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Abstract: Cable-stayed bridges are damaged by multiple factors such as natural disasters, weather,
and vehicle load. In particular, if the stayed cable, which is an essential and weak component of
the cable-stayed bridge, is damaged, it may adversely affect the adjacent cables and worsen the
bridge structure condition. Therefore, we must accurately determine the condition of the cable with a
technology-based evaluation strategy. In this paper, we propose a deep learning model that allows
us to locate the damaged cable and estimate its cross-sectional area. To obtain the data required for
the deep learning training, we use the tension data of the reduced area cable, which are simulated
in the Practical Advanced Analysis Program (PAAP), a robust structural analysis program. We
represent the sensor data of the damaged cable-stayed bridge as a graph composed of vertices
and edges using tension and spatial information of the sensors. We apply the sensor geometry by
mapping the tension data to the graph vertices and the connection relationship between sensors to
the graph edges. We employ a Graph Neural Network (GNN) to use the graph representation of the
sensor data directly. GNN, which has been actively studied recently, can treat graph-structured data
with the most advanced performance. We train the GNN framework, the Message Passing Neural
Network (MPNN), to perform two tasks to identify damaged cables and estimate the cable areas.
We adopt a multi-task learning method for more efficient optimization. We show that the proposed
technique achieves high performance with the cable-stayed bridge data generated from PAAP.

Keywords: SHM; graph; MPNN; deep learning

1. Introduction

Cable-stayed bridges, one of the essential transportation infrastructures in modern
society, are damaged and corroded by external environments such as natural disasters,
climate, ambient vibrations, and vehicle loads. As damage accumulates, the condition
of the structure deteriorates, and the bridge loses its function. Damaged bridges even
lead to collapse, causing severe problems such as human injury and economic loss. In
particular, the stayed cable is a necessary but vulnerable primary component of cable-
stayed bridges [1]. When the cable starts to be damaged, the stiffness and cross-sectional
area decrease [2]. Since the cable has a small cross-sectional area, it may be lost due to
low resistance against accidental lateral loads. The cable loss may cause overloading in
the bridge and adversely affect adjacent cables [3]. Therefore, we must thoroughly inspect
the cable conditions. However, we cannot directly know the damaged cable and its cross-
sectional area only with raw data collected from the sensors on the bridge, such as the
cable tension. Furthermore, if the damage degree is not significant, it may be challenging to
determine whether the damage occurs visually, unlike cracks detection. Manual checking
of all cables one by one is very inefficient and increases maintenance costs. Therefore, to
ensure the safety and durability of the bridge, we need a technology-based evaluation
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strategy. Moreover, the technology must be able to capture small changes in the cable
area accurately.

The importance of Structural Health Monitoring (SHM) has been emphasized to assess
damage such as corrosion, defects, cracks, and material changes in structures. Researchers
have introduced deep learning models as well as statistical analysis and machine learn-
ing as SHM techniques to determine the damaged cable locations [2] or detect stiffness
reduction [4]. With the advancement of the device fabrication process, artificial intelligence
meets the need for fast and accurate problem solving using vast amounts of data collected
from sensor devices [5]. Deep learning models learn high-level representations of data and
complex nonlinear correlations, which are frequently preferred as an automatic damage
pattern prediction tool. In many civil engineering studies, deep learning models have
achieved high performance with data-driven SHM techniques. Deep learning contributes
to the advancement of SHM analysis because it effectively processes both unstructured data
such as images and structured data such as time-series data. As SHM technologies, many
researchers have proposed architectures such as Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), Deep Autoencoder (DAE), and generative adversarial
network (GNN) [6]. Pathiragea et al. [7] trained the autoencoder neural network to perform
dimensionality reduction and estimated the stiffness element of the steel frame structure
with modal information. Gu et al. [8] calculated the Euclidean distance between the tar-
get data and the output of a multilayer Artificial Neural Network (ANN) trained with
undamaged structure data. They proposed an unsupervised learning approach to locate
damaged structures from the increased Euclidean distance. Truong et al. [9] introduced
deep feedforward neural networks (DFNN) to detect damage to truss structures. They
simulated damaged structures by reducing the elastic modulus of individual elements
and verified the performance of the proposed DFNN. Changa et al. [10] estimated damage
locations and severity by training neural networks with modal properties after reducing
stiffness to create damage patterns. Abdeljaber et al. [11] proposed a one-dimensional
CNN that extracts features from raw accelerometer signals and classifies damage. With the
development of computer vision, 2D CNN has been successfully used as a vision-based
SHM technique [12]. CNNs trained with structure images successfully classify surface
damage such as concrete cracks and spalling conditions [13–16].

In this paper, we propose a Graph Neural Network (GNN) to evaluate the cable
cross-sectional area reduction caused by corrosion or fracture of structures. The proposed
method consolidates the overall structure and geometric features of the cable-stayed bridge.
The deep learning-based damage detection method requires sufficient data with various
damaged states for neural network learning. However, it is almost impossible to obtain data
on damaged bridges in operation for safety reasons. Besides, to learn a classifier to detect a
damaged location, data on each damaged location is required. Moreover, it is impossible to
obtain balanced data for all damaged cases because in the real world, the damage scenarios
are very rare since the bridge must guarantee a safe condition for long service life [6].
Therefore, it is difficult to train a damage detection model due to the difficulty of collecting
data and the class imbalance problem. To resolve these limitations, there is a growing need
for research on applying SHM technology to digital twin models. Therefore, we introduce
a Practical Advanced Analysis Program (PAAP) [17–20] to extract the GNN training data.
PAAP is very efficient as it can capture material non-linearities of space structures. In
addition, the reliability of PAAP has been evaluated for the cable-stayed bridges [20,21]
and suspension bridges [22,23]. Therefore, it is possible to simulate cable-stayed bridges
with various conditions, such as material properties and loads, similar to real-world bridge-
like conditions. Furthermore, we can extract data on various damage states of cable-stayed
bridges that cannot be obtained in real-world bridges and use them for deep learning model
training. Besides, we can predict the real-world bridge state by utilizing real SHM data
into the trained deep learning model. In this work, we employ PAAP to analyze the cable
tensions of cable-stayed bridge models with reduced cable areas. Moreover, we represent
the sensor data as a graph composed of vertices and edges using the generated tension data
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and spatial information. Studies using point clouds produced by laser scanning have been
proposed to evaluate the structure state regarding the entire bridge structure and 3D spatial
information data between sensors [24–26]. We notice that 3D spatial information of bridges
can provide helpful information about the structure states from previous studies. However,
using point cloud data for structural health evaluation is possible only for visible elements
such as cracks and spalling [27,28], and the point cloud data are not directly related to
the loss of stiffness or strength since the point cloud data do not adequately capture the
depth due to occlusion [29]. Since GNN can learn the graph-structured data, it resolves
the limitation of CNN, which accepts only the grid-structured data. Thanks to the rapid
development of GNN, which is capable of recent graph prediction, the utilization of deep
learning increases in various domains such as traffic forecasting [30,31], recommendation
system [32,33], molecular property prediction [34], and natural language processing [35,36].
Recently, a study using GNN for cable-stayed bridge monitoring has been proposed.
Li et al. [37] explored the spatiotemporal correlation of the sensor network in a cable-stayed
bridge using the graph convolutional network and a one-dimensional convolutional neural
network. They showed that the proposed method effectively detects sensor faults and
structural variation. We expect GNN to be actively examined as an SHM technology in the
future. In this study, we use Message Passing Neural Network (MPNN), a representative
architecture designed to process graph data. Glimer et al. [34] proposed the MPNN, a
GNN framework that represents the message transfer between the vertices of the graph
as a learnable function. MPNN learns the representation of the graph while repeating a
vertex update with messages received from neighboring vertices. We create a graph with
the connection relationship between the cable-stayed bridge nodes and apply the node
and element data as the vertex features and edge features of the graph, respectively. We
train MPNN to estimate damaged cables using the graphed sensor data. We also estimate
the cross-sectional area of the damaged cable and identify the damaged cable location to
reveal a detailed bridge condition. We adopt a multi-task learning method to secure that
our deep learning model predicts two tasks effectively. The multi-task learning benefits
while learning related tasks together [38]. Since estimating the location and cross-sectional
area of damaged cables are not independent tasks, deep learning models can be optimized
efficiently while simultaneously learning both tasks.

