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Abstract: Infrared thermography (IRT) was applied as a potentially useful tool in the detection of
pregnancy in equids, especially native or wildlife. IRT measures heat emission from the body surface,
which increases with the progression of pregnancy as blood flow and metabolic activity in the uterine
and fetal tissues increase. Conventional IRT imaging is promising; however, with specific limitations
considered, this study aimed to develop novel digital processing methods for thermal images of
pregnant mares to detect pregnancy earlier with higher accuracy. In the current study, 40 mares
were divided into non-pregnant and pregnant groups and imaged using IRT. Thermal images were
transformed into four color models (RGB, YUV, YIQ, HSB) and 10 color components were separated.
From each color component, features of image texture were obtained using Histogram Statistics and
Grey-Level Run-Length Matrix algorithms. The most informative color/feature combinations were
selected for further investigation, and the accuracy of pregnancy detection was calculated. The image
texture features in the RGB and YIQ color models reflecting increased heterogeneity of image texture
seem to be applicable as potential indicators of pregnancy. Their application in IRT-based pregnancy
detection in mares allows for earlier recognition of pregnant mares with higher accuracy than the
conventional IRT imaging technique.

Keywords: surface temperature; texture analysis; color model; digital image processing; mare

1. Introduction

Pregnancy detection is an important aspect of herd management, both in domestic
and wild animals. In domestic animals, the most common methods of pregnancy detection
are ultrasonography and hormone level measurements. However, both require direct
contact with animals [1,2]. Such examinations may be stressful for an animal, or in the
case of wild animals nearly impossible [3]. Thus, there is a need for the development
of accurate, noninvasive, and contactless methods for pregnancy detection. Infrared
thermography (IRT) is considered a valuable diagnostic method, which has previously been
adapted to evaluate pregnancy in females of different species, such as zebras, rhinoceros,
giraffes [4], pandas [5], cattle [6], and horses [7–9]. IRT measures the infrared spectrum of
electromagnetic radiation emitted from the body surface [10]. This radiation represents the
energy which is dissipated as heat [11], and is affected by a variety of factors, including
internal factors such as local tissue metabolism and regional blood flow [12]. During
pregnancy, intrauterine tissue proliferates, and uterine blood flow is increases. These
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physiological changes result in body surface temperature changes near the womb that are
detectable by IRT [7].

IRT is considered an accurate imaging method, allowing for detection of even subtle
changes in the body surface temperature before they can be detected by palpation [13].
However, some limitations should be considered when using IRT imaging in the detection
of pregnancy. The surface body temperature gradients imaged in the abdominal area can be
influenced by ambient temperature fluctuations [14,15], other weather conditions [10,16],
and individual properties of horses’ body surface [17–19]. A high level of repeatability can
be achieved and maintained in thermal images using standardized conditions of image
acquisition [20,21]; however, the length of time it takes to detect pregnancy related surface
temperature changes [7,8] and the accuracy of pregnancy detection [9] limit the application
of IRT to the late stage of pregnancy. Therefore, this work focused on developing a
methodology for the detection of pregnancy in mares by building a multifactorial approach
for digital thermal image processing. This involved combining conventional IRT image
acquisition and segmentation with advanced transformation of color models and extraction
of image texture. Conventional IRT imaging is a promising modality, and with specific
limitations considered, we aim to develop a novel method in the field of digital image
processing (DIP).

DIP has been applied in the fields of material mechanics [22–24] and human
medicine [25–30], and provides quantified, objective data considered to be more infor-
mative than conventional temperature measures. In materials science, DIP increased the
efficiency of non-destructive materials testing, in the detection of damage to composite
materials [22], aerospace structures [23], and building elements [24]. Moreover, in medical
science, DIP increased the sensitivity and specificity of non-invasive diagnostic imaging,
in the diagnosis of diabetes [25], skin cancer [26], and breast tumors [27]. However, the
application of DIP to thermal images in equine medicine is only in the early stages of
development [18,31]. In this study, two aspects of DIP, transformation to color models and
image texture extraction, have been applied using IRT to enable earlier and more accurate
detection of pregnancy in mares.

Thermal images are colorful, where the emitted infrared radiation is presented as the
color gradient corresponding to the distribution of surface temperatures [15]. Conversely,
image texture approaches require grayscale images as input [32–36]. Therefore, conver-
sion of the IRT images to selected color components is required to transform the input to
grayscale [36–38]. Certain mathematical functions are used to convert the color coordinates
of light into three color components in three-dimensional space. Based on the position of
the light color coordinates in space, the color models are determined [39,40]. In this re-
search, Red/Green/Blue (RGB) color cube [39,41], Brightness/U-component/V-component
(YUV) color spaces [39], Brightness/I-component/Q-component (YIQ) color spaces [39],
and Hue/Saturation/Brightness (HSB) color coin [40] were the color models considered.
Individual components of each color model may be used as an input for image texture
analysis using the first order histogram [33] or the second order histogram [32] of the image
intensity distribution to determine the pixel relations in Histogram Statistics (HS) and Gray
Level Co-occurrence Matrix (GLCM) approaches, respectively. GLCM and Grey-Level
Run-Length Matrix (GRLM), are both detailed approaches of Gray-Level Matrices (GLM).
The GLM has been recently applied in equine medicine to detect the influence of a rider’s
body weight on the thermography of the thoracolumbar region [31]. Moreover, GLM has
successfully been used in human medicine to improve the extraction of texture features of
ultrasound images [30], radiographic images [42], magnetic resonance images [29,43], and
thermal images [27,44–48]. GLM describes a group of texture operators that map image
function, image complexity, and statistics of pixel distribution [28] and has been reported
to provide complex descriptions of image texture [28,29,43,44].

DIP applications have returned numerous component combinations of color models
and features of image texture that have potential to be used in the detection of equine
pregnancy; however, they must be evaluated in more detail prior to being used in the field.
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Therefore, this study aimed to transform thermal images obtained from non-pregnant and
pregnant mares into four color models, separate ten color components, and extract features
of image texture for each component. The applicability of color/feature combinations
obtained were evaluated using specific criteria to select the most informative combinations.
Finally, for the selected combinations, the accuracy of pregnancy detection was calculated
for consecutive months.

2. Materials and Methods
2.1. Mares

The research was conducted in the Polish state stud farm Dobrzyniewo engaged in
conservative breeding of horses of the Polish Konik breed. Out of a herd of 90 Konik Polski
horses, 40 Konik Polski mares were selected to carry out IRT imaging. All studied mares
were housed under the same conditions in all-day open stables. They were fed twice daily
with an individualized portion of hay to maintain a healthy condition and had over 12 h of
daily access to a large grassy pasture.

