Stress Watch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Sampling
2.2. Experimental Procedure
2.3. ECG Data Processing
2.4. FitBit Data Processing
2.5. Statistical Analysis
3. Results
3.1. Participant Descriptives
3.2. Psychometric Data
3.3. Heart Rate Data
3.4. Heart Rate Variability Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitaliano, P.P.; Scanlan, J.M.; Zhang, J.; Savage, M.V.; Hirsch, I.B.; Siegler, I.C. A path model of chronic stress, the metabolic syndrome, and coronary heart disease. Psychosom. Med. 2002, 64, 418–435. [Google Scholar] [CrossRef] [PubMed]
- Talley, N.J.; Spiller, R. Irritable bowel syndrome: A little understood organic bowel disease? Lancet 2002, 360, 555–564. [Google Scholar] [CrossRef]
- Kim-Fuchs, C.; Le, C.P.; Pimentel, M.A.; Shackleford, D.; Ferrari, D.; Angst, E.; Hollande, F.; Sloan, E.K. Chronic stress accelerates pancreatic cancer growth and invasion: A critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav. Immun. 2014, 40, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saul, A.N.; Oberyszyn, T.M.; Daugherty, C.; Kusewitt, D.; Jones, S.; Jewell, S.; Malarkey, W.B.; Lehman, A.; Lemeshow, S.; Dhabhar, F.S. Chronic stress and susceptibility to skin cancer. J. Natl. Cancer Inst. 2005, 97, 1760–1767. [Google Scholar] [CrossRef] [Green Version]
- Thaker, P.H.; Lutgendorf, S.K.; Sood, A.K. The neuroendocrine impact of chronic stress on cancer. Cell Cycle 2007, 6, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Y.; He, Z.; Yin, K.; Li, B.; Zhang, L.; Xu, Z. Chronic stress promotes gastric cancer progression and metastasis: An essential role for ADRB2. Cell Death Dis. 2019, 10, 788. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.P.; Howland, J.G.; Robillard, J.M.; Ge, Y.; Yu, W.; Titterness, A.K.; Brebner, K.; Liu, L.; Weinberg, J.; Christie, B.R. Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc. Natl. Acad. Sci. USA 2007, 104, 11471–11476. [Google Scholar] [CrossRef] [Green Version]
- Alomari, R.A.; Fernandez, M.; Banks, J.B.; Acosta, J.; Tartar, J.L. Acute stress dysregulates the LPP ERP response to emotional pictures and impairs sustained attention: Time-sensitive effects. Brain Sci. 2015, 5, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, P.; Chen, J.; Li, H. Acute stress impairs reward positivity effect in probabilistic learning. Psychophysiology 2020, 57, e13531. [Google Scholar] [CrossRef]
- Steptoe, A.; Kivimäki, M. Stress and cardiovascular disease: An update on current knowledge. Annu. Rev. Public Health 2013, 34, 337–354. [Google Scholar] [CrossRef]
- Lagraauw, H.M.; Kuiper, J.; Bot, I. Acute and chronic psychological stress as risk factors for cardiovascular disease: Insights gained from epidemiological, clinical and experimental studies. Brain Behav. Immun. 2015, 50, 18–30. [Google Scholar] [CrossRef]
- Hart, A.; Kamm, M. Mechanisms of initiation and perpetuation of gut inflammation by stress. Aliment. Pharmacol. Ther. 2002, 16, 2017–2028. [Google Scholar] [CrossRef]
- Tache, Y.; Perdue, M. Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function. Neurogastroenterol. Motil. 2004, 16, 137–142. [Google Scholar] [CrossRef]
- Sarason, I.G. Stress, anxiety, and cognitive interference: Reactions to tests. J. Personal. Soc. Psychol. 1984, 46, 929. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Sarason, I.G.; Strelau, J.; Brebner, J.M. Stress and Anxiety; Taylor & Francis: New York, NY, USA, 2014. [Google Scholar]
- Hammen, C. Stress and depression. Annu. Rev. Clin. Psychol. 2005, 1, 293–319. [Google Scholar] [CrossRef] [Green Version]
- Van Praag, H. Can stress cause depression? Prog. Neuro Psychopharmacol. Biol. Psychiatry 2004, 28, 891–907. [Google Scholar] [CrossRef]