2. Background

Structural health conditions of cable-stayed bridges are generally monitored based
on cable tension changes related to cable area parameters. The tensile forces on cables
inevitably change when one or more cables are damaged. A machine learning model is
one of the damage detection techniques that identify damage location and degree. This
section presents a fundamental understanding of the cable-stayed bridge model and our
proposed approach for damage detection. A robust structural analysis program, Practical
Advanced Analysis Program (PAAP), is introduced, followed by our cable-stayed bridge
model. We then introduce a deep learning theory to understand Message Passing Neural
Network (MPNN) adopted as a damage detection technique in this work.

2.1. Practical Advanced Analysis Program (PAAP)

The PAAP is an efficient program in capturing the geometric and material non-
linearities of space structures using both the stability function and refined plastic hinge
concept. The Generalized Displacement Control (GDC) technique is adopted for solving
the nonlinear equilibrium equations with an incremental-iterative scheme. This algorithm
accurately traces the equilibrium path of the nonlinear problem with multiple limit points
and snap-back points. The details of the GDC are presented in [17,39]. In many studies
of cable-stayed bridges [21,40], cables have been modeled as truss elements, while py-
lons, girders, and cross-beams were modeled as plastic-hinge beam-column elements. The
plastic-hinge beam-column elements utilize stability functions [41] to predict the second-
order effects. The inelastic behavior of the elements is also captured with the refined plastic
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hinge model [42,43]. To correctly model the realistic behaviors of cable structures, the cate-
nary cable element is employed in the PAAP due to its precise numerical expressions [40].
The advantage of the PAAP is that the nonlinear structural responses are accurately ob-
tained with only one or two elements per structural member leading to low computational
costs [17,21]. Thus, the PAAP is employed to analyze and determine the cable tensions in
our cable-stayed bridge model.

2.2. Cable-Stayed Bridge Model

A cable-stayed bridge model of the semi-harp type is proposed as shown in Figure 1.
The bridge has a center span of 122 m and two side spans of 54.9 m. Two 30 m-high towers
support two traffic lanes with an overall width of 7.5 m. Pylons, girders, and cross beams
are made of steel with a specific weight of 76.82 kN/m3. The specific weight of the stayed
cable is 60.5 kN/m3. In the PAAP, the girders, pylons, and cross beams are modeled as
plastic-hinge beam-column elements. The stayed cables are modeled as catenary elements.
For simplicity in determining the damage of the cable, only the dead load induced by the
self-weight of the bridge is considered.
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Figure 1. Cable-stayed bridge model in this study (unit: m).

2.3. Multilayer Percpetron

The most straightforward neural network, Multilayer Percpetron (MLP), has a struc-
ture that includes multiple hidden layers between the input layer and the output layer. In
each fully-connected hidden layer, the activation function is applied to the affine function
of hidden unit h(i) as follows.

h(i) = σi

(
∑
k

w(i)
k h(i−1)

k + b(i)
)

, (1)

where, w(i) and b(i) represent the ith hidden layer weight and bias, respectively. σ is an
activation function for nonlinear learning. There are various activation functions, and
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mainly Rectified Linear Unit (ReLU), hyperbolic tangent (tanh), and sigmoid functions
defined below are applied frequently.

ReLU(x) = max(x, 0) (2)

tanh(x) =
1− exp(−2x)
1 + exp(−2x)

(3)

sigmoid(x) =
1

1 + exp(−x)
. (4)

Dropout is applied to the hidden layer to prevent overfitting of the neural network.
During the training process, the dropout disconnects randomly selected hidden units at
a certain probability, such as the dropout rate. Then, the network becomes more robust
because the network output does not depend only on a specific unit.

2.4. Recurrent Neural Network

Recurrent Neural Network (RNN) generates the output with current input and hidden
state representing past information of sequence data. Typical RNN structures, Gated
Recurrent Units (GRUs) [44] and Long Short-Term Memory (LSTM), support the gating
of the hidden state and control information flow. Figure 2a shows how the hidden state is
calculated in GRU. GRU computes the reset gate rt ∈ Rk that controls the memory from
ith data mi ∈ Rd, where d is the dimension of mi, in the input sequence and the update
gate zt ∈ Rk, where k is the dimension of the hidden state, that controls the similarity
between the new state and the old state. GRU integrates the computed gates to determine
the candidate hidden state h̃t ∈ Rk and the hidden state ht ∈ Rk. The equations of GRU are
as follows.

rt = σ(Wmrmt + Whrht−1 + br) (5)

zt = σ(Wmzmt + Whzht−1 + bz) (6)

h̃t = tanh(Wmhmt + rt � (Whhht−1) + bh) (7)

ht = (1− zt)� h̃t + zt � ht−1, (8)

where,� and σ are Hadamard product and sigmoid functions, respectively. Wmr, Wmz, Wmh ∈
Rd×k and Whr, Whz, Whh ∈ Rk×k are weight parameters. br, bz, bh ∈ Rk are biases.
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Figure 2. (a) GRU structure and (b) LSTM structure.

Figure 2b shows the computation process of hidden state in LSTM. The cell state
ct ∈ Rk and hidden state ht ∈ Rk for input data xt ∈ Rd with input gate it, forget gate ft,
output gate ot ∈ Rk are computed as follows.

it = σ(Wxixt + Whiht−1 + bi) (9)

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(10)

ot = σ(Wxoxt + Whoht−1 + bo) (11)
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ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc) (12)

ht = ot � tanh(ct), (13)

where Wxi, Wx f , Wxo, Wxc ∈ Rd×k and Whi, Wh f , Who, Whc ∈ Rk×k are weight parameters.
bi, b f , bo, bc ∈ Rk are biases.

The set2set model [45] is permutation invariant for input data using an
attention mechanism.

qt = LSTM(q∗t−1) (14)

ei,t = f (mi, qt) (15)

ai,t =
exp(ei,t)

∑j exp
(
ej,t
) (16)

rt = ∑
i

ai,tmi (17)

q∗t = qtrt, (18)

where mi is the memory vector, qt is the query vector, and f is the dot product.

