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Abstract: Diabetic retinopathy (DR) is a human eye disease that affects people who are suffering
from diabetes. It causes damage to their eyes, including vision loss. It is treatable; however, it takes
a long time to diagnose and may require many eye exams. Early detection of DR may prevent
or delay the vision loss. Therefore, a robust, automatic and computer-based diagnosis of DR is
essential. Currently, deep neural networks are being utilized in numerous medical areas to diagnose
various diseases. Consequently, deep transfer learning is utilized in this article. We employ five
convolutional-neural-network-based designs (AlexNet, GoogleNet, Inception V4, Inception ResNet
V2 and ResNeXt-50). A collection of DR pictures is created. Subsequently, the created collections are
labeled with an appropriate treatment approach. This automates the diagnosis and assists patients
through subsequent therapies. Furthermore, in order to identify the severity of DR retina pictures, we
use our own dataset to train deep convolutional neural networks (CNNs). Experimental results reveal
that the pre-trained model Se-ResNeXt-50 obtains the best classification accuracy of 97.53% for our
dataset out of all pre-trained models. Moreover, we perform five different experiments on each CNN
architecture. As a result, a minimum accuracy of 84.01% is achieved for a five-degree classification.

Keywords: deep learning; diabetic retinopathy; deep transfer learning; convolutional neural network;
automatic detection

1. Introduction

Diabetic retinopathy (DR) is a human eye infection in people with diabetes. It is
initiated due to retinal vascular damage, which is caused by diabetes mellitus for a long-
duration [1]. This disease is one of the most common reasons behind blindness [2]. There-
fore, its detection in the early stages is critical [3]. There are many treatments for this
disease; however, they take plenty of time and may even include many eye tests such as
photo-coagulation and vitrectomy [4].

According to a survey in Europe, almost 60 million people are diabetes patients and
they are most prone to DR. In the United States, 10.2 million people with an age of 40
or above have diabetes. Furthermore, 40% of these people are at risk of some vision-
threatening disease [5]. Moreover, the survey of the Center for Disease Control in 2020
revealed that 3.3 million people are suffering from DR [6]. According to the World Health
Organization, diabetes has affected 422 million people to date and this number will become
629 million by 2045 [7,8].

DR is normally categorized into five different groups: Normal-0, Mild-1, Moderate-2,
Severe-3 and Proliferative-4 as listed in Table 1. The disease starts with small changes in
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the blood vessels of the eyes, which could be labeled as Mild DR. Concerning the case of
Mild DR, the patient could defeat this disease and complete recovery is possible. If this
condition of the disease is left untreated, then it will convert into Moderate DR. The leakage
in the blood vessels may start in the case of Moderate DR. In the next stage, if the disease
increases further then it changes to Severe and Proliferative DR and it could cause complete
vision loss.

Table 1. Different stages of diabetic retinopathy with the passage of time [9].

Stage Normal Non-Proliferate Proliferate

Years 0 3–5 5–10 10–15 >15

Type of DR N/A Mild Moderate Severe High-risk

Condition
of retina

Healthy
A few tiny
bulges in the
blood vessels

Little lumps in the veins
with noticeable spots of
blood spillage that stores
the cholesterol.

Larger areas of blood leakage.
Beading in veins that is un-
predictable. The formation of
new blood vessels at the op-
tic circle. Vein occlusion.

High bleeding and the for-
mation of new blood ves-
sels elsewhere in the retina.
Complete blindness.

The current detection of DR is made through a dilated eye exam in which the doctors
put some eye drops into the patient’s eyes. Subsequently, an image of the eye is taken
with the help of various medical instruments. This technique is manual and therefore
there are always some errors in diagnosis. Another way of detecting DR is examining
through ophthalmoscopy. In one study, approximately 16% of patients were diagnosed as
DR patients using ophthalmoscopy in respect of 442 right eyes [10].

Image processing is also used to identify DR based on highlights; for example, veins,
radiates, hemorrhages and small-scale aneurysms. During this process, digital fundus
cameras are used to obtain accurate eye images. Techniques like image enhancement,
fusion, morphology detection and image segmentation help medical doctors to obtain more
information from the data of medical images [10]. In the case of DR, people are not aware
of the disease unless a manual detection is made. Due to the lack of related treatment,
according to the specific level of the disease, chances of losing eyesight may increase [11].

