Recognizing Manual Activities Using Wearable Inertial Measurement Units: Clinical Application for Outcome Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prototype
2.2. Sensor Calibration
2.3. Participants
2.4. Activities Selection
2.5. Experimental Setup and Recordings
2.6. Data Analysis
2.7. Determining Cutoff Points
2.8. Algorithm Validation
3. Results
3.1. Cutoff Points
3.2. Description of the Algorithm
3.3. Performance of the Algorithm
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbier, O.; Penta, M.; Thonnard, J.-L. Outcome Evaluation of the Hand and Wrist According to the International Classification of Functioning, Disability, and Health. Hand Clin. 2003, 19, 371–378. [Google Scholar] [CrossRef]
- Porter, M.E. A Strategy for Health Care Reform--toward a Value-Based System. N. Engl. J. Med. 2009, 361, 109–112. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (Ed.) International Classification of Functioning, Disability and Health: ICF; World Health Organization: Geneva, Switzerland, 2001; ISBN 978-92-4-154542-6. [Google Scholar]
- Arnould, C.; Penta, M.; Thonnard, J.-L. Hand Impairments and Their Relationship with Manual Ability in Children with Cerebral Palsy. J. Rehabil. Med. 2007, 39, 708–714. [Google Scholar] [CrossRef]
- Penta, M.; Thonnard, J.-L.; Tesio, L. ABILHAND: A Rasch-Built Measure of Manual Ability. Arch. Phys. Med. Rehabil. 1998, 79, 1038–1042. [Google Scholar] [CrossRef]
- Durez, P.; Fraselle, V.; Houssiau, F.; Thonnard, J.; Nielens, H.; Penta, M. Validation of the ABILHAND Questionnaire as a Measure of Manual Ability in Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 2007, 66, 1098–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penta, M.; Tesio, L.; Arnould, C.; Zancan, A.; Thonnard, J.-L. The ABILHAND Questionnaire as a Measure of Manual Ability in Chronic Stroke Patients: Rasch-Based Validation and Relationship to Upper Limb Impairment. Stroke 2001, 32, 1627–1634. [Google Scholar] [CrossRef]
- Vanthuyne, M.; Smith, V.; Arat, S.; Westhovens, R.; Keyser, F.; Houssiau, F.A.; Thonnard, J.-L.; Vandervelde, L. Validation of a Manual Ability Questionnaire in Patients with Systemic Sclerosis. Arthritis Care Res. 2009, 61, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Vandervelde, L.; Van den Bergh, P.Y.K.; Penta, M.; Thonnard, J.-L. Validation of the ABILHAND Questionnaire to Measure Manual Ability in Children and Adults with Neuromuscular Disorders. J. Neurol. Neurosurg. Psychiatry 2010, 81, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Khoury, G.E.; Barbier, O.; Libouton, X.; Thonnard, J.-L.; Lefèvre, P.; Penta, M. Manual Ability in Hand Surgery Patients: Validation of the ABILHAND Scale in Four Diagnostic Groups. PLoS ONE 2020, 15, e0242625. [Google Scholar] [CrossRef] [PubMed]
- Arnould, C.; Penta, M.; Renders, A.; Thonnard, J.-L. ABILHAND-Kids: A Measure of Manual Ability in Children with Cerebral Palsy. Neurology 2004, 63, 1045–1052. [Google Scholar] [CrossRef]
- Hudak, P.L.; Amadio, P.C.; Bombardier, C. Development of an Upper Extremity Outcome Measure: The DASH (Disabilities of the Arm, Shoulder and Hand) [Corrected]. The Upper Extremity Collaborative Group (UECG). Am. J. Ind. Med. 1996, 29, 602–608. [Google Scholar] [CrossRef]
- MacDermid, J.C.; Turgeon, T.; Richards, R.S.; Beadle, M.; Roth, J.H. Patient Rating of Wrist Pain and Disability: A Reliable and Valid Measurement Tool. J. Orthop. Trauma 1998, 12, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.W.; Simmons, B.P.; Koris, M.J.; Daltroy, L.H.; Hohl, G.G.; Fossel, A.H.; Katz, J.N. A Self-Administered Questionnaire for the Assessment of Severity of Symptoms and Functional Status in Carpal Tunnel Syndrome. J. Bone Jt. Surg. 1993, 75, 1585–1592. [Google Scholar] [CrossRef]
