

(
Ph

gen

)
≤

(
Ph

gen,max

)
(18)

0 ≤
(

Ph
dem

)
≤

(
Ph

dem,max

)
(19)

where Equation (17) specifies the objective function of the presented optimization problem
with Equations (18) and (19) acting as inequality constraints. Ph

R refers to real-time energy
price offered by the grid at hour h.

3.3. Grid Revenue

The PES exported to the grid results in an incentive for prosumers defined as Grid
Revenue (GR), expressed as:

GR =
(
(PR ∗ EimpSG) + ((PR − Pn) + PES)

)
(20)

max
H

∑
h=1

(
(Ph

R ∗ Eh
impSG) +

(
PESh ∗ (Ph

R − Ph
n )
))

(21)

0 ≤
(

Ph
gen

)
≤

(
Ph

gen,max

)
(22)

Subject to:
0 ≤

(
Ph

dem

)
≤

(
Ph

dem,max

)
(23)

The proposed model emphasizes the maximization of GR. The optimization problem
formulation for GR is illustrated in Equations (21)–(23). Equation (21) presents the objec-
tive function of the maximization problem while Equations (22) and (23) are inequality
constraints of an optimization problem.

Ph
n is the nominal price proposed to SG on account of prosumer energy export and

Eh
impSG is the energy imported from SG at hour h.
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3.4. Prosumer Energy Surplus (PES) and Prosumer Energy Cost (PEC)

This research work focuses on the comparative analysis of PES and PEC in one
domain subjected to diverse weather fluctuations. The merged mathematical model for the
minimization of PEC and maximization of PES is expressed as:

min
H

∑
h=1

Ph
R ∗

(
Ph

dem − Ph
gen

)
− n ∗max

H

∑
h=1

(
Ph

gen − Ph
dem

)
(24)

Subject to:
0 ≤

(
Ph

gen

)
≤

(
Ph

gen,max

)
(25)

0 ≤
(

Ph
dem

)
≤

(
Ph

dem,max

)
(26)

0 ≤
(

nh
)
≤ (100) (27)

where ï is the weighting function.

3.5. Optimization Algorithm

This research work uses Particle Swarm Optimization (PSO) and Genetic Algorithm
(GA) optimization algorithms for the minimization of PEC and maximization of PES,
percentage energy transactions accomplished throughout the year, and GR.

Algorithms 1 and 2 solve the multi-objective optimization problem to carry out the
objectives of increased PES, GR, and minimized PEC, respectively.

The layout of GA for the optimization of PEC, PES, and GR is presented as:

Algorithm 1 Robust GA optimization algorithm for PEC, PES, GR

1: Initialize PR
h, PEdem

h, PEgen
h

2: t = 0
3: Evaluate PES using (12), PEC using (16) and GR using (20)
4: Evaluate optimization problem for PES, PEC and GR using (13)–(15), (17)–(19), (20)–(23), and
(24)–(27)
5: If optimization converges, then optimization achieved.
6: Else
7: t = t + 1
8: Evaluate next generation.
9: End
10: End

Algorithm 2 presents the layout of the PSO technique for PEC, PES, and GR.

Algorithm 2 Robust PSO algorithm for PEC, PES, GR

1: Initialize PR
h, PEdem

h, PEgen
h

2: t = 0
3: Evaluate PES using (12), PEC using (16) and GR using (20)
4: Evaluate optimization problem for PES, PEC and GR using (13)–(15), (17)–(19), (20)–(23), and
(24)–(27)
5: If optimization converges, then optimization achieved.
6: Else
7: t = t + 1
8: End
9: End

3.6. Proposed Blockchain Optimization Model

Robust demand-side optimization is considered to be a pivotal element in imple-
menting blockchain-based energy transactions. This work aims at accomplishing maxi-
mum energy transactions among participants of the SLR blockchain network throughout
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the year. The mathematical formulation of the optimization problem is expressed in
Equations (28)–(39), with Equations (28)–(31) acting as the objective function of the maxi-
mum optimization problem. Equations (32)–(35) and Equations (37)–(39) are inequality
constraints of the optimization problem while Equation (36) presents equality constraints
of the proposed optimization problem.