- Wahjudi, J.W.; Findyartini, A.; Kaligis, F. The relationship between empathy and stress: A cross-sectional study among undergraduate medical students. Korean J. Med. Educ. 2019, 31, 215. [Google Scholar] [CrossRef] [Green Version]
- Qamar, K.; Khan, N.S.; Bashir Kiani, M. Factors associated with stress among medical students. J. Pak. Med. Assoc. 2015, 65, 753–755. [Google Scholar]
- Ferguson, E.; McManus, I.; James, D.; O’Hehir, F.; Sanders, A. Pilot study of the roles of personality, references, and personal statements in relation to performance over the five years of a medical degreeCommentary: How to derive causes from correlations in educational studies. BMJ 2003, 326, 429–432. [Google Scholar] [CrossRef] [Green Version]
- Lievens, F.; Coetsier, P.; De Fruyt, F.; De Maeseneer, J. Medical students’ personality characteristics and academic performance: A five-factor model perspective. Med. Educ. 2002, 36, 1050–1056. [Google Scholar] [CrossRef]
- Duan, H.; Yuan, Y.; Zhang, L.; Qin, S.; Zhang, K.; Buchanan, T.W.; Wu, J. Chronic stress exposure decreases the cortisol awakening response in healthy young men. Stress 2013, 16, 630–637. [Google Scholar] [CrossRef]
- Öncü, B.; Soykan, Ç.; İhan, İ.Ö.; Sayıl, I. Attitudes of medical students, general practitioners, teachers, and police officers toward suicide in a Turkish sample. Crisis 2008, 29, 173–179. [Google Scholar] [CrossRef]
- Richardson, K.M.; Rothstein, H.R. Effects of occupational stress management intervention programs: A meta-analysis. J. Occup. Health Psychol. 2008, 13, 69. [Google Scholar] [CrossRef]
- Logan, J.G.; Barksdale, D.J. Allostasis and allostatic load: Expanding the discourse on stress and cardiovascular disease. J. Clin. Nurs. 2008, 17, 201–208. [Google Scholar] [CrossRef]
- Seeman, T.E.; McEwen, B.S.; Rowe, J.W.; Singer, B.H. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl. Acad. Sci. USA 2001, 98, 4770–4775. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.R.; Henry, J.D. The Depression Anxiety Stress Scales (DASS): Normative data and latent structure in a large non-clinical sample. Br. J. Clin. Psychol. 2003, 42, 111–131. [Google Scholar] [CrossRef] [Green Version]
- Kirschbaum, C.; Pirke, K.-M.; Hellhammer, D.H. The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef]
- Allen, A.P.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Biological and psychological markers of stress in humans: Focus on the Trier Social Stress Test. Neurosci. Biobehav. Rev. 2014, 38, 94–124. [Google Scholar] [CrossRef]
- Dickerson, S.S.; Kemeny, M.E. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychol. Bull. 2004, 130, 355. [Google Scholar] [CrossRef] [Green Version]
- Fries, E.; Hellhammer, D.H.; Hellhammer, J. Attenuation of the hypothalamic–pituitary–adrenal axis responsivity to the Trier Social Stress Test by the benzodiazepine alprazolam. Psychoneuroendocrinology 2006, 31, 1278–1288. [Google Scholar] [CrossRef]
- Goodman, W.K.; Janson, J.; Wolf, J.M. Meta-analytical assessment of the effects of protocol variations on cortisol responses to the Trier Social Stress Test. Psychoneuroendocrinology 2017, 80, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Kudielka, B.M.; Hellhammer, D.H.; Kirschbaum, C. Ten Years of Research with the Trier Social Stress Test—Revisited. In Social Neuroscience: Integrating Biological and Psychological Explanations of Social Behavior; Harmon-Jones, E.P., Winkielman, P., Eds.; The Guilford Press: New York, NY, USA, 2007; pp. 56–83. [Google Scholar]
- Tyrka, A.; Wier, L.; Anderson, G.; Wilkinson, C.; Price, L.; Carpenter, L. Temperament and response to the trier social stress test. Acta Psychiatr. Scand. 2007, 115, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combatalade, D. Basics of Heart Rate Variability Applied to Psychophysiology; Thought Technology Ltd.: Montreal, QC, Canada, 2013. [Google Scholar]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef]