- Holsbeeke, L.; Ketelaar, M.; Schoemaker, M.M.; Gorter, J.W. Capacity, Capability, and Performance: Different Constructs or Three of a Kind? Arch. Phys. Med. Rehabil. 2009, 90, 849–855. [Google Scholar] [CrossRef]
- Yang, C.C.; Hsu, Y.L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors (Basel) 2010, 10, 7772–7788. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Stone, T.; Hu, H.; Harris, N. Use of Multiple Wearable Inertial Sensors in Upper Limb Motion Tracking. Med. Eng. Phys. 2008, 30, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Vargas, A.I.; Galán-Mercant, A.; Williams, J.M. The Use of Inertial Sensors System for Human Motion Analysis. Phys. Ther. Rev. 2010, 15, 462–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanawattano, C.; Pongthornseri, R.; Anan, C.; Dumnin, S.; Bhidayasiri, R. Temporal Fluctuations of Tremor Signals from Inertial Sensor: A Preliminary Study in Differentiating Parkinson’s Disease from Essential Tremor. Biomed. Eng. Online 2015, 14, 101. [Google Scholar] [CrossRef] [Green Version]
- Körver, R.J.P.; Senden, R.; Heyligers, I.C.; Grimm, B. Objective Outcome Evaluation Using Inertial Sensors in Subacromial Impingement Syndrome: A Five-Year Follow-up Study. Physiol. Meas. 2014, 35, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Corda, D.; Baldus, G.; Cranny, A.; Maharatna, K.; Achner, J.; Klemke, J.; Jöbges, M.; Ortmann, S. Recognition of Elementary Arm Movements Using Orientation of a Tri-Axial Accelerometer Located near the Wrist. Physiol. Meas. 2014, 35, 1751–1768. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, R.J.M.; Janssen-Potten, Y.J.M.; Timmermans, A.A.A.; Smeets, R.J.E.M.; Seelen, H.A.M. Recognizing Complex Upper Extremity Activities Using Body Worn Sensors. PLoS ONE 2015, 10, e0118642. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.H.; Cheng, M.S.; Chang, S.; Moore, J.; Luca, G.D.; Nawab, S.H.; Luca, C.J.D. A Combined SEMG and Accelerometer System for Monitoring Functional Activity in Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 585–594. [Google Scholar] [CrossRef]
- Rowe, J.B.; Friedman, N.; Bachman, M.; Reinkensmeyer, D.J. The Manumeter: A Non-Obtrusive Wearable Device for Monitoring Spontaneous Use of the Wrist and Fingers. IEEE Int. Conf. Rehabil. Robot. 2013, 2013, 6650397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, J.B.; Friedman, N.; Chan, V.; Cramer, S.C.; Bachman, M.; Reinkensmeyer, D.J. The Variable Relationship between Arm and Hand Use: A Rationale for Using Finger Magnetometry to Complement Wrist Accelerometry When Measuring Daily Use of the Upper Extremity. In Proceedings of the Engineering in 36th Annual International Conference of the IEEE, Chicago, IL, USA, 26–30 August 2014; pp. 4087–4090. [Google Scholar]
- Metz, C.E. Basic Principles of ROC Analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 160–164. [Google Scholar]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine Learning in Human Movement Biomechanics: Best Practices, Common Pitfalls, and New Opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rau, G.; Disselhorst-Klug, C.; Schmidt, R. Movement Biomechanics Goes Upwards: From the Leg to the Arm. J. Biomech. 2000, 33, 1207–1216. [Google Scholar] [CrossRef]
- Patel, S.; Hughes, R.; Hester, T.; Stein, J.; Akay, M.; Dy, J.G.; Bonato, P. A Novel Approach to Monitor Rehabilitation Outcomes in Stroke Survivors Using Wearable Technology. Proc. IEEE 2010, 98, 450–461. [Google Scholar] [CrossRef]
- Subramanian, S.K.; Yamanaka, J.; Chilingaryan, G.; Levin, M.F. Validity of Movement Pattern Kinematics as Measures of Arm Motor Impairment Poststroke. Stroke 2010, 41, 2303–2308. [Google Scholar] [CrossRef] [Green Version]