max(
H

∑
h=1

Cdem
h ←

H

∑
h=1

PESh ) (28)

max(
H

∑
h=1

P1,dem
h ↔

H

∑
h=1

P2,dem
h ) (29)

max(
H

∑
h=1

ED1,dem
h ↔

H

∑
h=1

ED2,dem
h ) (30)

max(
H

∑
h=1

EDdem
h ↔

H

∑
h=1

SGdem
h ) (31)

Subject to:
0 ≤

(
Ch

dem

)
≤

(
Ch

dem,max

)
(32)

0 ≤
(

Ph
1,dem

)
≤

(
Ph

1,dem,max

)
(33)

0 ≤
(

Ph
2,dem

)
≤

(
Ph

2,dem,max

)
(34)

0 ≤
(

EDh
1,dem

)
≤

(
EDh

2,dem,max

)
(35)

H

∑
h=1

Pc
h =

H

∑
h=1

Cc
h = 1 (36)

H

∑
h=1

PESh ≥
H

∑
h=1

Cdem
h (37)

H

∑
h=1

Caccounth ≥
H

∑
h=1

PPr
h (38)

H

∑
h=1

PPr
h ≤

H

∑
h=1

PR
h (39)

where Ch
dem,max is the consumer’s maximum energy demand at hour h.

(
Ph

1,dem,max

)
repre-

sents the first prosumer’s maximum energy demand and
(

Ph
2,dem,max

)
illustrates the second

prosumer’s maximum energy demand at hour h.
(

EDh
2,dem,max

)
represents ED’s maximum

demand at hour h.
Energy transactions among multiple participants of the proposed model are accom-

plished utilizing Algorithms 3 and 4.
The layout of the energy transactions carried out among multiple prosumers, con-

sumers, EDs, and SG is portrayed through the following algorithms:
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Algorithm 3 Blockchain-based P-C energy transaction algorithm

1: Initialize PESh, Ch
dem, Ph

Pr,
2: Gather prosumer’s and consumer’s active status on the blockchain network
3: Gather consumer’s account details.
4: Accomplish energy transaction between Prosumer to the Consumer using (28) subject to the
constraints in (32)–(39)
5: If the transaction successful
6: Energy transferred to the consumer, SLRs transferred to prosumer.
7: Else
8: No energy transacted, shift to another prosumer.
9: Repeat step 1–10 for another energy transaction
10: End
11: End

Algorithm 4 Blockchain-based P-P, ED-ED, and ED-SG energy transactions algorithm

1: Initialize P1ESh, P2ESh, P1
h
dem, P2

h
dem, Ph

Pr,
2: Gather prosumer1 and prosumer2 active status on the blockchain network.
3: Gather prosumer1 and prosumer2 account details.
4: Decide prosumer and consumer from prosumer1 and prosumer2.
5: Accomplish bi-directional energy transaction between Prosumer to Prosumer, Energy District
to Energy District and Energy District to Smart Grid using (29)–(31) subject to the constraints in
(32)–(39)
6: If the transaction successful
7: Energy transferred to the consumer, SLRs transferred to prosumer.
8: Else
9: No energy transacted, shift to another prosumer.
10: Repeat step 1–10 for another energy transaction
11: End
12: End

4. Performance Evaluation

This section arrays the implementation of SLR blockchain-based METM. An in-depth
analysis accompanied by the detailed results of the proposed model is incorporated in
this section.

4.1. Data Analysis

The proposed model in this article is evaluated regulating Australian-based case stud-
ies. The energy generation and consumption data profiles of one year from Queensland
(Australia) are considered. For the simulation of each day, energy data of 24 h are consid-
ered. We have considered independent solar energy producers, and their energy profiles
are taken from Queensland Live Solar Outputs [28]. Two onshore wind farms, Cooper Gap
Wind Farm (COOPGWF1) and Mount Emerald Wind Farm (MEWF1), with the generating
capacity of 452 and 180 MW, respectively, are considered. Their hourly energy generation
data are extracted from Aneroid Energy [29]. The energy demand for Queensland and grid
generation data are extracted from AEMO [30].