Mares were divided based on the ultrasonographic examination of the reproductive
tract into one of two distinct groups of mares: non-pregnant and pregnant. The non-
pregnant group was composed of 14 non-lactating mares (n = 14; age 5.47 ± 3.90 years;
height 143.10 ± 2.09 cm), whereas the pregnant group was composed of 26 non-lactating
mares (n = 26; age 6.28 ± 4.04 years; height 142.40 ± 2.12 cm). The pregnant group’s
inclusion criteria were mares that had naturally mated in February and/or March and
had a confirmed ultrasonographical pregnancy screened at 14 and 35-days post-ovulation,
according to McCue’s protocol [2]. The non-pregnant group’s inclusion criteria were lack of
mating during the current reproductive season and two negative results of ultrasonograph-
ical pregnancy examination. Ultrasonographic examination of the reproductive tract was
conducted using an ultrasound scanner (MyLabOne, ESAOTE, Florence, Italy) and a linear
5 MHz transducer (ESAOTE, Florence, Italy). The experimental protocol was approved
by the II Local Ethical Committee on Animal Testing in Warsaw on behalf of the National
Ethical Committees on Animal Testing (No WAW2/007/2020, day 15 January 2020).

2.2. Data Collection

For all studied mares, the left lateral surface of the abdomen was imaged using a non-
contact thermal camera (FLIR Therma CAM E60, FLIR Systems Brazil, Sorocaba, Brazil)
with 0.99 emissivity and a temperature range from 10.0 to 40.0 ◦C. The impact of external
conditions [14,15] was minimized by imaging mares in a closed space, devoid of wind
and sun radiation. Thermal images were taken four times every two months, such that
26 mares enrolled in the study were divided into two subgroups basing on the age of
pregnancy, where each subgroup concerned 13 mares. The first subgroup (n = 13) was
imaged in the 4th, 6th, 8th, and 10th month of pregnancy, whereas the second (n = 13) in
the 5th, 7th, 9th, and 11th month of pregnancy. Data collection began in April and was
conducted until the last foaling took place in January, with the ambient temperature and
humidity ranging from 1.0 ◦C and 50% to 24 ◦C and 90%, respectively. Each of a total of 160
thermal images were taken by the same researcher after a standardized preparation of the
imaging area including brushing off dirt and mud 15 min before imaging [15]. The thermal
camera was always set at the same distance (2.0 m from the imaged area) and positioned
consistently (half of the vertical line through the tuber coxae). Thermal images obtained
were then conventionally processed. The thermal image processing steps for conventional
analysis of IRT measures included (i) image acquisition, (ii) segmentation of regions of
interests (ROIs), and (iii) extraction of thermal features (the maximal temperature, the
average temperature, the minimal temperature, and the area of the maximal temperature).
Results from conventionally processed thermal images were previously documented [8,9].
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2.3. Data Processing

The thermal image processing steps for image texture analysis included (i) image
acquisition, (ii) segmentation of ROIs, (iii) transformation to color models, and (iv) ex-
traction of image texture features using three analytical approaches: Histogram Statistics
(HS), symmetric Gray Level Co-occurrence Matrix (GLCM), and asymmetric Gray Level
Co-occurrence Matrix (GLCH). The first two steps were the same for the conventional
analysis and the texture analysis of thermal images. All ROIs were manually annotated in
the flank area. Each ROI was limited by the vertical line behind the tuber coxae, the dorsal
edge of the abdomen, the caudal edge of the last rib, and the lower 2/3 of the abdomen
height (Figure 1B,B’). The third and fourth steps were those of digital image processing.

Figure 1. Thermal image processing for the analysis of image texture. Image acquisition, white light
(A,A’) and thermal image (B,B’); segmentation of the region of interest (ROI) (B,B’); transformation
to color models (C–N’): RGB color model (C–E’), YUV color model (F–H’), YIQ color model (I–K’),
and HSB color model (L–N’). Subfigures (A–N) and (A’–N’) represent non-pregnant and pregnant
mares, respectively.
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2.3.1. Transformation to Color Models

Grayscale images are required as input for the extraction of image texture features
using QMazda Software. Therefore, the third step, transformation to color models, was
conducted by QMazda Software as a way of image transformation to grayscale by conver-
sion to selected color components [36–38]. IRT is based on the physical phenomenon, that
all objects, including the equine body, with a temperature above absolute zero (−273 K)
emit infrared (IR) radiation from their surface [49]. The radiated power is proportional
to the fourth power of the object’s absolute temperature. The thermal camera detected
by the radiated power in the IR spectrum focused IR radiation onto a two-dimensional
array and used it to calculate the temperature of the object [10]. The output of the thermal
camera is expressed as a thermogram or thermal images which is an image color coded for
temperature [50]. In the presented approach, color analysis included the image transforma-
tion from the basic RGB color model to YUV, YIQ, and HSB color models which reflected
the two-dimensional temperature assignation of the lateral aspect of the mares’ abdomens
(Figure 1C–N’).

From the RGB color model, three components, the Red (R), Green (G) and Blue
(B) components were separated without any conversion [36–38]. In other color spaces,
the chrominance components were separated by transforming RGB spaces following the
formulas below.

From the YUV color model, three components (a) Brightness component (Y), (b)
U-component (U), and (c) V-component (V) were converted as follows [37]:

(a) (299R + 587G + 114B)/1000
(b) (886B–587G–299R + 886Θ)/1772
(c) (–114B–587G + 701R + 701Θ)/1402
From the YIQ color model, the Brightness component (Y) remained the same as in the

YUV color model, and two other components, (a) I-component (I) and (b) Q-component
(Q), were converted as follows [36]:

(a) (– 3213B–2744G + 5957R + 5958Θ)/11916
(b) (–3111B–5226G + 2115R + 5226Θ)/10452
For the HSB color model, the Brightness component (B) remained the same as Y in the

YUV and YIQ color models, and two other components, (a) Hue (H) and (b) Saturation (S)
components, were converted as follows [37]:

(a) Θ
2π arg

(
886B−587G−299R

886 + j−114B−587G−701R
701

)
(b) 0.937

√(
886B−587G−299R

886

)2
+
(
−114B−587G−701R

701

)2

2.3.2. Extraction of Image Texture Features

The fourth step, extraction of image texture features, was conducted using three
approaches in annotated ROIs using QMazda Software [34,35]. Texture features of thermal
images were calculated independently for individual R, G, B, Y, U, V, I, Q, H, and S
components. The following three approaches were applied:

(i) Histogram Statistics (HS) is a usual method of image intensity analysis, based on the
first order histogram. HS does not consider the special dependence on the intensity
distribution. Moreover, the first order histogram features describe the overall number
of pixels having certain intensity but independent of their location in the image [33].
For image I with the dimensions N ×M and range of intensity K ∈ [0 . . . 2n − 1] (n is
the number of bits per pixel), the normalized histogram H is defined as:

H(k) =
number o f pixels with value k ∈ [0 . . . 255]

total number o f pixels NxM
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The 13 features from normalized H are defined as [33]:

Mean =
∑N

i=1 ∑M
j=1 I(i,j)

NM

Variance =
∑N

i=1 ∑M
j=1(I(i,j)−Mean)2

NM

Skewness =
∑N

i=1 ∑M
j=1(I(i,j)−Mean)3(

√
Variance)

−3

NM

Kurtosis =
∑N

i=1 ∑M
j=1

{
(I(i,j)−Mean)4(

√
Variance)

−4}−3
NM

Perc01 = min(K) :
K
∑

k=0
H(k) ≥ 0.01

Perc10 = min(K) :
K
∑

k=0
H(k) ≥ 0.10

Perc50 = min(K) :
K
∑

k=0
H(k) ≥ 0.50

Perc90 = min(K) :
K
∑

k=0
H(k) ≥ 0.90

Perc99 = min(K) :
K
∑

k=0
H(k) ≥ 0.99

Domn01 = k : max
(

K
∑

k=0
H(k)

)
Domn10 = k : max

(
K−r
∑

k=0
(H(k + r)− H(k))

)
Maxm01 = 1

NM max
(

K
∑

k=0
H(k)

)
Maxm10 = 1

NM max
(

K−r
∑

k=0
(H(k + r)− H(k))

)
(ii) Gray Level Co-occurrence Matrix (GLCM, GLCH) is a current method of image

intensity analysis, based on the second order histogram. GLCM considers the mutual
spatial relationship between pairs of image pixels with specific intensity levels. The
GLCM method uses the second-order histogram of the image intensity distribution
and can be calculated in different directions (horizontal in this study, vertical, 45◦,
135◦) and at different distances of pixel pairs (d ∈ [1, . . . , 9], d = 1 in this study) [32].
For image I with the dimensions N ×M and range of intensity k, l ∈ [0 . . . 255], the
co-occurrence matrix is defined as:

CoM(k, l) = ∑N
i=1 ∑M

j=1

{
1 : i f I(i, j) = k ∩ I(i + ∆i, j + ∆j) = l

0 : otherwise

where (∆i, ∆j) is the offset between the pixel of interest and its neighbor. The CoM(k, l)
can be symmetric (GLCM) or asymmetric (GLCH). The normalized co-occurrence matrix
(probability of co-occurrence) is defined as:

p(k, l) =
CoM(k, l)

∑K
k=1 ∑K

l=1 CoM(k, l)
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The 11 Haralick features from normalized CoM matrix are defined as [32]:

AngScMom = ∑K
k=1 ∑K

l=1 p(k, l)2

Contrast = ∑K−1
m=0 m2

∑K
k=1 ∑K

l=1

p(k, l)
|k− l| = m


Correlat = ∑K

k=1 ∑K
l=1

kl p(k,l)−µkµl
σkσl

SumOfSqs = ∑K
k=1 ∑K

l=1(k− µk)
2 p(k, l)

InvDefMom = ∑K
k=1 ∑K

l=1
1

1+(k−l)2 p(k, l)

SumAverg = ∑2K
m=2 m

{
∑K

k=1 ∑K
l=1

p(k, l)
k + l = m

}
SumVarnc = ∑2K

m=2(m− SumAverg)2
{

∑K
k=1 ∑K

l=1
p(k, l)

k + l = m

}
SumEntrp = −∑2K

m=2

{
∑K

k=1 ∑K
l=1

p(k, l)
k + l = m

}
log
{

∑K
k=1 ∑K

l=1
p(k, l)

k + l = m

}
Entropy = −∑K

k=1 ∑K
l=1 p(k, l) log p(k, l)

DifVarnc = ∑K−1
m=0

(
m−∑K−1

o=0 o
{

∑K
k=1 ∑K

l=1
p(k, l)
|k− l| = o

})2{
∑K

k=1 ∑K
l=1

p(k, l)
k− l = m

}
DifEntrp = −∑K−1

m=0

{
∑K

k=1 ∑K
l=1

p(k, l)
k− l = m

}
log
{

∑K
k=1 ∑K

l=1
p(k, l)

k− l = m

}
where

µk = ∑K
k=0 ∑K

l=0 kp(k, l)

µl = ∑K
k=0 ∑K

l=0 lp(k, l)

σk = ∑K
k=0 ∑K

l=0(k− µk)
2 p(k, l)

σl = ∑K
k=0 ∑K

l=0(l − µl)
2 p(k, l).

2.4. Statistical Analysis

Statistical analysis was performed using GraphPad Prism6 software (GraphPad Soft-
ware Inc., San Diego, CA, USA). Data from 35 image texture features (13 HS features, 11
GLCM features, and 11 GLCH features) were presented as data series for each color com-
ponent independently, where each horse represented one realization. The numerical data
in Supplementary Tables S1–S3 (Supplementary Materials) were presented as mean ± stan-
dard deviation (SD), whereas the numerical data on Supplementary Figures S1–S10 were
presented as mean + SD. Data series were tested independently for univariate distributions
using a Shapiro–Wilk normality test. Data analysis was performed in the following three
steps: (i) Testing the differences between data series obtained in consecutive months for the
non-pregnant group; (ii) testing the differences between the pooled non-pregnant group
and data series obtained in consecutive months for the pregnant group; (iii) calculating the
accuracy of pregnancy detection for consecutive months of pregnancy.