2.5. Message Passing Neural Network

We assess the damage of the bridge structure using Graph Neural Network (GNN)
to apply the sensor network topology. GNN is a powerful deep learning model that
manipulates graph-structured data, and it is recently adopted in various domains. GNN
updates the hidden state of the vertex with the neighbor information, captures the hidden
patterns of the graph. Moreover, it effectively analyzes and infers the graph. MPNN [34] is
a general framework of GNN. It has been employed to evaluate chemical properties by
representing 3D molecular geometry as a graph.

Graph, G, consists of a vertex set, V, and an edge set, E. We denote the feature of
vertex, v ∈ V, as xv and the feature of edge, (u, v) ∈ E, as euv. As shown in Figure 3, MPNN
processes the embedded vertices into a message-passing step and a readout step.

𝑥௩
𝑣
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Output 
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ℎ௩
Update

T time steps

Message-passing

𝑣
ℎ௩ଵ

𝑣
ℎ௩்
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Task 1

Se
t2

Se
t

F:mpnn

Task 2

Figure 3. MPNN architecture.

In the message-passing step, each vertex receives the aggregated message mt+1
v from

the adjacent vertices along the edges with the message function, Mt. The hidden state of
each vertex is updated with the received message, and the previous state of the vertex
is updated with the update function, Ut. The message passing step is repeated T times
until the message is delivered to a wider range in the graph. In this study, the tth message
function Mt and the update function Ut are defined as follows.

Mt
(
ht

v, ht
u, euv

)
= σ

(
A(euv) ht

u
)

(19)

mt+1
v = ∑

u∈N(v)
Mt
(
ht

v, ht
u, euv

)
(20)

Ut = GRU
(

ht
v, mt+1

v

)
, (21)

where σ is the ReLU activation function. A(·) is a two-layer neural network generating a
matrix and consists of a layer with 2k neurons and ReLU activation, and a layer with k× k
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neurons. The neighbors of a vertex, N(v) = {u ∈ V | (u, v) ∈ E}, are adjacent vertices
connected through edges from v. ht

v and ht
u are the tth hidden states of vertices, v and

u, respectively. The initial hidden state, h0
v, is the embedding of vertex v obtained by

substituting xv into the differentiable function. In Equation (21), we define the update
function Ut as GRU described in Section 2.4. GRU integrates the state of the vertex itself
and the message received as Mt from adjacent vertices Finally, the hidden state of the tth

updated vertex v is defined as follows.

ht+1
v = Ut

(
ht

v, mt+1
v

)
, (22)

The readout step aggregates the last hidden states, hT , after iterating the message
passing T times. The prediction, ŷ, for the target data is calculated with the readout function,
R, as follows.

ŷ = R
({

hT
v | v ∈ V

})
. (23)

We define the readout function R as the set2set model presented in Section 2.4. Since
the set2set is invariant for graph isomorphism, it effectively integrates the vertices of the
graph and produces a graph level embedding.

3. Data Generating Procedure

In this section, we describe how the cable-stayed bridge data used for the MPNN
training is generated. The cable damage model is presented based on the elemental area
reduction parameter before the measured cables are specified. Then, the structural analyses
are performed to analyze the proposed model for reliable datasets that are essential to
construct the machine learning model later.

3.1. Cable Damage Model

During the service life of cable-stayed bridges, cables are the most critical load-bearing
components [46,47]. Thus, the potential damage of cables should be identified early to
prevent terrible disasters [48,49]. In this study, the damage of cable-stayed bridges is
assumed to be caused solely by the cable damages. In the cable-stayed bridge model, there
are a total of 40 cables corresponding to the 40 catenary elements that are numbered as
shown in Figure 1. The cable element is supposed to be perfectly flexible [40] with the self-
weight distributed along its length. It has a uniform cross-sectional area of 3846.5 mm2 in
the intact state of the bridge. The cable damage is expressed through a scalar area reduction
variable α with the value between 0 and 1 as follows:

Ad = (1− α) · Ai (24)

where Ai represents the cross-section area of the cable in the intact state and Ad denotes
the cross-section area of the cable in the damaged state. α is the elemental area reduction
parameter to be identified. It is noted that α = 1 indicates a destroyed cable, and α = 0
indicates an intact cable.

3.2. Observed Cables

In most structural health monitoring systems of cable-stayed bridges, sensors are
installed to collect data from specific cables due to the cost-effectiveness. The quantity of
surveyed cables depends on the scale and complexity of the bridge and the monitoring
objectives [47,50]. At surveyed locations, cable sensitivity and safety degrees are evaluated.
The measured data is automatically observed and stored as essential sources for later usage
during the monitoring time. In this study, 10 out of 40 cables are surveyed, including
5 cables on the front side and 5 cables on the backside. We examine five sensor layout cases
as shown in Figure 4. However, we do not include optimization of sensor placement (OSP)
in the scope of this study. Since we do not apply the OSP technology, the sensors are
evenly arranged. We analyze multiple cases to avoid skewing the experimental results
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to specific cases. The tensile forces within these cables are determined by simulating the
proposed model in the PAAP. Using the GDC method [20,51] to solve nonlinear problems,
the PAAP divides the dead load into many incremental steps. Obtained results from
the structural system at each incremental step, including internal forces, deformations,
displacements, etc., are exported and stored in data files. However, only cable tensions at
the step corresponding to the bridge self-weight are considered as measured data.

Case 5: 2, 9, 20, 18, 13, 24, 29, 36, 40, 35

Case 4: 1, 7, 9, 12, 19, 22, 28, 31, 34, 39Case 3: 1, 6, 20, 16, 11, 21, 26, 30, 36, 31

Case 2: 1, 5, 10, 11, 16, 21, 25, 30, 31, 36Case 1: 1, 3, 8, 18, 13, 23, 28, 38, 33, 31

F:loc_case

Figure 4. 5 sensor layout cases.

3.3. Generating Data

Different cable-stayed bridge models are constructed and analyzed by using the
PAAP. The geometry configurations of the bridge girders, pylons, and cross beams are kept
constant, while only the cable cross-sectional areas vary. The output is the tensile force
on observed cables as determined in Section 3.2. The complete procedure for generating
data is presented in Table 1. For single-cable damage, 4000 data samples are generated as
the elemental area reduction parameter varies from 0 to 1 with a step of 0.01. To evaluate
the cable system failure based on the simulation results, the prediction model performs a
reverse problem. The tensile forces of 10 observed cables are examined as the input, while
the predefined elemental area reduction parameters are employed for the target data. These
input and target data are utilized for the training and validation of the proposed damage
detection model concerning the cable-stayed bridge. Upon completion, the model predicts
damaged cable and its cross-section area Ad according to 10 inputs of cable tensile forces
S = [T1, T2, T3, . . . , T10].

Table 1. Data generating procedure.

Step 1. Input structural geometry, material configurations and set applied loads.

Step 2.
Generate M samples (C1, C2, . . . , CM) of 40 cables of system

Ci =
[

A1, A2, Aj, . . . , A40

]
, where Aj is the cross-section area of damaged cable

jth in sample ith, that is determined as shown Equation (24).