4.2. Seasonal Variations

In our presented case study, blockchain-based energy transactions and DSM are ana-
lyzed under the influence of four seasons i.e., Spring, Summer, Autumn, and Winter seasons.

4.2.1. Spring Season

Australian seasons come about at times opposite to the northern hemisphere. The
Spring season is observed from September to November [31]. In Queensland, September
and October are the months experiencing the best solar performance with 7.25 and 6.28 peak
sun h/day [32]. These months are considered as windier months of the year with an average



Sensors 2021, 21, 3088 13 of 24

wind speed exceeding 4.2 m/s [33]. Prosumers have enough energy generation, and export
surplus energy to neighboring users and the grid. Increased export and decreased import
from the grid overturns reduced PEC. Figure 2 shows the unoptimized and optimized PEC,
PES, and GR. ED1 and the month of October are considered for graphical analysis. The
9th, 14th, 23rd, 24th, and 29th of October have the maximum solar irradiance resulting in
escalated solar energy generation and minimum PEC; while on the 4th, 10th, and 15th of
October, minimum solar energy is produced, compelling the prosumer to import energy
from the grid, resulting in an increased PEC. The figure demonstrates that the maximum
solar energy is produced on the 9th, 14th, 23rd, 24th, and 29th of October due to increased
solar radiation resulting in high PES. The minimum solar energy is generated on the 4th,
10th, and 15th of October leading to decreased PES. The maximum generation of PES on
the 9th, 14th, 23rd, 24th, and 29th of October permits the prosumer to sell extra energy to
the grid, paving the way for an escalated GR; while the minimum PES generation on the
4th, 10th, and 15th of October results in decreased GR.
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The energy transactions between P-C, P-P, ED-ED, and ED-SG are presented in
Figure 3. The optimized results outweigh the unoptimized results. GA and PSO max-
imize the PES and GR and minimize PEC. Similarly, more optimized energy transactions
are performed than unoptimized transactions due to the maximization of PES. Due to
the availability of surplus energy, ED imports surplus unused energy to SG, as shown in
Figure 3.
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Figure 3. (a) P-C, (b) P-P, (c) ED-ED, and (d) ED-SG Energy Transactions. (a) TE: Transacted Energy, UNOPTA1: Unoptimized
Consumer Energy, OPTA2 (GA): GA Optimized consumer energy, OPTA3 (PSO): PSO consumer energy; (b) UNOPTA1:
Prosumer 1 Unoptimized transacted energy, UNOPTA2: Prosumer 2 Unoptimized transacted energy, OPTA1G: Prosumer
1 GA Optimized transacted energy, OPTA2G: Prosumer 2 GA Optimized transacted energy, OPTA1P: Prosumer 1 PSO
transacted energy, OPTA2P: Prosumer 2 PSO transacted energy; (c) UNOPTA1: ED1 Unoptimized transacted energy,
UNOPTA2: ED2 Unoptimized transacted energy, OPTA1G: ED1 GA Optimized transacted energy, OPTA2G: ED2 GA
Optimized transacted energy, OPTA1P: ED1 PSO transacted energy, OPTA2P: ED2 PSO transacted energy; (d) UNOPTE:
ED Unoptimized transacted energy, UNOPTS: SG Unoptimized transacted energy, OPTEG: ED GA Optimized transacted
energy, OPTSG: SG GA Optimized transacted energy, OPTEP: ED PSO transacted energy, OPTSP: SG PSO transacted energy.