- Napier, J.R. The Prehensile Movements of the Human Hand. J. Bone Jt. Surg. Br. Vol. 1956, 38, 902–913. [Google Scholar] [CrossRef] [Green Version]
- Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D.; Meijer, K.; Crompton, R. Activity Identification Using Body-Mounted Sensors—A Review of Classification Techniques. Physiol. Meas. 2009, 30, R1–R33. [Google Scholar] [CrossRef]
- Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical Pattern Recognition: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37. [Google Scholar] [CrossRef] [Green Version]
Age | Sex | Height (cm) | Weight (kg) | Work | |
---|---|---|---|---|---|
Participant 1 | 31 | F | 152 | 42 | Office worker |
Participant 2 | 65 | M | 162 | 80 | Dentist |
Participant 3 | 28 | M | 173 | 74 | Office worker |
Participant 4 | 24 | F | 176 | 78 | Student |
Participant 5 | 31 | M | 171 | 70 | Office worker |
Participant 6 | 57 | F | 164 | 53 | Housewife |
Activity | Category | |
---|---|---|
1 | Using a spoon | Unimanual |
2 | Drinking a cup of water | |
3 | Brushing one’s hair | |
4 | Writing a sentence | Bimanual with a stabilizing hand and finger activity of the active hand |
5 | Spreading butter on a slice of bread | Bimanual with a stabilizing hand and global activity of the active hand |
6 | Opening a can with a can opener | |
7 | Typing on a computer keyboard | Bimanual with finger activity of both hands |
8 | Shuffling and dealing cards | |
9 | Peeling potatoes with a knife | |
10 | Buttoning a shirt | |
11 | Tying shoelaces | |
12 | Opening a screw-topped jar | Bimanual with a global activity of both hands |
13 | Lifting a full pan | |
14 | Wringing a towel |
HR 1 for Classification between Uni- and Bimanual Activities | HR 1 for Classification between Bimanual Activities Involving a Stabilizing Hand and Those Using both Hands | FWR 1 for Fingers Involvement of Bimanual Activities Using a Stabilizing Hand | FWR 1 for Fingers Involvement of Bimanual Activities Using both Hands | |
---|---|---|---|---|
Participant 1 excluded | 20.96 | 4.25 | 2.68 | 2.50 |
Participant 2 excluded | 20.96 | 4.67 | 2.61 | 2.42 |
Participant 3 excluded | 20.96 | 4.67 | 2.61 | 2.26 |
Participant 4 excluded | 22.01 | 4.71 | 2.56 | 2.26 |
Participant 5 excluded | 20.96 | 4.67 | 2.61 | 2.42 |
Participant 6 excluded | 20.95 | 4.62 | 2.61 | 2.25 |
Whole sample | 20.96 | 4.67 | 2.61 | 2.26 |
Step 1 | Step 2 | Step 3 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR 2 for Uni/Bimanual Activities | HR 2 for Stabilizing Hand/both Hands Active | FWR 2 for Finger Activity/Global Hand Activity | |||||||||||||||||||
Cutoff | Rep1 2 | Rep2 | Rep3 | Rep4 | Rep 5 | Cutoff | Rep1 | Rep2 | Rep3 | Rep4 | Rep 5 | Cutoff | Rep1 | Rep2 | Rep3 | Rep4 | Rep 5 | ||||
Unimanual activities | Brushing one’s hair | HR > 20.96 | 32.11 | 54.26 | 66.41 | 68.41 | 83.61 | N/A | N/A | ||||||||||||
Using a spoon | 56.73 | 32.44 | 41.81 | 67.44 | 59.21 | ||||||||||||||||
Drinking a cup of water | 48.90 | 58.22 | 68.75 | 68.21 | 85.08 | ||||||||||||||||
Bimanual activities | Stabilizing hand | Finger activity | Writing a sentence | HR < 20.96 | 27.72 | 25.11 | 26.97 | 20.13 | 29.52 | HR > 4.67 | 27.72 | 25.11 | 26.97 | 27.54 | 29.52 | FWR > 2.61 | 2.80 | 2.72 | 2.80 | 2.83 | 2.68 |
Global hand movement | Spreading butter on a slice of bread | 7.63 | 8.10 | 11.44 | 10.69 | 16.35 | 7.63 | 8.10 | 11.44 | 10.69 | 16.35 | FWR < 2.61 | 1.72 | 1.62 | 1.61 | 1.61 | 1.49 | ||||
Opening a can with a can opener | 5.92 | 8.52 | 9.98 | 11.93 | 11.41 | 5.92 | 8.52 | 9.98 | 11.93 | 11.41 | 2.29 | 2.67 | 2.01 | 2.10 | 2.10 | ||||||
Both hands active | Finger activity | Typing on a computer keyboard | 3.21 | 2.50 | 2.75 | 3.11 | 2.91 | HR < 4.67 | 3.21 | 2.50 | 2.75 | 3.11 | 2.91 | FWR > 2.26 | 5.77 | 5.58 | 5.20 | 5.29 | 5.36 | ||