The comparisons between (i) data series for the non-pregnant group were assessed
using the Ordinary one-way ANOVA followed by Tukey’s multiple comparisons test for
Gaussian data and the Kruskal–Wallis test followed by the Dunn’s multiple comparisons
test for non-Gaussian data. The alpha value was established as α = 0.05. When features do
not differ significantly between consecutive months, the mean ± SD value was calculated
as given in Supplementary Tables S1–S3. When features differed significantly, only the
p-value was given. Only those features that did not differ between non-pregnant data series
were summarized in Figure 2 and selected for further analysis.
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Figure 2. Features of (A) Histogram Statistics and (B) Gray Level Co-occurrence Matrix for
each examined color component found not to be significantly different between months in the
non-pregnant group. R—Red component in the RGB color model; G—Green component in the
RGB color model; B—Blue component in the RGB color model; Y—Brightness component in the
YUV/YIQ/HSB color models; U—U-component in the YUV color model; V—V-component in the
YUV color model; I—I-component in the YIQ color model; Q—Q-component in the YIQ color
model; H—Hue component in the HSB color model; S—Saturation component in the HSB color
model. Skewness—skewness coefficient; Perc01, Perc10, Perc50, Perc90, Perc99—percentiles; Domn01,
Domn10—dominants; Maxm01, Maxm10—maximum of moments; AngScMom—angular second
moment/energy; Correlat—correlation; SumOfSqs—sum of squares; InvDefMom—inverse different
moment/homogeneity; SumAverg—summation mean; SumVarnc—summation variance; SumEntrp—
summation entropy; DifVarnc—differential variance; DifEntrp—differential entropy.

The comparisons between (ii) data series for the non-pregnant and pregnant groups
were assessed using the Ordinary one-way ANOVA followed by Tukey’s multiple com-
parisons test for Gaussian data and the Kruskal–Wallis test followed by the Dunn’s mul-
tiple comparisons test for non-Gaussian data. The alpha value was established as α

= 0.05. When features differed significantly between the non-pregnant and pregnant
groups between consecutive months, the month number was noted and presented in
Supplementary Tables S4–S6. When the groups differed from a given month to the end of
pregnancy, the feature was selected for visualization on a plot and summarized in Figure 3.
On the plots in Supplementary Figures S1–S10 a comparison between non-pregnant and
pregnant groups was visualized. Only those features that gradually increased or decreased
within the pregnancy were summarized in Figure 4 and selected for further calculations.

The accuracy of (iii) pregnancy detection for consecutive months was calculated using
three thresholds for gradually increasing features (mean, mean + SD, mean + 2SD) and
for gradually decreasing features (mean, mean-SD, mean-2SD), respectively. The mare
was annotated as pregnant (1) when the individual feature value was above threshold and
annotated as non-pregnant (0) when below it. The same annotation was done in pregnant
and non-pregnant groups. The sensitivity (Se), specificity (Sp), positive predictive value
(PPV), and negative predictive value (NPV) of pregnancy detection were estimated. The
values of Se, Sp, PPV, and NPV were calculated across the range of pregnancy proportions
from 0.1 to 1.0 using standard formulae [51].
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Figure 3. Features of (A) Histogram Statistics and (B) Gray Level Co-occurrence Matrix for each
examined color component found to be significantly different between non-pregnant and pregnant
groups from a given (numbered) month as compared to the end of pregnancy. R—Red component
in the RGB color model; G—Green component in the RGB color model; B—Blue component in the
RGB color model; Y—Brightness component in the YUV/YIQ/HSB color models; U—U-component
in the YUV color model; V—V-component in the YUV color model; I—I-component in the YIQ
color model; Q—Q-component in the YIQ color model; H—Hue component in the HSB color model;
S—Saturation component in the HSB color model. Skewness—skewness coefficient; Perc01, Perc10,
Perc50, Perc90, Perc99—percentiles; Domn01, Domn10—dominants; Maxm01, Maxm10—maximum
of moments; AngScMom—angular second moment/energy; Correlat—correlation; SumOfSqs—sum
of squares; InvDefMom—inverse different moment/homogeneity; SumAverg—summation mean;
SumVarnc—summation variance; SumEntrp—summation entropy; DifVarnc—differential variance;
DifEntrp—differential entropy.

Figure 4. Features of (A) Histogram Statistics and (B) Gray Level Co-occurrence Matrix for each
examined color component found to be significantly increasing (In) or decreasing (De) with the
progression of pregnancy. R—Red component in the RGB color model; G—Green component in
the RGB color model; B—Blue component in the RGB color model; Y—Brightness component in
the YUV/YIQ/HSB color models; U—U-component in the YUV color model; V—V-component
in the YUV color model; I—I-component in the YIQ color model; Q—Q-component in the YIQ
color model; H—Hue component in the HSB color model; S—Saturation component in the HSB
color model. Skewness—skewness coefficient; Perc01, Perc10, Perc50, Perc90, Perc99—percentiles;
Domn01, Domn10—dominants; Maxm01, Maxm10—maximum of moments; AngScMom—angular
second moment/energy; Correlat—correlation; SumOfSqs—sum of squares; InvDefMom—inverse
different moment/homogeneity; SumAverg—summation mean; SumVarnc—summation variance;
SumEntrp—summation entropy; DifVarnc—differential variance; DifEntrp—differential entropy.
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3. Results

Among 350 returned combinations of color components (n = 10) and image texture
features (n = 35; HS n = 13, GLCM n = 11, GLCH n = 11), 127 combinations of HS, 110
combinations of GLCM, and 110 combinations of GLCH did not differ significantly between
consecutive months of examination in the non-pregnant group. These combinations were
summarized in Figure 2 and considered for further analysis after the first step of determin-
ing potential IRT indicators of pregnancy. For features which did not differ significantly
between consecutive months, the mean ± SD value was calculated and presented as a
pooled value of the non-pregnant group in Supplementary Tables S1–S3 available online.
The pooled data series of 347 selected combinations were used for further comparisons
with the pregnant groups.

Among 347 selected combinations of color components and image texture features, 77
combinations of HS, 76 combinations of GLCM, and 76 combinations of GLCH differed
significantly between the non-pregnant and pregnant groups from a given month to the
end of pregnancy. For the Red component in the RGB color model, 12 features of HS, nine
features of GLCM, and nine features of GLCH were selected. For the Green component
in the RGB color model, six features of HS, four features of GLCM, and four features of
GLCH were selected. For the Blue component in the RGB color model, seven features of
HS, six features of GLCM, and six features of GLCH were selected. For the Brightness
component in the YUV/YIQ/HSB color models, one feature of HS, five features of GLCM,
and five features of GLCH were selected. For the U-component in the YUV color model,
two features of HS, seven features of GLCM, and seven features of GLCH were selected.
For the V-component in the YUV color model, nine features of HS, 10 features of GLCM,
and 10 features of GLCH were selected. For the I-component in the YIQ color model, 11
features of HS, nine features of GLCM, and nine features of GLCH were selected. For
the Q-component in the YIQ color model, 11 features of HS, five features of GLCM, and
five features of GLCH were selected. For the Hue component in the HSB color model,
11 features of HS, 11 features of GLCM, and 11 features of GLCH were selected. For
the Saturation component in the HSB color model, seven features of HS, 10 features of
GLCM, and 10 features of GLCH were selected. These combinations were summarized in
Figure 3 and considered for further analysis after the second step of determining potential
IRT indicators of pregnancy. Comparisons of image texture features were summarized
in Supplementary Tables S4–S6 available online. No differences were found between the
data tested for symmetric (GLCM) and asymmetric (GLCH) Gray Level Co-occurrence
Matrices and therefore only the selection of features for GLCM was considered further.
Among 229 selected combinations of color components and image texture features, GLCM
feature reduction was found to be as equally useful as GLCH features, and therefore 153
combinations were further considered.