4.2.2. Summer Season

In Australia, the Summer season is observed from December to February. Average
solar performance during the summer season is recorded as 6.22 peak sun h/day. The
months in the Summer season are considered as the windier part of the year with an
average wind speed of 4.2 m/s. February 26th is recorded as the windiest day of the year
with an average wind speed of 4.5 m/s [33]. Excellent solar irradiance and wind speed
contribute to an increased PES and minimized PEC. Unoptimized and optimized PEC, PES,
and GR are presented in Figure 4. Maximum PEC is observed on 10th, 15th, 20th, 23rd, and
31st of January while the 1st, 5th, 12th, 18th, 21st, and 30th of January flag the minimum
PEC. Due to high solar irradiance observed on the 1st, 5th, 12th, 18th, 21st, and 30th of
January, the maximum energy surplus is produced. On the 10th, 15th, 20th, 23rd, and 31st
of January, the minimum energy surplus is produced. The maximum GR is marked on the
3rd of January while minimum GR is observed on the 10th, 15th, and 20th of January due
to the minimum energy production. The energy transactions between P-C, P-P, ED-ED,
and ED-SG are presented in Figure 5.
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Figure 5. (a) P-C, (b) P-P, (c) ED-ED, and (d) ED-SG Energy Transactions. (a) UNOPTA1: Unoptimized Consumer
Energy, OPTA2 (GA): GA Optimized consumer energy, OPTA3 (PSO): PSO consumer energy; (b) UNOPTA1: Prosumer
1 Unoptimized transacted energy, UNOPTA2: Prosumer 2 Unoptimized transacted energy, OPTA1G: Prosumer 1 GA
Optimized transacted energy, OPTA2G: Prosumer 2 GA Optimized transacted energy, OPTA1P: Prosumer 1 PSO transacted
energy, OPTA2P: Prosumer 2 PSO transacted energy; (c) UNOPTA1: ED1 Unoptimized transacted energy, UNOPTA2: ED2
Unoptimized transacted energy, OPTA1G: ED1 GA Optimized transacted energy, OPTA2G: ED2 GA Optimized transacted
energy, OPTA1P: ED1 PSO transacted energy, OPTA2P: ED2 PSO transacted energy; (d) ED-SG Energy Transaction,
UNOPTE: ED Unoptimized transacted energy, UNOPTS: SG Unoptimized transacted energy, OPTEG: ED GA Optimized
transacted energy, OPTSG: SG GA Optimized transacted energy, OPTEP: ED PSO transacted energy, OPTSP: SG PSO
transacted energy.
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Due to the availability of energy surplus, enough energy transactions are performed
between P-C, P-P, and ED-ED throughout the month. Increased PES permits prosumer to
export energy to the grid as illustrated in Figure 5.

4.2.3. Autumn Season

The Autumn season is observed in Queensland, Australia in March, April, and May,
where 4.39 peak sun h/day is recorded as the average sun performance during the Autumn
season with an average wind speed of 3.5 m/s. The maximum surplus energy generation
on the 3rd and 16th of March results in minimized PEC as depicted from Figure 6. The
increased PES on the 3rd, 11th, 16th, 20th, and 29th of March permits ED to export energy
to the grid, contributing to escalated GR. Figure 7 presents energy transactions performed
between P-C, P-P, ED-ED, and ED-SG, respectively.