Shuffling and dealing cards | 2.80 | 2.44 | 2.58 | 2.59 | 2.58 | 2.80 | 2.44 | 2.58 | 2.59 | 2.58 | 2.97 | 3.28 | 2.93 | 3.23 | 3.24 | ||||||
Peeling potatoes with a knife | 1.74 | 1.97 | 1.93 | 1.98 | 1.94 | 1.74 | 1.97 | 1.93 | 1.98 | 1.94 | 2.80 | 2.62 | 2.90 | 3.07 | 3.02 | ||||||
Buttoning a shirt | 2.20 | 2.01 | 2.42 | 2.16 | 2.67 | 2.20 | 2.01 | 2.42 | 2.16 | 2.67 | 3.00 | 3.13 | 2.88 | 3.27 | 3.16 | ||||||
Tying shoelaces | 2.71 | 4.27 | 2.42 | 3.16 | 2.61 | 2.71 | 4.27 | 2.42 | 3.16 | 2.61 | 2.75 | 2.64 | 2.85 | 2.60 | 2.54 | ||||||
Global hand movement | Opening a screw-topped jar | 1.93 | 1.77 | 1.78 | 2.15 | 1.92 | 1.93 | 1.77 | 1.78 | 2.15 | 1.92 | FWR < 2.26 | 2.02 | 1.98 | 2.18 | 1.94 | 2.43 | ||||
Lifting a full pan | 1.51 | 1.52 | 1.54 | 1.50 | 1.51 | 1.51 | 1.52 | 1.54 | 1.50 | 1.51 | 1.70 | 1.55 | 1.56 | 1.50 | 1.49 | ||||||
Wringing a towel | 2.29 | 2.17 | 2.15 | 2.54 | 2.38 | 2.29 | 2.17 | 2.15 | 2.54 | 2.38 | 2.01 | 1.72 | 2.19 | 1.87 | 1.73 |
Step 1 HR 1 for Uni/Bimanual Activities | Step 2 HR 1 for Stabilizing Hand/both Hands Active | Step 3 FWR 1 for Finger Activity/Global Hand Activity | Overall Accuracy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy per Activity | Accuracy per Category | Accuracy per Activity | Accuracy per Category | Accuracy per Activity | Accuracy per Category | Accuracy per Activity | Accuracy per Category | ||||
Unimanual activities | Brushing one’s hair (19) 2 | 100% | 97% | 100% | 97% | ||||||
Using a spoon | 100% | N/A | N/A | N/A | N/A | 100% | |||||
Drinking a cup of water | 93% | 93% | |||||||||
Bimanual activities | Stabilizing hand | Finger activity | Writing a sentence | 67% | 97% | 100% | 95% | 100% | 100% | 67% | 67% |
Global hand movement | Spreading butter on a slice of bread | 100% | 97% | 100% | 90% | 97% | 84% | ||||
Opening a screw-topped jar (10) 2 | 100% | 90% | 40% | 40% | |||||||
Opening a can with a can opener | 100% | 90% | 97% | 87% | |||||||
Both hands active | Finger activity | Typing on a computer keyboard | 100% | 100% | 98% | 90% | 89% | 90% | 86% | ||
Shuffling and dealing cards | 100% | 90% | 100% | 90% | |||||||
Peeling potatoes with a knife | 100% | 100% | 93% | 93% | |||||||
Buttoning a shirt | 100% | 97% | 87% | 83% | |||||||
Tying shoelaces | 100% | 97% | 73% | 73% | |||||||
Global hand movement | Opening a screw-topped jar (20) 2 | 100% | 100% | 75% | 90% | 75% | 90% | ||||
Lifting a full pan | 100% | 100% | 100% | 100% | |||||||
Wringing a towel | 100% | 97% | 87% | 87% | |||||||
Brushing one’s hair (11) 2 | 100% | 100% | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Khoury, G.; Penta, M.; Barbier, O.; Libouton, X.; Thonnard, J.-L.; Lefèvre, P. Recognizing Manual Activities Using Wearable Inertial Measurement Units: Clinical Application for Outcome Measurement. Sensors 2021, 21, 3245. https://doi.org/10.3390/s21093245
El Khoury G, Penta M, Barbier O, Libouton X, Thonnard J-L, Lefèvre P. Recognizing Manual Activities Using Wearable Inertial Measurement Units: Clinical Application for Outcome Measurement. Sensors. 2021; 21(9):3245. https://doi.org/10.3390/s21093245
Chicago/Turabian StyleEl Khoury, Ghady, Massimo Penta, Olivier Barbier, Xavier Libouton, Jean-Louis Thonnard, and Philippe Lefèvre. 2021. "Recognizing Manual Activities Using Wearable Inertial Measurement Units: Clinical Application for Outcome Measurement" Sensors 21, no. 9: 3245. https://doi.org/10.3390/s21093245
APA StyleEl Khoury, G., Penta, M., Barbier, O., Libouton, X., Thonnard, J. -L., & Lefèvre, P. (2021). Recognizing Manual Activities Using Wearable Inertial Measurement Units: Clinical Application for Outcome Measurement. Sensors, 21(9), 3245. https://doi.org/10.3390/s21093245