Among 153 selected combinations of color components and image texture features, five
combinations of HS and eight combinations of GLCM increased or decreased significantly
within consecutive months of pregnancy. With respect to the Red component in the RGB
color model, no HS features were selected; however, three features of GLCM were selected
(Figure S1 available online). The three features of GLCM were SumEntrp, Entropy, and
DifEntrp which increased with progressing months of pregnancy. For the Green component
in the RGB color model, one feature of HS was selected whereas no GLCM features
were selected (Figure S2 available online). The GLCM feature selected was Perc10 which
increased with progressing months of pregnancy. For the Blue component in the RGB color
model, no HS features were selected and only one feature of GLCM was selected (Figure S3
available online). The GLCM featured selected was InvDefMom which decreased with
progressing months of pregnancy. For the Brightness component in the YUV/YIQ/HSB
color models, no features of either HS or GLCM were selected (Figure S4 available online).
For both the U-component and the V-component in the YUV color model, no HS features
were selected and one feature of GLCM was selected (Figures S5 and S6 available online).
For the I-component in the YIQ color model, no HS features were selected; however, two
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GLCM features were selected (Figure S7 available online). The two selected GLCM features
of the I-component were SumEntrp and Entropy which increased with progressing months
of pregnancy. For the Q-component in the YIQ color model, three HS features and two
GLCM features were selected (Figure S8 available online). These features were Mean,
Variance, Perc50, SumAverg, and SumVarnc which all decreased with progressing months
of pregnancy. For the Hue component in the HSB color model, no HS or GLCM features
were selected (Figure S9 available online). For the Saturation component in the HSB color
model, one HS feature was selected; however, no GLCM features were selected (Figure S10
available online). The one HS feature was Variance which increased with progressing
months of pregnancy. These combinations are summarized in Figure 4 and were considered
for further analysis after the third step of determining potential IRT indicators of pregnancy.

For all 13 selected combinations of color components and image texture features, the
accuracy of pregnancy detection was summarized for the RGB color model (Table 1), YIQ
color model (Table 2), and HSB color model (Table 3). The accuracy of pregnancy detection
for the YUV color model was not calculated, due to a lack of selected combinations in
this color model. In all three-color models, a salient observation is that the Se increased
with higher threshold values (2SD > SD > mean) as well as with progressing months of
pregnancy. For the first threshold (mean), Se ranged from 0.14 in the 4th and 5th months
(SumEntrp of the Red component) to 1.00 in the 10th and 11th months (Perc10 of the
Green component). For the second threshold (mean ± SD), Se ranged from 0.57 in the
4th month (Entropy of the Red component, SumEntrp of the I-component, Variance of the
Q-component, and SumVarnc of the Q-component) to 1.00 in the 8th and 9th months (Mean
of the Q-component) and then repetitively in 10th and 11th months (DifEntrp of the Red
component, Perc10 of the Green component, Mean of the Q-component, Variance of the
Q-component, SumVarnc of the Q-component, and SumVarnc of the Q-component). For the
third threshold (mean ± 2SD), Se ranged from 0.86 in the 4th and 5th months (Perc10 of the
Green component and Variance of the Q-component) and the 6th and 7th months (Perc10
of the Green component, to 1.00 in numerous months including the 4th month (SumEntrp
of the Red component, InvDfMom of the Blue component, SumEntrp of the I-component,
Entropy of the I-component, and Perc50 of the Q-component). For all considered thresholds,
Sp varied within different months and features, therefore the applicability of potential IRT
pregnancy indicators was considered and then discussed individually, during the fourth
step of analysis.
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Table 1. Three thresholds (mean; mean ±SD (m ± SD); mean ±2SD (m ± 2SD)) used to estimate the sensitivity (Se), specificity (Sp), positive predictive value (PPV),
and negative predictive value (NPV) of pregnancy detection using the selected features of Histogram Statistics and Gray Level Co-occurrence Matrix in the RGB
color model.
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SumEntrp of the Red component
Se 0.14 0.64 1.00 0.14 0.64 1.00 0.43 0.71 1.00 0.50 0.71 1.00 0.50 0.86 1.00 0.50 0.86 1.00 0.79 0.93 1.00 0.86 0.93 1.00
Sp 1.00 1.00 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PPV 1.00 1.00 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.52 0.72 1.00 0.52 0.72 1.00 0.62 0.76 1.00 0.65 0.76 1.00 0.65 0.87 1.00 0.65 0.87 1.00 0.81 0.93 1.00 0.87 0.93 1.00

Entropy of the Red component
Se 0.29 0.57 0.93 0.29 0.57 0.93 0.50 0.71 1.00 0.50 0.71 1.00 0.50 0.86 1.00 0.50 0.86 1.00 0.86 0.93 1.00 0.86 0.93 1.00
Sp 1.00 1.00 0.31 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PPV 1.00 1.00 0.59 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.57 0.68 0.80 0.57 0.68 0.93 0.65 0.76 1.00 0.65 0.76 1.00 0.65 0.87 1.00 0.65 0.87 1.00 0.87 0.93 1.00 0.87 0.93 1.00

DifEntrp of the Red component
Se 0.36 0.71 0.93 0.36 0.71 0.93 0.43 0.79 0.93 0.50 0.79 0.93 0.50 0.86 1.00 0.50 0.86 1.00 0.71 1.00 1.00 0.79 1.00 1.00
Sp 1.00 0.77 0.23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PPV 1.00 0.77 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.59 0.71 0.75 0.59 0.76 0.93 0.62 0.81 0.93 0.65 0.81 0.93 0.65 0.87 1.00 0.65 0.87 1.00 0.76 1.00 1.00 0.81 1.00 1.00