Step 3.
Calculate the tension of 10 observed cables Si = [T1, T2, Tk, . . . , T10] that
mentioned in Section 3.2 corresponding to the sample Ci using the PAAP, where
Tk is the measured tension of cable kth in sample ith.

Step 4. Save the input and output data to result files.

4. Proposed Method for Damage Assessment

In this section, we describe MPNN for damage assessment of the cable-stayed bridge.
We present the specific MPNN configuration and show how to apply the proposed multi-
task learning to identify the location of the damaged cable created in Section 3 and the
cross-sectional area of the corresponding cable.
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4.1. Configuration of the Proposed Network

We define the graph vertex feature, xv, with tensile forces of the 10 cables. The edge
feature euv is defined as the thresholded Gaussian kernel [52] as presented in the equation
below using the XYZ coordinates of the nodes on the girder connected to the 10 cables.

edgeuv =

exp
(
−dist(u,v)2

σ2

)
, if dist(u, v) < γ

0, otherwise ,
(25)

where we set the threshold γ to 0.1 and σ is the standard deviation of distances. Since
we only define vertices and edges as tension and distance, respectively, the dimensions
of vertex and edge features are all 1. We embed the vertex features xv representing the
tensor into single fully connected hidden layers with the ReLU activation function. The
embedded vertex state is updated with the message function Mt in Equation (19), and the
update function Ut in Equation (21). The hyperparameters of the network we tune in the
message-passing step include the vertex embedding dimension, the number of iterations
of the message passing step, and the hidden state dimension. Also, we tune the number
of LSTM layers of the set2set model for the global pooling, readout function R, and the
number of computations, which is another hyperparameter of the set2set model. We add
the fully connected hidden layer with the ReLU activation function with the same number
of neurons as the vertex embedding. The predictions for target data are generated in two
output layers, each of 20 linear units. We describe the two outputs in the next section.

4.2. Multi-Task Learning on MPNN

The target data to determine the cable health of the cable-stayed bridge are the dam-
aged cable location and the damage degree (i.e., cross-sectional area, Ad). Therefore, we
adopt multi-task learning to make MPNN learn two tasks effectively. The advantage of
multi-task learning is that by predicting multiple tasks simultaneously, related tasks could
be learned more efficiently. Therefore, learning to predict the cross-sectional area of the
damaged cable and learning to classify the damaged cable simultaneously improves learn-
ing efficiency. As shown in Figure 3, the proposed MPNN has outputs for task1 and task2,
which are the classification of the damaged cable and the prediction of the cross-sectional
area of the damaged cable, respectively. The first task is classification, and the second task is
a prediction on continuous data(i.e. regression). Therefore, we utilize the cross-entropy loss
function for task1 and the mean absolute error loss function for task2 defined as follows.

Ltask1 = −∑
i

Di log
exp

(
D̂i
)

∑j exp
(

D̂j
) (26)

Ltask2 =
∣∣Ad − Â ·M

∣∣, (27)

where Di represents the target for ith label for the case that the ith cable is damaged. Ad is
the target for the cross-sectional area of a single damaged cable in the range, 0.99 to 0.0.
Â ∈ R40 is the vector output by the network for the second task. We define maskM ∈ R40

as a vector in which one element corresponding to the index of the damaged cable is 1,
and all others are 0. In the training phase, the position of 1 in the maskM is actually the
index of the damaged cable. Ltask2 is actually the error between the cross-sectional area of
the damaged cable, Ad, and the dot product of Â andM. Therefore, the loss for task2 is
actually only calculated on the damaged cable. In the test step, the maskM is created as
an output for the network classification. Then Â ·Mmeans the estimated cross-sectional
area of the cable that the network classified as damaged. We define the total loss Ltotal by
combining Ltask1 and Ltask2 as follows.

Ltotal = Ltask1 +
1

‖M‖1
Ltask2. (28)
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The total loss Ltotal is the sum of task1 (classification) and task2 (regression) scaled by
L1-norm of maskM.

5. Performance Evaluation

To evaluate the proposed model introduced in Section 4, we generate data with the
cable-stayed bridge having damaged cables through the PAAP described in Section 3. We
preprocess the generated data for the model training and optimize the MPNN model.
Then, we train the proposed MPNN to validate the prediction outcomes. We also train
the MLP and compare it with the MPNN model results. The input data of the MLP is
only ten cable tension data. MLP has four hidden layers with ReLU activation, and we
have added a dropout layer to each hidden layer. Similar to MPNN, the MLP output layer
generates 80 predictions for two tasks. Additionally, we compare the results with ones by
the machine learning technique, XGBoost. Also, we compare the multi-task learning with
a network performing only one task. The number of network outputs for the damaged
cable classification, which is task1, is 40 and the loss function is the cross-entropy shown
in Equation (26). Furthermore, the number of network outputs for the area estimation
of damaged cables, which is task2, is 1, and the loss function is the mean absolute error
presented in Equation (27).

5.1. Data Preprocessing and Optimization

As mentioned in Section 3, we generate the data for 4000 cases. The input data is the
cable-stayed bridge data represented as a graph, as described in Section 4, and the target
data include the index and its cross-sectional area of the damaged cable labeled between
1 and 40. The cross-sectional area of the damaged cable is (1−α), which is between 0.0
(broken state) and 0.99. The α is an elemental area reduction parameter defined in Section 3.
We scale the vertex feature values, tensile forces, between 0 and 1, as presented as follows.

T′ =
T −min T

max T −min T
(29)

We divide the data into 6:1:3 and generate a 2400 training set, 400 validation set, and
1200 test set.

Table 2 presents the ranges of hyperparameters and selected optimal values for each
model. We select the best hyperparameters in the validation set using Tree-structured
Parzen Estimators (TPE) [53] with 20 trials. Moreover, we terminate trials with poor perfor-
mance using Asynchronous Successive Halving Algorithm (ASHA) [54]. We specify the
hyperparameters of MPNN in Section 4.1. The hyperparameters of MLP are the number
of hidden neurons in each layer and the dropout rate. We optimize the hyperparame-
ters that determine the network structure, batch size, and learning rate. We perform the
hyperparameter optimization individually for each of the 5 cases and models.

We utilize the ADAM optimizer [55] and train the MPNN model to minimize the loss
function, which is defined in Equation (28). We set the number of epochs to 1000. Then
we decay by multiplying the learning rate decided from the hyperparameter optimization
by 0.995 per epoch. We use Pytorch and Deep Graph Library (DGL) on a single NVIDIA
Geforce RTX2080Ti GPU for network implementation and optimization. We train the MLP
model with the same settings as the MPNN model.
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Table 2. Hyperparameter optimization. The optimal values for multitask learning, regression learning, and classification
learning are separated by commas and appear in order.