- Hickey, B.A.; Chalmers, T.; Newton, P.; Lin, C.-T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Smart Devices and Wearable Technologies to Detect and Monitor Mental Health Conditions and Stress: A Systematic Review. Sensors 2021, 21, 3461. [Google Scholar] [CrossRef]
- Dimitriev, D.; Saperova, E. Heart rate variability and blood pressure during mental stress. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova 2015, 101, 98–107. [Google Scholar]
- Daya, Z.; Hearn, J.H. Mindfulness interventions in medical education: A systematic review of their impact on medical student stress, depression, fatigue and burnout. Med. Teach. 2018, 40, 146–153. [Google Scholar] [CrossRef]
- Gold, J.A.; Hu, X.; Huang, G.; Li, W.-Z.; Wu, Y.-F.; Gao, S.; Liu, Z.-N.; Trockel, M.; Li, W.-Z.; Wu, Y.-F. Medical student depression and its correlates across three international medical schools. World J. Psychiatry 2019, 9, 65. [Google Scholar] [CrossRef]
- Pereira, M.A.D.; Barbosa, M.A.; de Rezende, J.C.; Damiano, R.F. Medical student stress: An elective course as a possibility of help. BMC Res. Notes 2015, 8, 430. [Google Scholar] [CrossRef] [Green Version]
- Vyas, K.S.; Stratton, T.D.; Soares, N.S. Sources of medical student stress. Educ. Health 2017, 30, 232. [Google Scholar] [CrossRef]
- Youssef, F.F. Medical student stress, burnout and depression in Trinidad and Tobago. Acad. Psychiatry 2016, 40, 69–75. [Google Scholar] [CrossRef]
- Andreotti, C. Effects of Acute and Chronic Stress on Attention and Psychobiological Stress Reactivity in Women. Ph.D. Thesis, Vanderbilt University, Nashville, TN, USA, 2013. [Google Scholar]
- Herman, J. Neural control of chronic stress adaptation. Front. Behav. Neurosci. 2013, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Radenbach, C.; Reiter, A.M.; Engert, V.; Sjoerds, Z.; Villringer, A.; Heinze, H.-J.; Deserno, L.; Schlagenhauf, F. The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology 2015, 53, 268–280. [Google Scholar] [CrossRef]
- Houpy, J.C.; Lee, W.W.; Woodruff, J.N.; Pincavage, A.T. Medical student resilience and stressful clinical events during clinical training. Med. Educ. Online 2017, 22, 1320187. [Google Scholar] [CrossRef]
- Lazarus, R.S.; Speisman, J.C.; Mordkoff, A.M. The relationship between autonomic indicators of psychological stress: Heart rate and skin conductance. Psychosom. Med. 1963, 25, 19–30. [Google Scholar] [CrossRef]
- Taelman, J.; Vandeput, S.; Spaepen, A.; Van Huffel, S. Influence of mental stress on heart rate and heart rate variability. In Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2008; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1366–1369. [Google Scholar]
- Vrijkotte, T.G.; Van Doornen, L.J.; De Geus, E.J. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension 2000, 35, 880–886. [Google Scholar] [CrossRef]
- Pulopulos, M.M.; Vanderhasselt, M.-A.; De Raedt, R. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response. Psychoneuroendocrinology 2018, 94, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Hjortskov, N.; Rissen, D.; Blangsted, A.K.; Fallentin, N.; Lundberg, U.; Sogaard, K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 2004, 92, 84–89. [Google Scholar] [CrossRef]
- Punita, P.; Saranya, K.; Kumar, S.S. Gender difference in heart rate variability in medical students and association with the level of stress. Natl. J. Physiol. Pharm. Pharmacol. 2016, 6, 431–437. [Google Scholar] [CrossRef]
- Vuksanović, V.; Gal, V. Heart rate variability in mental stress aloud. Med. Eng. Phys. 2007, 29, 344–349. [Google Scholar] [CrossRef]