Perc10 of the Green component
Se 0.64 0.79 0.86 0.64 0.79 0.86 0.64 0.86 0.86 0.64 0.86 0.86 0.79 0.93 1.00 0.79 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sp 0.69 0.46 0.31 1.00 0.46 0.23 0.92 0.77 0.54 1.00 0.92 0.92 1.00 0.92 0.85 1.00 0.92 0.85 1.00 1.00 1.00 1.00 1.00 1.00

PPV 0.69 0.61 0.57 1.00 0.61 0.55 0.90 0.80 0.67 1.00 0.92 0.92 1.00 0.93 0.88 1.00 0.93 0.88 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.64 0.67 0.67 0.72 0.67 0.60 0.71 0.83 0.78 0.72 0.86 0.86 0.81 0.92 1.00 0.81 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00

InvDfMom of the Blue component
Se 0.50 0.79 1.00 0.50 0.79 1.00 0.43 0.71 0.93 0.43 0.71 0.93 0.57 0.86 1.00 0.57 0.86 1.00 0.50 0.93 1.00 0.50 0.93 1.00
Sp 0.15 0.00 0.00 0.54 0.46 0.31 0.85 0.69 0.69 0.77 0.69 0.54 0.92 0.92 0.54 1.00 1.00 1.00 1.00 0.85 0.85 0.85 0.85 0.69

PPV 0.39 0.46 0.52 0.54 0.61 0.61 0.75 0.71 0.76 0.67 0.71 0.68 0.89 0.92 0.70 1.00 1.00 1.00 1.00 0.87 0.88 0.78 0.87 0.78
NPV 0.22 0.00 1.00 0.50 0.67 1.00 0.58 0.69 0.90 0.56 0.69 0.88 0.67 0.86 1.00 0.68 0.87 1.00 0.65 0.92 1.00 0.61 0.92 1.00

SumEntrp—summation entropy; DifEntrp—differential entropy; Perc10—percentile 10; InvDefMom—inverse different moment/homogeneity.
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Table 2. Three thresholds (mean; mean ±SD (m ± SD); mean ± 2SD (m ± 2SD)) used to estimate the sensitivity (Se), specificity (Sp), positive predictive value (PPV),
and negative predictive value (NPV) of pregnancy detection using the selected features of Histogram Statistics and Gray Level Co-occurrence Matrix in the YIQ
color model.
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SumEntrp of the I-component
Se 0.43 0.57 1.00 0.50 0.57 1.00 0.50 0.71 1.00 0.57 0.71 1.00 0.43 0.86 1.00 0.43 0.86 1.00 0.79 0.93 1.00 0.86 0.93 1.00
Sp 1.00 0.92 0.23 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PPV 1.00 0.89 0.57 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.62 0.67 1.00 0.65 0.68 1.00 0.65 0.76 1.00 0.68 0.76 1.00 0.62 0.87 1.00 0.62 0.87 1.00 0.81 0.93 1.00 0.87 0.93 1.00

Entropy of the I-component
Se 0.29 0.64 1.00 0.29 0.64 1.00 0.50 0.64 1.00 0.50 0.71 1.00 0.57 0.79 1.00 0.57 0.86 1.00 0.79 0.93 1.00 0.79 0.93 1.00
Sp 1.00 0.85 0.23 1.00 1.00 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PPV 1.00 0.82 0.58 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.57 0.69 1.00 0.57 0.72 1.00 0.65 0.72 1.00 0.65 0.76 1.00 0.68 0.81 1.00 0.68 0.87 1.00 0.81 0.93 1.00 0.81 0.93 1.00

Mean of the Q-component
Se 0.43 0.93 0.93 0.43 0.93 0.93 0.50 0.93 0.93 0.50 0.93 0.93 0.50 1.00 1.00 0.50 1.00 1.00 0.71 1.00 1.00 0.71 1.00 1.00
Sp 0.85 0.31 0.31 1.00 0.23 0.23 1.00 0.62 0.62 1.00 0.85 0.85 1.00 0.92 0.92 1.00 0.85 0.85 1.00 1.00 1.00 1.00 1.00 1.00

PPV 0.75 0.59 0.59 1.00 0.57 0.57 1.00 0.72 0.72 1.00 0.87 0.87 1.00 0.93 0.93 1.00 0.88 0.88 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.58 0.80 0.80 0.62 0.75 0.75 0.65 0.89 0.89 0.65 0.92 0.92 0.65 1.00 1.00 0.65 1.00 1.00 0.76 1.00 1.00 0.76 1.00 1.00

Variance of the Q-component
Se 0.36 0.57 0.86 0.36 0.57 0.86 0.36 0.79 0.93 0.36 0.79 0.93 0.64 0.93 1.00 0.64 0.93 1.00 0.79 1.00 1.00 0.79 1.00 1.00
Sp 0.46 0.23 0.15 0.54 0.23 0.08 0.85 0.54 0.00 0.92 0.85 0.38 0.92 0.85 0.15 0.85 0.85 0.23 1.00 0.92 0.54 1.00 1.00 0.69

PPV 0.42 0.44 0.52 0.45 0.44 0.50 0.71 0.65 0.50 0.83 0.85 0.62 0.90 0.87 0.56 0.82 0.87 0.58 1.00 0.93 0.70 1.00 1.00 0.78
NPV 0.40 0.33 0.50 0.44 0.33 0.33 0.55 0.70 1.00 0.57 0.79 0.83 0.71 0.92 1.00 0.69 0.92 1.00 0.81 1.00 1.00 0.81 1.00 1.00

Perc50 of the Q-component
Se 0.29 0.64 1.00 0.29 0.64 1.00 0.43 0.79 1.00 0.43 0.79 1.00 0.50 0.86 1.00 0.50 0.86 1.00 0.71 0.86 1.00 0.71 0.86 1.00
Sp 0.77 0.69 0.00 1.00 1.00 0.08 1.00 1.00 0.23 1.00 1.00 0.38 1.00 1.00 0.54 1.00 1.00 0.54 1.00 1.00 0.77 1.00 1.00 0.92

PPV 0.57 0.69 0.52 1.00 1.00 0.54 1.00 1.00 0.58 1.00 1.00 0.64 1.00 1.00 0.70 1.00 1.00 0.70 1.00 1.00 0.82 1.00 1.00 0.93
NPV 0.50 0.64 1.00 0.57 0.72 1.00 0.62 0.81 1.00 0.62 0.81 1.00 0.65 0.87 1.00 0.65 0.87 1.00 0.76 0.87 1.00 0.76 0.87 1.00