Optimal Values
Model Hyperparameter Range Case 1 Case 2 Case 3 Case 4 Case 5

MPNN

Batch size [16, 32, 64, 128] 16, 16, 16 32, 32, 16 32, 16, 32 16, 16, 16 16, 16, 32

Learning rate [0.00001∼0.001]
0.00095,
0.00018,
0.00078

0.00029,
0.00081,
0.00047

0.00070,
0.00043,
0.00076

0.00036,
0.00016,
0.00040

0.00030,
0.00092,
0.00098

Vertex embedding dim [8, 16, 32, 64, 128] 32, 128, 128 128, 32, 128 128, 128, 128 64, 128, 64 64, 64, 128

Hidden state dims [8, 16, 32, 64, 128] 16, 16, 32 32, 64, 16 8, 8, 16 8, 64, 16 16, 8, 8

# of message passing steps [3,4,5,6] 3, 5, 5 6, 4, 3 6, 6, 5 5, 6, 5 4, 4, 3

# of set2set computations [1, 2, 3, 4, 5] 5, 2, 1 1, 5, 1 4, 5, 2 1, 4, 1 4, 5, 5

# of LSTM layers [1, 2, 3] 2, 3, 3 2, 2, 2 2, 1, 2 3, 1, 2 3, 1, 2

Batch size [16, 32, 64, 128] 32, 64, 128 32, 16, 8 16, 128, 16 32, 32, 32 128, 32, 128

Learning rate [0.00001∼0.001]
0.00038,
0.00015,
0.00054

0.00003,
0.00044,
0.00029

0.00017,
0.00013,
0.00014

0.00049,
0.00015,
0.00031

0.00025,
0.00044,
0.00072

# of hidden neurons
in the hidden layer 1

[32, 64, 128, 256,
512, 1024, 2048] 1024, 256 1024, 1024, 32, 512 1024, 512, 512 64, 128, 128 2048, 256, 512

# of hidden neurons
in the hidden layer 2

[32, 64, 128, 256,
512, 1024, 2048] 512, 64, 512 2048, 64, 512 256, 2048, 2048 32, 1024, 1024 2048, 128, 512

# of hidden neurons
in the hidden layer 3

[32, 64, 128, 256,
512, 1024, 2048] 2048, 512, 64 2048, 512, 2048 256, 256, 1024 128, 256, 2048 1024, 512, 32

# of hidden neurons
in the hidden layer 4

[32, 64, 128, 256,
512, 1024, 2048] 128, 2048, 512 1024, 32, 128 256, 64, 1024 1024, 128, 64 256, 128, 2048

MLP

Dropout rate [0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7] 0.1, 0.3, 0.3 0.2, 0.1, 0.1 0.5, 0.2, 0.2 0.1, 0.2, 0.2 0.2, 0.1, 0.1

Minimum sum
of instance weight [1, 5, 10] 1, 5 1, 5 1, 10 1, 1 1, 1

gamma [0.5, 1, 1.5, 2, 5] 0.5, 1 2, 1 1, 0.5 2, 0.5 0.5, 0.5

Subsample ratio of
the training instance [0.6, 0.8, 1.0] 0.6, 1.0 0.8, 1.0 1.0, 1.0 0.6, 1.0 0.8, 0.6

Subsample ratio
of columns when

constructing each tree
[0.6, 0.8, 1.0] 0.6, 1.0 0.8, 0.6 0.8, 1.0 1.0, 0.8 0.6, 1.0

XGBoost

Maximum tree depth [3, 4, 5] 3, 5 3, 5 3, 5 4, 5 5, 5

5.2. Results

In this section, we report the results of the deep learning network for the test set. We
examine the accuracy to evaluate the damaged cable classification performance. We employ
the mean absolute error (MAE), the root mean squared error (RMSE), and the correlation
coefficient between target data and output data as measures to compare the cross-sectional
area prediction. MAE, RMSE, and correlation coefficient are defined as follows.

MAE =
∑n

i |y− ŷi|
n

(30)

RMSE =

√
∑n

i (y− ŷi)
2

n
(31)

Correlation coefficient =
∑n

i (yi − ȳ)(ŷi − ¯̂y)√
∑n

i (yi − ȳ)2
√

∑n
i (ŷi − ¯̂y)2

, (32)

where n is the number of samples, and y, ŷ, ȳ, and ¯̂y are the target, output, and the average
of the target, and the average of the output, respectively. The lower the MAE and RMSE
and the higher the correlation coefficient, the better the performance.

Table 3 summarizes the results of MPNN, MLP, and XGBoost. When comparing
MPNN with MLP and XGBoost, the classification accuracy and correlation are always
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higher, and the error for cross-sectional area estimation is lower. Besides, the classification
accuracy of MLP drops to 93.58%, depending on the sensor layouts. However, MPNN is
more stable with an accuracy of over 98.33% in all 5 cases. Also, for the cross-sectional
area prediction, MPNN is better and more stable than MLP and XGBoost. Meanwhile, the
multi-task learning performance is similar to one of the single-task learning in which each
task is individually trained. However, when multi-task learning is applied, we need to
train the network only once, whereas training the network with the single-task increases
the time cost by the number of tasks. Therefore, multi-task learning is efficient because
it learns multiple tasks simultaneously while achieving performance similar to learning
single tasks.

Table 3. Results of MLP and MPNN on the test set for 5 cases. The best value for each case is noted in
bold. (MTL: multi-task learning, Single: single-task learning, Class: classification, Reg: regression).

Case 1 Case 2 Case 3 Case 4 Case 5

MTL Single MTL Single MTL Single MTL Single MTL Single

Class Acc (%) - 97.25 - 97.08 - 97.5 - 97.83 - 98.5
MAE - 0.1518 - 0.1451 - 0.1422 - 0.1506 - 0.1487
RMSE - 0.1837 - 0.1748 - 0.1713 - 0.1829 - 0.1806XGBoost Reg
Corr - 0.9093 - 0.9253 - 0.9062 - 0.9084 - 0.8815

Class Acc (%) 98.33 98.08 93.58 95 97.17 94.17 94 95 97.08 98.08
MAE 0.0249 0.0832 0.059 0.0369 0.0679 0.0166 0.0492 0.112 0.0408 0.0877
RMSE 0.0327 0.1603 0.0827 0.0897 0.0788 0.0314 0.0613 0.1669 0.0611 0.1608MLP Reg
Corr 0.9953 0.8321 0.9699 0.9541 0.9734 0.9944 0.9885 0.831 0.9807 0.8261

Class Acc (%) 99.08 98.83 98.67 99.17 99.33 99.25 97.75 98.33 98.92 99.17
MAE 0.0093 0.009 0.005 0.008 0.0035 0.0028 0.0104 0.0265 0.007 0.0046
RMSE 0.0331 0.0433 0.0121 0.0282 0.0069 0.0066 0.0175 0.0843 0.0138 0.0199MPNN Reg
Corr 0.9934 0.9884 0.9991 0.9951 0.9997 0.9997 0.9981 0.9552 0.9988 0.9976

Figure 5 shows scatter plots showing the relationships between the predicted values
and actual values for the cross-sectional area estimation of the damaged cables. As shown
in Figure 5a,b, which are the results of MLP, since many points deviate enormously from
the straight line, especially in cases 2, 4, and 5, we confirm that the errors in the prediction
of the cross-sectional area are considerable. However, in the scatter plots of MPNN shown
in Figure 5c,d, the data points are closer to the straight line than MLP for all cases. For the
classification analysis, in the multi-task learning results Figure 5a,c, we confirm that the
red points, which are misclassified data, are mainly concentrated when the cross-sectional
area is close to 1. It appears that the smaller the damage, the more likely the damaged cable
will be misclassified.