4.2.4. Winter Season

The Winter season is observed in Queensland, Australia from June to August. June
has the worst average solar performance with 5.36 peak sun h/day. The average wind
speed in Queensland from June to August is 3.8 m/s. The optimized and unoptimized
PEC, PES, and GR are presented in Figure 8. The 4th, 10th, 15th, 24th, and 31st of July have
the maximum while the 6th, 13th, 14th, 20th, 26th, and 27th of July have the minimum PEC.
The maximum PES is observed on the 6th, 13th, 14th, 20th, 26th, and 27th of July. The 4th,
10th, 15th, 24th, and 31st of July exhibits low PES leading prosumer towards grid energy
import and a reduced PEC. Days with low PES (4th, 10th, 15th, 24th, and 31st of July) result
in decreased GR while the maximum GR is observed on the days of high PES. Figure 9
demonstrates the number of unoptimized and optimized energy transactions performed
between P-C, P-P, ED-ED, and ED-SG throughout the month. Due to the minimum wind
speed and solar radiance, minimal energy transactions are accomplished throughout the
month. GA maximizes the number of energy transactions more so than PSO as depicted in
Figure 9.
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Figure 7. (a) P-C, (b) P-P, (c) ED-ED, and (d) ED-SG Energy Transactions. (a) UNOPTA1: Unoptimized Consumer
Energy, OPTA2 (GA): GA Optimized consumer energy, OPTA3 (PSO): PSO consumer energy; (b) UNOPTA1: Prosumer
1 Unoptimized transacted energy, UNOPTA2: Prosumer 2 Unoptimized transacted energy, OPTA1G: Prosumer 1 GA
Optimized transacted energy, OPTA2G: Prosumer 2 GA Optimized transacted energy, OPTA1P: Prosumer 1 PSO transacted
energy, OPTA2P: Prosumer2 PSO transacted energy; (c) UNOPTA1: ED1 Unoptimized transacted energy, UNOPTA2: ED2
Unoptimized transacted energy, OPTA1G: ED1 GA Optimized transacted energy, OPTA2G: ED2 GA Optimized transacted
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4.2.5. Comparative Analysis of Genetic Algorithm (GA) Optimization and Particle Swarm
Optimization (PSO)

Optimization of PEC, PES, and GR performed through the GA and PSO algorithms is
comparatively analyzed in this work. Optimized results achieved through GA outperform
the PSO results. The maximum reduction of PEC is accomplished using GA in all four
seasons compared to PSO. Similarly, GA assists in the maximization of PES and GR more
effectively than PSO.

Table 4 summarizes the average results of GA optimization and PSO for three EDs.
The table shows average change observed between unoptimized and optimized results of
GA is more than the average change of PSO results and signifies the better performance of
GA in this work.

4.2.6. SolarCoin (SLR) Blockchain Implementation

Figure 10 demonstrates energy transactions performed between a prosumer and a
consumer on the SLR blockchain. The record of the transaction exhibits an encrypted hash
of the block, the address of prosumer and consumer, the time of the transaction, and the
amount of energy /SLR transacted. A consumer with the address “s0987654321dfghjkl”
requests 0.043014 MW of energy on the network. The system searches for a prosumer on
the network owning 0.043014 MW surplus energy. The system connects the consumer with
the prosumer with the address “x123456789zcvbnm”. SC executes and implements the
encoded constraints. On successful implementation of constraints, the prosumer sells the
required energy to the consumer and the consumer pays the prosumer with 1172 SLRs.
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Table 4. Comparative analysis of GA and PSO optimized results.

GA optimization Results PSO Results

EDs Month,
Year

∆PEC
(×105) ∆PES ∆GR

(×105)
∆PEC
(×105) ∆PES ∆GR

(×105)

July, 19 2.76 1.9217 0.918 2.75 1.8840 0.877
Aug, 19 0.24 0.8815 0.9407 0.228 0.836 0.8773
Sep, 19 0.86 2.838 4.3440 0.242 2.757 4.157

ED1 Oct, 19 0.53 1.9505 4.9613 0.501 1.836 4.9613
Nov, 19 0.531 1.949 2.9284 0.512 1.878 2.783
Dec, 19 0.302 1.109 2.3639 0.279 1.025 2.158
Jan, 20 0.39 1.407 2.369 0.3446 1.263 2.369
Feb, 20 0.295 1.042 2.2345 0.284 1.042 2.051
Mar, 20 0.325 1.237 1.1018 0.314 1.151 1.025

April, 20 0.529 1.976 3.1470 0.5188 1.902 2.987

July, 19 0.487 1.786 2.6009 0.46881 1.718 2.468
Aug, 19 0.605 2.218 3.4539 0.5845 2.142 3.389