SumAverg of the Q-component
Se 0.43 0.64 0.93 0.43 0.64 0.93 0.43 0.71 0.93 0.50 0.79 0.93 0.50 0.86 1.00 0.50 0.86 1.00 0.71 0.86 1.00 0.71 0.86 1.00
Sp 0.85 0.69 0.31 1.00 1.00 0.23 1.00 1.00 0.62 1.00 1.00 0.85 1.00 1.00 0.92 1.00 1.00 0.85 1.00 1.00 1.00 1.00 1.00 1.00

PPV 0.75 0.69 0.59 1.00 1.00 0.57 1.00 1.00 0.72 1.00 1.00 0.87 1.00 1.00 0.93 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.58 0.64 0.80 0.62 0.72 0.75 0.62 0.76 0.89 0.65 0.81 0.92 0.65 0.87 1.00 0.65 0.87 1.00 0.76 0.87 1.00 0.76 0.87 1.00

SumVarnc of the Q-component
Se 0.36 0.57 0.92 0.36 0.57 0.92 0.79 0.79 0.92 0.79 0.79 0.92 0.64 0.86 0.92 0.64 0.93 1.00 0.36 1.00 1.00 0.36 1.00 1.00
Sp 0.46 0.23 0.15 0.54 0.23 0.08 0.85 0.54 0.00 0.92 0.92 0.38 0.92 0.85 0.15 0.92 0.85 0.23 1.00 0.92 0.54 1.00 1.00 0.69

PPV 0.42 0.44 0.52 0.45 0.44 0.50 0.85 0.65 0.48 0.92 0.92 0.60 0.90 0.86 0.52 0.90 0.87 0.57 1.00 0.93 0.68 1.00 1.00 0.76
NPV 0.40 0.33 0.67 0.44 0.33 0.50 0.79 0.70 0.00 0.80 0.80 0.83 0.71 0.85 0.67 0.71 0.92 1.00 0.59 1.00 1.00 0.59 1.00 1.00

SumEntrp—summation entropy; DifEntrp—differential entropy; Perc50—percentile 50; SumAverg—summation mean; SumVarnc—summation
variance.
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Table 3. Three thresholds (mean; mean ± SD (m ± SD); mean ±2SD (m ± 2SD)) used to estimate the sensitivity (Se), specificity (Sp), positive predictive value (PPV),
and negative predictive value (NPV) of advanced pregnancy detection using the selected features of Histogram Statistics and Gray Level Co-occurrence Matrix in
the HSB color model.
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Variance of the Saturation component
Se 0.71 0.86 0.93 0.71 0.86 0.93 0.57 0.86 0.93 0.57 0.86 0.93 0.71 0.93 0.93 0.71 0.93 0.93 0.86 1.00 1.00 0.86 1.00 1.00
Sp 0.38 0.38 0.31 0.85 0.77 0.62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PPV 0.56 0.60 0.59 0.83 0.80 0.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NPV 0.56 0.71 0.80 0.73 0.83 0.89 0.68 0.87 0.93 0.68 0.87 0.93 0.76 0.93 0.93 0.76 0.93 0.93 0.87 1.00 1.00 0.87 1.00 1.00
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4. Discussion

The first criterion, and thus the first step of determining potential IRT indicators of
pregnancy was to determine which color/feature combinations were significantly different
over time for mares in the non-pregnant group. It should be highlighted that homogeneity
of data sets obtained from thermal images from the control group, in this research the non-
pregnant group, is crucial for accurate group distinction [12,21,52,53]. Information obtained
from thermal images of normal horses [18,20,54] provide a baseline of the expected values
in the imaged area when comparing to the physiological [7,8,55] and pathological [13,56,57]
changes observed in experimental groups. In the case of the abdominal area in mares, the
maximal, average, and minimal temperatures on normal thermal images were recently
reported [7–9] both for non-pregnant and pregnant mares. In previous research, the
Gaussian distribution test was the only test used to explore the homogeneity of data.
Uniform values would allow for easier diagnosis of pregnancy by increasing positive
predictive value and decreasing negative predictive value [2,58,59]; the 350 combinations
that passed this criterion were considered for further evaluation.

The second criterion, and thus the second step of determining potential IRT indicators
of pregnancy was to determine which color/feature combinations differed significantly
between the non-pregnant and pregnant groups from the first indicated month of pregnancy
to the end of pregnancy. Bowers et al. [7] showed that IRT imaging can detect pregnancy
in horses during late gestation, from the 9th month of pregnancy. Ultrasound allows
the diagnosis of pregnancy on the 14th–16th day after ovulation [2]. One concern is
that IRT may not be able to detect pregnancy as early as ultrasound and efforts were
made therefore to determine how early pregnancy could be detected [8,9]. Using minimal
temperature allowed the detection of pregnancy from the 8th month of gestation [8],
whereas the maximal temperature, average temperature, and Area of Tmax from the
6th month [8,9]. The differences in thermal images were observed specifically in the
smaller flank area of the lateral surface of the abdomen as opposed to the whole area of
the lateral surface of the abdomen [8,9], probably due to the decreased amount of hair
coat growth in the flank area [60] and thus lower local thermal insulation [19]. The flank
area, therefore, was considered in this research. Of the cited features of thermal images,
only the maximal temperature and the average temperature in the flank area [9] and the
Area of Tmax [8] differed between examined groups from any given month to the end
of pregnancy. Moreover, only the Area of Tmax increased as pregnancy progressed, and
unlike measured maximal and average temperatures [9], it did not decrease as ambient
temperature decreased [8]. It should be highlighted that body surface temperature is
highly influenced by ambient temperature fluctuations [14,15], thus of the cited thermal
features only one feature, the Area of Tmax, could pass the second criterion adopted in
this study. We demonstrated as many as 153 combinations that met this criterion and thus
were further evaluated as features that have an advantage over the conventional thermal
features examined so far.