Figure 6 shows the histogram of correctly classified data and incorrectly classified data
for varying cross-sectional areas. We observe that in all four network results, in general,
the correctly classified data (blue) are evenly distributed, and the misclassified data (red)
are skewed toward the cross-sectional area close to 1. For more accurate verification, we
divide the cross-sectional area range by 0.1 and calculate the classification accuracy of the
data included in each range.

Table 4 presents the accuracies according to the cross-sectional areas. When the cross-
sectional area is less than 0.9, the accuracy of the MLP and XGBoost is between 81% and
100%. When the cross-sectional area is more than 0.9, the classification performance of
MLP drops to 50%, and the best accuracy is 79.59% in case 5. However, when the cross-
sectional area of MPNN is less than 0.9, the accuracy is over 99.2%. Also, in both multi-task
learning and single-task learning, the accuracy of all cases is almost 100%. When the cross-
sectional area is more than 0.9, the accuracy of MPNN is at least 73.47% and at most 91.84%.
When the cable cross-sectional area loss is small, the accuracy of MPNN decreases slightly,
but we notice that MPNN classifies damaged cables relatively more reliably than MLP
and XGBoost. Besides, it is noticed that for each cross-sectional area change, none of the
multi-task learning method and the single task learning method always outperforms in
all cases.
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Figure 5. Scatter plots of MLP and MPNN on the test set for estimating the cross-sectional areas of damaged cables in
5 cases. The x-axis is the actual cross-sectional area (target data), and the y-axis is the predicted cross-sectional area. Correctly
classified data are indicated as blue points, and incorrectly classified data are shown as red points in multi-task learning.
(a) MLP with multi-task learning, (b) MLP with single-task learning (regression), (c) MPNN with multi-task learning,
(d) MPNN with single-task learning (regression).

M
PN

N
M

LP
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Figure 6. Histograms of correctly classified data (blue) and misclassified data (red) according to the
damaged cable cross-sectional areas. (a) MLP with single-task learning (classification), (b) MLP with
multi-task learning, (c) MPNN with single-task learning (classification), (d) MPNN with multi-task
learning are presented.
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Table 4. Classification accuracies by cross-sectional areas of damaged cable for 5 cases. For each cross-sectional area, blue
indicates the most accurate, and red denotes the least accurate.

Case 1 Case 2 Case 3 Case 4 Case 5

Area MTL Single MTL Single MTL Single MTL Single MTL Single

0.00∼0.69 - 99.88 - 99.88 - 100 - 100 - 100
0.70∼0.79 - 100 - 100 - 100 - 100 - 100
0.80∼0.89 - 100 - 100 - 100 - 100 - 100XGBoost

0.90∼0.99 - 67.35 - 65.31 - 69.39 - 73.47 - 81.63

0.00∼0.69 100 100 97.9 99.42 100 99.42 98.36 100 99.42 100
0.70∼0.79 100 100 95.87 99.17 99.17 99.17 95.04 100 95.87 100
0.80∼0.89 100 100 90.4 92.8 96 88 88 84.8 96 99.2MLP

0.90∼0.99 79.59 76.53 57.14 54.08 71.43 50 62.24 58.16 79.59 77.55

0.00∼0.69 100 100 100 100 100 100 100 100 100 100
0.70∼0.79 100 100 100 100 100 100 100 100 100 100
0.80∼0.89 100 100 100 100 100 100 99.2 100 100 100MPNN

0.90∼0.99 88.78 85.71 83.67 89.8 91.84 90.82 73.47 79.59 86.73 89.8

Figure 7 shows the confusion matrix of MPNN combining all 5 cases. Since there are
a few misclassified data, we highlight the misclassified data with the orange shade. We
observe that the location of the misclassified cable tends to be close to the damaged cable.
For example, when the actual labels are 4, 7, 13, and 14, the predicted labels are 3, 6, 14, 16,
and 15, respectively. These cables are located next to each other.

Figure 7. Confusion matrix.

Figure 8 shows a histogram of the sensor distances corresponding to the actual dam-
aged cable and the cable incorrectly classified by the network for all 5 cases to illustrate the
spatial relationship between the actual labels and the predicted labels in more detail. Of 75
incorrectly classified data, the distance between 17 actual damaged cables and predicted
damaged cables is only 12,200, which is the distance between adjacent cables. Therefore, if
we apply the proposed method to an actual bridge, we urge that the cables on both sides of
the classified cables must be checked to avoid more significant damage.
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Figure 8. Histogram of the distance between the original damaged cable and misclassified cable in
the misclassified data is presented.

The tensions used as input data are measured only on ten cables. However, the
proposed technique assesses damages to all 40 cables. Therefore, we need to compare the
predictions for the ten cables with tension data and the 30 cables without tension data.
Table 5 shows the results for the damaged cables with sensors and the damaged cable
without sensors in all cases.

Table 5. MLP and MPNN results for damaged cable with sensor (Y) and damaged cable without sensor (N). The bold
indicates the better result between these two.

Case 1 Case 2 Case 3 Case 4 Case 5

Y N Y N Y N Y N Y N

XGBoost

Single-C Acc (%) 97.32 97.23 97.22 97.04 98.29 97.24 96.98 98.12 98.66 98.45
MAE 0.1462 0.1536 0.1508 0.1434 0.1359 0.1443 0.1489 0.1512 0.1437 0.1503
RMSE 0.1755 0.1863 0.1749 0.1748 0.1603 0.1747 0.1797 0.1839 0.1714 0.1836Single-R
Corr 0.9627 0.8929 0.9318 0.9288 0.9472 0.8964 0.9439 0.8954 0.9103 0.8737

MLP

MTL-C Acc (%) 100 97.78 99.65 91.67 96.25 97.46 100 92.02 100 96.12
MAE 0.0207 0.0262 0.059 0.059 0.0756 0.0654 0.0496 0.0491 0.0386 0.0415
RMSE 0.0256 0.0348 0.0717 0.0859 0.0874 0.0758 0.059 0.062 0.0445 0.0657MTL-R
Corr 0.9974 0.9947 0.9858 0.9651 0.9634 0.9766 0.9978 0.9856 0.9924 0.977

Single-C Acc (%) 100 97.45 98.96 93.75 96.93 93.27 100 93.35 100 97.45
MAE 0.0345 0.0993 0.0266 0.0402 0.0297 0.0124 0.0737 0.1246 0.0292 0.1071
RMSE 0.0517 0.1825 0.0316 0.1013 0.0554 0.0177 0.0814 0.1867 0.0392 0.1842Single-R
Corr 0.9935 0.7773 0.9992 0.9398 0.9836 0.9983 0.9937 0.764 0.9979 0.7689

MTL-C Acc (%) 99.66 98.89 99.65 98.36 100 99.12 99.66 97.12 100 98.56
MAE 0.0098 0.0092 0.0059 0.0047 0.0024 0.0038 0.0063 0.0117 0.0058 0.0074
RMSE 0.057 0.0196 0.0201 0.0081 0.0048 0.0075 0.0118 0.019 0.012 0.0143MTL-R
Corr 0.9823 0.9977 0.9976 0.9996 0.9999 0.9997 0.9992 0.9978 0.9991 0.9987