ED2 Sep, 19 0.7293 2.674 5.7227 0.70208 2.573 5.4344
Oct, 19 0.6060 2.2218 3.9258 0.5834 2.138 3.7288
Nov, 19 0.5389 2.2251 1.3293 0.5883 2.1815 1.336
Dec, 19 0.58864 2.0396 1.1556 0.5271 1.9996 1.1097
Jan, 20 0.4294 1.574 1.1538 0.4182 1.5331 1.106
Feb, 20 0.4118 1.5095 1.7659 0.3983 1.46 1.435
Mar, 20 0.8454 3.0994 5.0045 0.822 3.0129 4.791

April, 20 0.64577 2.3672 2.0054 0.6311 2.313 5.235

July, 19 29.535 108.2 6839.2 28.64 105 6537
Aug, 19 35.674 130.7 9327.9 34.649 127 8924

ED3 Sep, 19 33.122 121.4 11,238 31.92 117 10,685
Oct, 19 34.794 127.5 12,047 33.55 123 11,461
Nov, 19 41.191 150.9 15,201 39.832 146 14,495
Dec, 19 40.268 147.6 13,396 39.013 143 12,792
Jan, 20 46.878 171.82 15,548 45.561 167 14,883
Feb, 20 34.109 125.02 10,063 33.012 121 9602
Mar, 20 40.216 147.4 21,058 38.468 141 19,888

April, 20 35.062 128.51 29,995 33.284 122 18,234
Abbreviations: ∆PEC: Average change between optimized and unoptimized PEC; ∆PES: Average change between
optimized and unoptimized PES; ∆GR: Average change between optimized and unoptimized GR.
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4.3. Prosumer Energy Cost (PEC) and Prosumer Energy Surplus (PES)

Figure 11 signifies the impact of the variation of PES on PEC. An increase in the PES
on account of the increased peak sun h/day and increased wind speed eliminates the need
for energy import from the grid, resulting in a decreased PEC as depicted in Figure 11. For
each MWhr rise in PES, PEC subsequently decreases.
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Figure 11. PES and PEC comparison.

4.4. Critical Analysis

The comparative tabular analysis of unoptimized and optimized GA DSM is scruti-
nized in this sub-section. Aggregate energy transactions accomplished in all four seasons
are extensively analyzed.

4.4.1. Comparative Analysis of Demand Management

Table 5 presents the comparative statistics of DSM performed on the proposed SLR
blockchain-based METM. Unoptimized and GA-optimized results for ED1, ED2, and ED3
enveloping PEC, PES, and GR are manifested in this table. The average change observed
between unoptimized and optimized results of the three EDs is analyzed. The table shows
GA optimized results surpass the unoptimized results. PEC is effectively minimized
throughout the year as a result of optimization of EDs’ demand. Similarly, energy surplus
is maximized empowering prosumers to satisfy their load requirements and import energy
to SG, resulting in an increased GR for prosumers.

Table 5. Comparative analysis of unoptimized and GA optimized results.

EDs Month,
Year

PEC
(un-opt)
(×105)

PEC
(opt)(×105)

∆PEC
(×105)

PES
(un-opt)

PES
(opt) ∆PES

GR
(un-opt)
(×105)

GR (opt)
(×105)

∆GR
(×105)

July, 19 1.94 −4.70 2.76 0 1.9217 1.9217 0.12386 1.0412 0.9182
Aug, 19 −0.393 −0.633 0.24 1.4412 2.3227 0.8815 0.58619 1.5226 0.9407
Sep, 19 −0.35 −1.21 0.86 1.2924 4.1307 2.838 0.47139 4.8154 4.3440
Oct, 19 −1.05 −1.58 0.53 3.8686 5.8191 1.9505 4.2237 9.185 4.9613
Nov, 19 −0.46 −0.991 0.531 1.6862 3.6359 1.949 0.80243 3.7309 2.9284

ED1 Dec, 19 −0.878 −1.18 0.302 3.2188 4.3286 1.109 2.9240 5.2879 2.3639
Jan, 20 −1.62 −2.01 0.39 5.9638 7.3715 1.407 10.038 12.407 2.369
Feb, 20 −0.80913 −1.104 0.295 2.9658 4.0082 1.042 2.4824 4.7169 2.2345
Mar, 20 −0.8605 −1.186 0.325 3.1544 4.3921 1.237 2.8082 3.9100 1.1018