- Marques, A.H.; Silverman, M.N.; Sternberg, E.M. Evaluation of stress systems by applying noninvasive methodologies: Measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation 2010, 17, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Tharion, E.; Parthasarathy, S.; Neelakantan, N. Short-term heart rate variability measures in students during examinations. Natl. Med. J. India 2009, 22, 63–66. [Google Scholar]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [Green Version]
- de Rooij, S.R.; Schene, A.H.; Phillips, D.I.; Roseboom, T.J. Depression and anxiety: Associations with biological and perceived stress reactivity to a psychological stress protocol in a middle-aged population. Psychoneuroendocrinology 2010, 35, 866–877. [Google Scholar] [CrossRef]
Measure | Cohort (n = 60) | Medical Students (n = 30) | General Population (n = 30) | p-Value |
---|---|---|---|---|
Male Gender (%) | 55.0 (Male 33; Female 27) | 53.3 (Male 16; Female 14) | 56.7 (Male 17; Female 13) | - |
Age (years) | 28.9 ± 8.8 | 27.8 ± 2.9 | 29.9 ± 10.3 | 0.36 |
Height (cm) | 174.5 ± 9.8 | 173.5 ± 9.9 | 175.4 ± 9.7 | 0.53 |
Weight (kg) | 72.7 ± 14.8 | 70.7 ± 11.9 | 75.2 ± 17.4 | 0.26 |
BMI (kg/m2) | 23.1 ± 3.4 (18–35) | 23.4 ± 2.7 (19–28) | 21.5 ± 7.7 (18–35) | 0.36 |
Pre-Study SBP (mmHg) | 116 ± 14 (78–143) | 117 ± 14 (92–143) | 115 ± 15 (78–138) | 0.63 |
Post-Study SBP (mmHg) | 120 ± 14 (76–149) | 120 ± 11 (102–149) | 119 ± 15 (76–141) | 0.81 |
Cohort | Stress Score | Depression Score | Anxiety Score |
---|---|---|---|
(Average ± SD) | (Average ± SD) | (Average ± SD) | |
Medical Students | 11.1 ± 8.9 | 2.2 ± 2.6 | 4.5 ± 6.1 |
General Population | 20.9 ± 14.2 | 13.0 ± 16.8 | 8.6 ± 7.4 |
p-value | 0.002 | 0.026 | 0.003 |
Normative Values | Normal 0–10 | Normal 0–9 | Normal 0–6 |
Mild: 11–18 | Mild: 10–12 | Mild: 7–9 | |
Moderate: 19–26 | Moderate: 13–20 | Moderate: 10–14 | |
Severe: 27–34 | Severe: 21–27 | Severe: 15–19 |
General Population | Medical Students | p-Value | |
---|---|---|---|
Resting HR | 75.29 | 79.94 | 0.07 |
Stress HR | 83.71 | 90.55 | 0.04 * |
p-value | <0.01 * | 0.022 * | - |
HRV Parameter | Baseline | Stress | p-Value | |
---|---|---|---|---|
General Population | VLF | 4.56 | 4.54 | 0.916 |
LF | 53.12 | 54.62 | 0.006 * | |
HF | 46.88 | 56.29 | <0.001 * | |
TP | 17.22 | 17.24 | 0.980 | |
Ratio | 1.14 | 1.21 | 0.007 * | |
Medical Students | VLF | 4.59 | 5.69 | 0.023 * |
LF | 54.48 | 59.70 | 0.031 * | |
HF | 45.52 | 49.14 | 0.029 * | |
TP | 17.26 | 20.70 | 0.197 | |
Ratio | 1.21 | 1.22 | 0.554 |
Correlation Coefficient (r) | p-Value | ||
---|---|---|---|
Anxiety subscale | Baseline VLF | 0.43 | 0.033 * |
Baseline LF | 0.35 | 0.084 | |
Baseline HF | −0.35 | 0.084 | |
Baseline TP | 0.35 | 0.086 | |
Baseline Ratio | −0.35 | 0.090 | |
Stress LF | −0.49 | 0.013 * | |
Stress Ratio | 0.46 | 0.020 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalmers, T.; Hickey, B.A.; Newton, P.; Lin, C.-T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Stress Watch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables. Sensors 2022, 22, 151. https://doi.org/10.3390/s22010151
Chalmers T, Hickey BA, Newton P, Lin C-T, Sibbritt D, McLachlan CS, Clifton-Bligh R, Morley J, Lal S. Stress Watch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables. Sensors. 2022; 22(1):151. https://doi.org/10.3390/s22010151
Chicago/Turabian StyleChalmers, Taryn, Blake Anthony Hickey, Phillip Newton, Chin-Teng Lin, David Sibbritt, Craig S. McLachlan, Roderick Clifton-Bligh, John Morley, and Sara Lal. 2022. "Stress Watch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables" Sensors 22, no. 1: 151. https://doi.org/10.3390/s22010151
APA StyleChalmers, T., Hickey, B. A., Newton, P., Lin, C. -T., Sibbritt, D., McLachlan, C. S., Clifton-Bligh, R., Morley, J., & Lal, S. (2022). Stress Watch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables. Sensors, 22(1), 151. https://doi.org/10.3390/s22010151