Single-C Acc (%) 99.33 98.67 100 98.9 100 99.01 99.33 98 99.33 99.11
MAE 0.0041 0.0107 0.0038 0.0093 0.0019 0.0031 0.0089 0.0324 0.0017 0.0055
RMSE 0.0216 0.0484 0.0175 0.0308 0.0043 0.0071 0.0545 0.092 0.0087 0.0225

MPNN

Single-R
Corr 0.9971 0.9856 0.9983 0.9942 0.9999 0.9997 0.9828 0.945 0.9995 0.997

We notice that the performance of MPNN is more remarkably different than that of
MLP and XGBoost when the cable with no sensor attached is damaged. When the cable
with the sensor is damaged, the classification accuracy is higher compared to the case that
the cable without the sensor is damaged. The regression performance also shows the similar
pattern except for case 1, 2, and 3. In case 1, 2, and 3, on the contrary, the result is better
when the cable without the sensor is damaged in results of MLP and MPNN. This seems to
be related to a problem with the sensor position. As seen in Figure 4, unlike case 4 and case
5, the spacing of sensors in cases 1, 2, and 3 is always less than five cables. In case 1, 2, and
3, since the sensors are evenly distributed, we observe that even if the cable without the
sensor is damaged, especially in the regression task, the performance degradation does not
appear. Table 6 for more detailed results for case 3 shows the classification result (accuracy,
precision, recall, and F1 score) and the regression result (MAE, RMSE, and correlation
coefficient) for each cable of the cross-sectional area when the cable is damaged.
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Table 6. Results of MPNN for each cable in case 3. The rows shaded in green indicate ten cables with tension data and
values in the lower 5% of performance appear in red, and values in the upper 5% of performance appear in blue.

MTL-Classification MTL-Regression Single-Classification Single-Regression

Cables Acc Prec Recall F1 MAE RMSE Corr Acc Prec Recall F1 MAE RMSE Corr
1 1 1 1 1 0.0029 0.0095 0.99953 1 1 1 1 0.0007 0.0009 0.99999
2 1 1 1 1 0.0035 0.0037 0.99998 1 1 1 1 0.0011 0.0022 0.99997
3 1 1 1 1 0.005 0.0054 0.99997 1 1 1 1 0.0009 0.0014 0.99998
4 0.97 1 0.97 0.99 0.0033 0.004 0.99996 0.97 1 0.97 0.99 0.005 0.0091 0.99944
5 1 0.97 1 0.98 0.0036 0.0038 0.99999 1 0.94 1 0.97 0.0056 0.0124 0.99955
6 1 1 1 1 0.0018 0.0023 0.99998 1 1 1 1 0.0011 0.0017 0.99998
7 1 1 1 1 0.0035 0.0117 0.9993 1 1 1 1 0.0033 0.008 0.99971
8 1 1 1 1 0.0014 0.0021 0.99997 1 1 1 1 0.0023 0.0045 0.9999
9 1 1 1 1 0.0022 0.0062 0.99977 1 1 1 1 0.0008 0.0014 0.99999
10 1 1 1 1 0.004 0.0103 0.99951 1 1 1 1 0.001 0.0017 0.99999
11 1 1 1 1 0.0017 0.002 0.99999 1 1 1 1 0.0021 0.0065 0.99979
12 1 1 1 1 0.0017 0.0025 0.99997 1 1 1 1 0.001 0.002 0.99998
13 0.96 1 0.96 0.98 0.0023 0.0035 0.99993 0.96 1 0.96 0.98 0.0022 0.0052 0.99989
14 0.91 1 0.91 0.95 0.0024 0.0031 0.99998 0.91 1 0.91 0.95 0.0115 0.0194 0.9989
15 1 0.89 1 0.94 0.0028 0.0035 0.99998 1 0.89 1 0.94 0.0065 0.0118 0.99917
16 1 1 1 1 0.002 0.0024 0.99999 1 1 1 1 0.0012 0.0022 0.99997
17 1 1 1 1 0.0012 0.0014 1 1 1 1 1 0.0017 0.003 0.99995
18 1 1 1 1 0.0027 0.0074 0.99972 1 1 1 1 0.0031 0.0067 0.9998
19 1 1 1 1 0.0028 0.0112 0.99943 1 1 1 1 0.0024 0.0063 0.99984
20 1 1 1 1 0.0016 0.0038 0.99992 1 1 1 1 0.0026 0.0037 0.99993
21 1 1 1 1 0.0008 0.0014 0.99999 1 1 1 1 0.0019 0.0051 0.99989
22 1 1 1 1 0.0045 0.0049 0.99993 1 1 1 1 0.0019 0.0048 0.99989
23 0.97 1 0.97 0.99 0.0054 0.0061 0.99994 0.97 1 0.97 0.99 0.0026 0.0034 0.99993
24 1 0.95 1 0.98 0.0014 0.0018 0.99998 1 1 1 1 0.0015 0.0025 0.99997
25 1 0.97 1 0.98 0.0028 0.0043 0.99991 0.97 0.97 0.97 0.97 0.0037 0.0069 0.99977
26 1 1 1 1 0.003 0.0046 0.99992 1 1 1 1 0.003 0.006 0.99979
27 1 1 1 1 0.0017 0.0024 0.99996 1 1 1 1 0.0015 0.0036 0.99992
28 1 1 1 1 0.0039 0.0043 0.99999 1 1 1 1 0.0031 0.0062 0.99981
29 1 1 1 1 0.0024 0.003 0.99997 1 1 1 1 0.0021 0.0044 0.99992
30 1 1 1 1 0.0018 0.0027 0.99996 1 1 1 1 0.0018 0.0038 0.99993
31 1 0.97 1 0.99 0.0049 0.0081 0.99981 1 1 1 1 0.0022 0.0044 0.99993
32 0.97 1 0.97 0.98 0.0025 0.0055 0.99988 0.97 1 0.97 0.98 0.0034 0.0068 0.99985
33 1 1 1 1 0.0065 0.0072 0.99995 1 0.97 1 0.98 0.0043 0.0077 0.99974
34 1 1 1 1 0.0031 0.004 0.99992 1 1 1 1 0.0047 0.006 0.99995
35 1 1 1 1 0.0223 0.027 0.9958 1 0.97 1 0.99 0.0081 0.0127 0.9991
36 1 1 1 1 0.0027 0.003 0.99998 1 1 1 1 0.0019 0.004 0.99992
37 1 1 1 1 0.0019 0.0024 0.99997 1 1 1 1 0.0013 0.0017 0.99999
38 0.97 1 0.97 0.98 0.0044 0.0053 0.99994 0.97 1 0.97 0.98 0.001 0.0016 0.99998
39 1 1 1 1 0.0023 0.0026 0.99997 1 1 1 1 0.0015 0.0024 0.99997
40 1 1 1 1 0.0029 0.0032 0.99994 1 1 1 1 0.0026 0.0035 0.99989

Q5 0.97 0.97 0.97 0.98 0.00139 0.00178 0.99942 0.96 0.95 0.96 0.97 0.0009 0.0014 0.99917
Q95 1 1 1 1 0.00545 0.01122 0.99999 1 1 1 1 0.00658 0.01241 0.99999

The accuracy, precision, recall, and F1 score are calculated as follows.