The third criterion, and thus the third step in determining potential IRT indicators of
pregnancy, was to determine which feature/color combinations increase or decrease within
the study period. The gradual increase or decrease of an indicator variable may allow the
prediction of the time to parturition and evaluate the development of a free-living herd.
In the case of wild horses, the ability to identify a pregnancy based on thermal imaging is
limited by the lack of knowledge about mating [61], which can be improved by selecting
continuously increasing features from the first indicated month until parturition. Such
features would prove to be of high applicability using the proposed method, especially in
wildlife research [3,61]. Of the cited features of thermal images, the Area of Tmax did not
differ in the pregnant mares from the 6th month of pregnancy to delivery [8] and thus it
could not pass the third criterion adopted in this study. Of the 13 combinations examined
here which passed this criterion, noteworthy combinations were selected GLCM features
in the RGB color model and features selected from HS and GLCM in the YIQ color model.
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In different color models, the light color coordinates are mathematically converted into
color components in three-dimensional space [40] representing the digitalized contained
colors [39], therefore it was hypothesized that different color models will convey differing
features of image texture. In the current study, the most combinations were selected in the
RGB color model (three features in the Red component, and one feature each in each of the
Green and Blue components) and the YIQ color model (two features in the I-component
and five features in the Q-component). It is worth noting that in both color models, the
same GLCM features were selected. SumEntrp and Entropy increased with the progression
of pregnancy in both the Red and I-components. Recent research using the novel approach
of thermal image analysis of the equine thoracolumbar region showed that both Entropy
and DifEntrp were informative variables in differentiating between two physiological
conditions: working under a heavy or a light rider [31]. The change in physiological
condition was suggested to increase the degree of thermal energy dissipation detectable
as an increased entropy measure. The high values of Entropy and SumEntrp indicate a
high heterogeneity of texture [62] and may be a detectible feature in the progression of
pregnancy. This result is in line with the successive increase of blood flow in the abdominal
area, overall metabolic activity, and the proliferation of uterine and foetal tissues that
require the pregnant mare to expend a large amount of energy [1,7,63]. This additional
metabolic energy usage in pregnant mares leads to increases in heat emission from the
body surface changing the conventional thermal pattern [7–9] but also the thermal image
texture, as reported here.

While the selection of three features in the Red component is no surprise, the selection
of five features in the Q-component may shed new light on the digital image processing of
thermal images. In thermal images, high temperature is red-annotated and low tempera-
ture is blue-annotated [8,10,18]. Therefore, increased heterogeneity of texture in the Red
component and decreased homogeneity indicated by the inverse different moment in the
Blue component are consistent with conventional thermal results [7–9]. It was shown that
the count of red-annotated pixels on thermal images, indicated by Area of Tmax, increased
with the progression of pregnancy [8]. On the other hand, the Q-component corresponds
to magenta-green axis [39] in the YIQ color model, which is sensitive to changes in lu-
minance rather than hue or saturation changes [41]. With conventional thermal images,
the medium-high temperature is magenta-annotated and the medium-low temperature
is green-annotated [8,10,18] thus a decrease in the medium range of energy may also be a
distinguishing feature of the progression of pregnancy. One might observe the described
change in the Q-component when comparing Figure 1K,K’, representing non-pregnant and
pregnant mares, respectively. In summary, we suspect that the increase in the count and
mutual relations between extreme high red-annotated pixels as well as the decrease in the
count and mutual relations between medium-high magenta-annotated pixels and extreme
low blue-annotated pixels on the thermal images of the flank area may be potential IRT
indicators of pregnancy.

Finally, the accuracy of pregnancy detection for consecutive months of pregnancy and
selected color/feature combinations were then evaluated. In a recent study, the highest
sensitivity and specificity of pregnancy detection using IRT was noted using the minimal
temperature indicator in the 8th month of pregnancy [9]. Earlier pregnancy detection was
reported with lower sensitivity and specificity using the average temperature indicator
or with the lowest specificity using the maximal temperature indicator [9]. In the current
study, with respect to the third threshold, comparable accuracy values were noted partially
in the 4th and more clearly in the 5th month of pregnancy. In 6th month and certainly in
8th month of pregnancy the sensitivity and specificity of pregnancy detection in mares
were much higher based on the texture features than conventional thermal measures. One
may conclude, the application of DIP proposed here allows for earlier and more accurate
detection of pregnancy as compared to conventional IRT imaging.
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5. Conclusions

Thermal images obtained from non-pregnant and pregnant mares may be successfully
transformed into four color models and their individual color components may be sepa-
rated. Image texture features may then be successfully calculated from color components
creating numerous color/feature combinations. Out of these combinations, the IRT image
texture features representing the increase in extreme high red-annotated pixels, the decrease
in medium-high magenta-annotated pixels, and extreme low blue-annotated pixels seem to
be useful indicators of pregnancy. Application of these methods in IRT-based pregnancy
detection allows for earlier recognition of pregnancy in mares with higher accuracy than
conventional IRT imaging techniques.
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non-pregnant group and consecutive pregnant group over consecutive months of pregnancy, Figure
S6: Nineteen selected features (mean + SD) of the Histogram Statistics and Gray Level Co-occurrence
Matrix for the V-component in the YUV color model compared between the non-pregnant group
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features (mean + SD) of the Histogram Statistics and Gray Level Co-occurrence Matrix for the I-
component in the YIQ color model compared between the non-pregnant group and consecutive
pregnant group over consecutive months of pregnancy, Figure S8: Sixteen selected features (mean
+ SD) of the Histogram Statistics and Gray Level Co-occurrence Matrix for the Q-component in
the YIQ color model compared between the non-pregnant group and consecutive pregnant group
over consecutive months of pregnancy, Figure S9: Twenty two selected features (mean + SD) of the
Histogram Statistics and Gray Level Co-occurrence Matrix for the Hue component in the HSB color
model compared between the non-pregnant group and consecutive pregnant group over consecutive
months of pregnancy, Figure S10: Seventeen selected features (mean + SD) of the Histogram Statistics
and Gray Level Co-occurrence Matrix for the Saturation component in the HSB color model com-
pared between the non-pregnant group and consecutive pregnant group over consecutive months of
pregnancy, Table S1: Features of Histogram Statistics (HS) for each examined color component in the
non-pregnant group. When features did not differ significantly (p > 0.05) between consecutive months,
the mean ±SD value was calculated as shown in the table, Table S2: Features of the symmetric Gray
Level Co-occurrence Matrix (GLCM) for each examined color component in the non-pregnant group,
Table S3: Features of the asymmetric Gray Level Co-occurrence Matrix (GLCH) for each examined
color component in the non-pregnant group, Table S4: Comparison of Histogram Statistics (HS)
features for each examined color component between the non-pregnant and pregnant groups, Table
S5: Comparison of the symmetric Gray Level Co-occurrence Matrix (GLCM) features for each exam-
ined color component between the non-pregnant and pregnant groups, Table S6: Comparison of the
asymmetric Gray Level Co-occurrence Matrix (GLCH) features for each examined color component
between the non-pregnant and pregnant groups.
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8. Maśko, M.; Zdrojkowski, Ł.; Wierzbicka, M.; Domino, M. Association between the Area of the Highest Flank Temperature and

Concentrations of Reproductive Hormones during Pregnancy in Polish Konik Horses—A Preliminary Study. Animals 2021, 11,
1517. [CrossRef] [PubMed]
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