April, 20 −0.499 −1.0289 0.529 1.8320 3.8088 1.976 0.94719 4.0942 3.1470

July, 19 −0.46 −0.947 0.487 1.6861 3.4726 1.786 0.80233 3.4033 2.6009
Aug, 19 −0.4499 −1.055 0.605 1.6492 3.8676 2.218 0.76760 4.2215 3.4539
Sep, 19 −0.66962 −1.399 0.7293 2.4544 5.1285 2.674 1.7001 7.4228 5.7227
Oct, 19 −0.55098 −1.157 0.6060 2.0195 4.2413 2.2218 1.1510 5.0768 3.9258
Nov, 19 0.06806 −0.6070 0.5389 0 2.2251 2.2251 0.068 1.3973 1.3293

ED2 Dec, 19 0.01836 −0.556 0.58864 0 2.0396 2.0396 0.01836 1.1740 1.1556
Jan, 20 −0.1396 −0.569 0.4294 0.5117 2.0857 1.574 0.07389 1.2277 1.1538
Feb, 20 −0.2762 −0.688 0.4118 1.0124 2.5219 1.5095 0.02892 1.7949 1.7659
Mar, 20 −0.3576 −1.203 0.8454 1.3110 4.4104 3.0994 0.48506 5.4896 5.0045

April, 20 −0.10343 −0.7492 0.64577 0.3791 2.7463 2.3672 0.04056 2.0460 2.0054
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Table 5. Cont.

EDs Month,
Year

PEC
(un-opt)
(×105)

PEC
(opt)(×105)

∆PEC
(×105)

PES
(un-opt)

PES
(opt) ∆PES

GR
(un-opt)
(×105)

GR (opt)
(×105)

∆GR
(×105)

July, 19 −15.769 −45.304 29.535 57.8000 166.05 108.2 942.85 7782.1 6839.2
Aug, 19 −16.642 −52.316 35.674 61 191.76 130.7 1050.1 10,378 9327.9
Sep, 19 −28.183 −61.305 33.122 103.300 224.70 121.4 3011.5 14,250 11,238
Oct, 19 −28.264 −63.058 34.794 103.600 231.13 127.5 3029.1 15,077 12,047
Nov, 19 −28.073 −69.264 41.191 102.900 253.87 150.9 2988.3 18,190 15,201

ED3 Dec, 19 −23.736 −64.004 40.268 87 234.60 147.6 2136.1 15,533 13,396
Jan, 20 −20.298 −67.176 46.878 74.4000 246.22 171.82 1562.2 17,111 15,548
Feb, 20 −21.853 −55.962 34.109 80.1000 205.12 125.02 1810.7 11,874 10,063
Mar, 20 −48.944 −89.160 40.216 179.400 326.80 147.4 9083.1 30,142 21,058

April, 20 −55.601 −90.663 35.062 203.800 332.31 128.51 11,722 31,167 29,995

4.4.2. Smart Contract Validation

Extensive variation in solar radiation and wind speed throughout the year influence
the aggregated RE generation engendering enough or reduced energy transactions. The
averaged percentage of unoptimized, GA-optimized, and PSO-based energy transactions
accomplished in each month are summarized in Table 6. The table shows that the per-
centage of optimized transactions is more than the percentage of unoptimized energy
transactions. In addition, the percentage change of GA optimized energy transactions is
greater than the average change observed in PSO.

Table 6. Percentage energy transactions.