accuracy = (TP + TN)/(TP + TN + FP + FN) (33)

precision = (TP)/(TP + FP) (34)

recall = (TP)/(TP + FN) (35)

F1 = (2 TP)/(2 TP + FP + FN), (36)

where TN is true negative, TP true positive, FN false negative, and FP false positive. The
rows shaded in green indicate ten cables with tension data, and all four measures for
the classification, including accuracy, precision, recall, and F1 score, are 1.00. For each
measure, values in the lower 5% of performance appear in red, and values in the upper 5%
of performance appear in blue. Then we observe that cable 25 and cable 33 have the lowest
precisions, which can be interpreted as a relatively high probability of misclassification
among those predicted by MPNN that cable 15 and cable 24 are damaged in multi-task
learning. Cable 14 has the lowest recall in both multi-task learning and single-task learning.
Therefore, we can interpret that when cable 14 is damaged, MPNN is relatively likely
to predict that the other cable is damaged. Also, the accuracy and F1 score of cable 14
and cable 15 are the lowest in multi-task learning. In addition to this, cable 14 in both
multi-task learning and single-task learning have lower performance metric values for
the classification. The cables mentioned so far are all sensorless cables in case 3. Unlike
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classification, the cross-sectional area prediction seems to be mostly unrelated to the
use of tension data. For example, the regression performance is excellent even for the
damaged cable 17 and 9 that do not have any tension data. Therefore, estimating the
cross-sectional area of a single damaged cable is less related to the tension data-position
than the classification.

5.3. Discussion

We have shown that MPNN can successfully assess cable damage estimation and
outperform MLP. When the cable cross-section is damaged less than 0.9, MPNN always clas-
sifies the damaged cable more accurately than MLP. However, when the cable cross-section
area damage is negligible as 0.9 or more, the classification accuracy slightly deteriorates.
Once we improve the deep learning network to work more accurately for the bridge
structure data with minor damage, we expect that the overall accuracy becomes 100%.
Misclassified cables by MPNN are often located right next to the actual damaged cables.
We can utilize these MPNN misclassification trends to update the algorithm and training
process. However, since MPNN has reached 98% or even higher accuracy, achieving suf-
ficiently satisfactory results, we believe that MPNN has potential as an SHM technology.
Also, the multi-task learning performance is similar to the multiple single-task learning
performance. Therefore, we have shown that multi-task learning can efficiently learn a
single network that evaluates a bridge state. Besides, we have presented that the multi-task
learning technique achieves similar performance to the network learning two tasks while
learning only one network. Therefore, it is possible to evaluate the bridge conditions in
several ways using only one network. It is worth adding more tasks other than predicting
only the cross-sectional area of the cable in the future.

5.3.1. Contribution

We confirmed that MPNN has a higher overall performance than MLP and XGBoost.
In particular, MPNN has a significant difference in performance from MLP and XGBoost
when a cable without a sensor is damaged. Since MPNN can process spatial information
between sensors, it appears that damages to cables without sensors can be estimated more
successfully. MPNN has the advantage of being able to transmit information according to
the connectivity relationship between sensors through a structure that passes messages.
Also, by adding a readout function, MPNN produces an output as a graph unit value
from node information, making it possible to predict the state of 40 cables effectively. In
this paper, we captured spatial correlation by considering sensor geometry with MPNN.
Moreover, we showed that two tasks (classifying damaged cables and estimating cross-
sectional area) could be efficiently trained using multi-task learning. Besides, we proposed a
loss function using a mask so that the damaged cable could be more successfully estimated.

5.3.2. Limitation

We could represent the sensor geometry as a graph in this study but did not consider
mechanical properties such as the material type or Young’s modulus of the structure since
it is difficult to define the relationship among the sensors when several types of materials
are included between the two sensors. Besides, it may be challenging to learn the entire
structure behaviors with the proposed method because it is not possible to deduce the
entire topology of the bridge with only a few sensor data, which may necessitate the
installation of a sufficiently large number of sensors. However, it cannot always be satisfied
due to cost constraints. Therefore, to understand the condition of the entire bridge with
only a small number of sensors, we fundamentally need to examine the influence of the
sensor locations and apply it to enhance the model.

5.3.3. Extension To Multiple Damaged Cables

In this study, we assess the GNN-based SHM technology assuming that only one
cable is damaged. To generate more realistic data similar to a real-world bridge, we need to



Sensors 2021, 21, 3118 18 of 21

simulate several damaged cables. We can apply the proposed technique by transforming
from one label classification to a multi-label classification problem even when the number
of damaged cables is unknown. A straightforward approach is to replace the cross-entropy
loss function with a loss function used for multi-label classification, such as binary cross-
entropy. However, the threshold for deciding how many cables to classify as damaged
should be appropriately set, which is an essential component. If the target data, which
indicates the cross-sectional areas of the actual damaged cables, is represented as a vector
of dimension w, where w is the number of damaged cables, then we can use the mask as
shown in Equation (27) and compute the loss for the regression task. Suppose we multiply
the 40 outputs of the network for task2 and the mask that is a 40× w matrix, where each
column is a one-hot encoding vector representing the locations of the damaged cables. In
that case, we obtain the cross-sectional areas of the damaged cables. Similarly, the mask
is created as the actual label in the training step and the predicted label in the test step.
The total loss is obtained by combining the loss for the classification task and the loss for
the regression task by scaling the L1-norm of the mask. We do not desire to weigh the
regression task more than the classification task as the number of damaged cables increases.
We can prevent this by scaling the regression loss with the mask. Therefore, even with
multiple damaged cables, we can still apply the proposed method as a multi-task learning
approach. As discussed above, we will review the conditions for making the cable-stayed
bridge model and the real-world bridge similar and improve our technique to apply to the
real-world bridge.

6. Conclusions

In this paper, we defined the sensor data as a graph composed of vertex and edge
features. We proposed a damage assessment method of a cable-stayed bridge applying the
graph representation on MPNN. We used tension data of only 10 cables to increase the
practicality of the experiment. It is challenging to assess the conditions of all cables with
only a limited number of sensors. Nevertheless, MPNN successfully estimated the damage
of the cable-stayed bridge. We adopted multi-task learning to enable MPNN to efficiently
learn two tasks: to locate damaged cables and predict the cable areas. The performance of
MPNN is better than MLP trained for the comparison. MPNN classified damaged cables
more reliably than MLP, not only when the cable is completely broken and has a zero area,
but also when the damage is relatively small. Therefore, we presume that MPNN can detect
damages at an early stage for structural maintenance. Furthermore, we can apply MPNN
to actual bridge data when we have material information about the structural components.
For example, we can train MPNN with stayed-cable bridge data simulated under the same
conditions as real bridges in PAAP and utilize pre-trained MPNN with real bridge data for
prediction directly. Additionally, although we simulated only one damaged cable in this
study, we will generate data with multiple damaged cables to train the network to consider
the more general real-world bridge cases. We also introduced an approach to conduct
damage localization and severity assessment with the proposed method when several
cables are damaged as a future study. Our model is likely to be extended by applying
additional data such as the displacement of nodes and xyz coordinates for vertex features.
Moreover, we can further expand the study by training MPNNs to predict structural
damages, such as decreased stiffness besides cable conditions.
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