Nodes Month,
Year

% ET
(un-opt)

% ET
(opt-GA)

∆% ET
(GA)

% ET
(opt-PSO)

∆% ET
(PSO)

July, 19 10 100 90 100 90
Aug, 19 35 100 65 100 65
Sep, 19 7 97 90 96 89
Oct, 19 39 94 55 93 54

P-C Nov, 19 40 100 60 100 60
Dec, 19 42 100 58 99 57
Jan, 20 35 97 62 97 62
Feb, 20 14 100 86 98 84
Mar, 20 13 100 87 97 84

April, 20 19 100 81 99 80

July, 19 11 43 32 42 31
Aug, 19 32 50 18 50 18
Sep, 19 29 48 19 48 19
Oct, 19 45 48 3 48 3

P-P Nov, 19 47 48 1 46 1
Dec, 19 47 48 1 47 0
Jan, 20 45 48 3 48 3
Feb, 20 72 90 18 89 17
Mar, 20 31 43 12 41 10

April, 20 30 42 12 40 10

July, 19 10 48 38 46 36
Aug, 2019 20 48 28 47 27

Sep, 19 35 50 15 49 14
Oct, 19 48 50 2 50 2

ED-ED Nov, 19 48 52 4 51 3
Dec, 19 52 70 18 69 17
Jan, 20 37 50 13 48 11
Feb, 20 50 46 4 46 4
Mar, 20 42 48 6 46 4

April, 20 39 40 1 40 1
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5. Conclusions and Future Work

A central authority supervising energy and financial transactions in an energy sector
experiences a substantial computational burden. Stakeholders are being charged for each
transaction made by a central authority and the privacy of their transactions’ profile is
greatly at threat. The trading approach in a decentralized fashion bypassing central author-
ity is greatly in need. Blockchain technology underpins peer-to-peer energy transactions
and eliminates the issues associated with the central authority. SLR blockchain-based
METM is proposed to permit a decentralized energy trading concept. Two Solar EDs and a
Wind ED incorporating N-SEPs, N-WEPs, and N-consumers are deployed in the proposed
model. Energy transactions are carried out between P-C, P-P, ED-ED, and ED-SG. SLRs
are exchanged among the users as a result of energy trading. The demand-side optimiza-
tion problem is formulated using GA and PSO for the maximization of PES and GR and
minimization of PEC. The performance of the SLR blockchain-based METM is evaluated
in all four seasons. The unoptimized, GA-optimized, and PSO results of four seasons
are critically and comparatively analyzed. Maximum energy surplus is generated in the
Summer and Spring (52 percent) seasons on account of the high wind speed and enough
solar radiations. Seventy-one percent of GR is earned in the Summer and Spring seasons.
Similarly, the minimum PEC is observed in the Spring and Summer (53 percent) seasons
compared to the Autumn and Winter seasons. The GA optimized results outperform the
PSO results. GA maximizes PES on average by 29 percent compared to PSO (28 percent).
The uncertainty confronted by the RE generation affects the average energy transactions
carried out in each season. Thirty-nine percent of energy transactions are accomplished
between P-C in the Spring season and 35 percent in the Summer season compared to
Autumn (13 percent) and Winter (10 percent) season. Similarly, GA effectively maximizes
the percentage of energy transactions accomplished as compared to PSO. A 62 percent
average increase in energy transactions carried out between P-C by GA optimization is
observed in the Summer season compared to that carried out by PSO (60 percent).

The scalability of our proposed model incorporating multiple energy transactions
among numerous EDs and SG at one time is a possible future direction of this work.
Furthermore, issues coupled with the scalability of blockchain technology need to be
addressed in the future. Speed and security are the major directions of improvement in a
scaled blockchain network.
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Nomenclature

Acronyms Definitions
C Consumer
DRP Demand Response Program
DSM Demand-Side Management
EDs Energy Districts
EM Energy Management
GA Genetic Algorithm
GR Grid Revenue
MEC Mutual Energy Contract
METM Mutual Energy Trade Model
P Prosumer
PEC Prosumer Energy Cost
PES Prosumer Energy Surplus
PSO Particle Swarm Optimization
P2P Peer-to-peer
RE Renewable Energy
SC Smart Contract
SEPs Solar Energy Prosumers
SG Smart Grid
SLRs Solar Coins
WEPs Wind Energy Prosumers
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