1.1. State-of-the-Art on DR Detection Dsing Deep Learning Techniques

Numerous techniques have been proposed to detect DR. This section focuses on multi-
class classification using deep learning and neural network techniques. Some studies
have classified the fundus images into two categories: diabetic, which includes average
to extreme conditions of non-proliferative DR; and non-diabetic, where the person is not
affected with DR) [12]. Based on this, they proposed a technique to accurately appoint the
class where a fundus image could be labeled, utilizing one principal classifier and back
propagation neural organization (BPNN) procedures.

Similarly, a deep-learning-based method has been proposed to classify the fundus
photographs for human ophthalmologist diagnostics. Authors have built a novel Siamese-
like CNN (convolutional neural network) binocular model based on Inception V3 that can
acknowledge fundus pictures of both eyes and yield the output of each eye at the same
time [13]. A hybrid approach for diagnosing DR has been proposed that uses histogram
equalization (HE) and contrast limited adaptive histogram equalization (CLAHE) to assist
the deep learning model [14]. It provides more accentuation and effectiveness by way
of the intelligent enhancement of the image during the diagnosis process. The authors
exploited five CNN architectures to evaluate the performance parameters for the dataset of
DR patients. Their classification methodology classifies images into three different groups
based on the condition of the disease [15].

The authors developed a novel ResNet18-based CNN architecture to diagnose DR
patients. This approach helps in solving a strong class imbalance problem and generates
region scoring maps (RSMs) [16]. Furthermore, it indicates the severity level by highlighting
the semantic regions of the fundus image. The authors proposed a technique only for the
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detection of DR regardless of the severity of DR. They classified images as normal and
abnormal for the targeted dataset [17]. Similarly, the authors proposed a deep-learning-
based CNN to classify a small dataset of DR images, using Cohen’s kappa as an accuracy
metric [18].

In addition to the aforementioned research works, many datasets of fundus im-
ages have been developed for DR-related diagnoses. For example, TeleOphta uses a
tele-ophthalmology network for diabetic retinopathy screening [19]. Other examples are
Digital Retinal Images for Vessel Extraction (DRIVE) and Structured Analysis of the Retina
(STARE), which are used to segment the vessel network using local and global vessel
features [20,21]. Similarly, the SVM (support vector machine) provides 95% and Bayesian
provides 90% accuracy [11]. In this technique, images are segmented, outliers are detected,
image analysis is performed and the brightness is controlled. In an another technique,
SVM provides 86% accuracy and KNN (K-nearest neighbor) provides 55% accuracy [22].
In KNN, images are clustered with the help of pixel clusters. The fundus image mask is
removed with the help of pixel clustering [22].

There is another technique known as the extreme learning machine (ELM) design for
detecting a disease in eye blood vessels. This technique is mainly used for the detection
of diseased blood vessels. Some of the blood vessels are injured in diabetic retinopathy.
In this technique, an image is provided to the ELM. The provided algorithm calculates
the grayscale value and chooses some features that provide more information than other
pixels. Consequently, researchers can achieve 90% accuracy [10]. Similarly, the authors
analyzed various blood vessel segmentation techniques in [23,24]. They further identified
the lesions for the detection of diabetic retinopathy. The results were compared with the
neural network technique.

Finally, by integrating microaneurysms, haemorrhages and exudates, the authors de-
scribed a method for detecting non-proliferative diabetic retinopathy [25]. They developed
a novel convolutional layer that automatically determines the number of extracted features.
Each category is then placed into different folders so that there exist a small number of
patches for the model to process at runtime. Subsequently, six convolutional layers are
added to the model to obtain a validation accuracy of 72% and a training accuracy of 75% .

1.2. Research Gap

Although pre-trained CNNs have been used previously for different diseases, there is
a need to enhance the accuracy of classification using a custom dataset and deep transfer
learning. A dataset composed of low-resolution DR images, as employed in the conven-
tional methods of Section 1.1, may cause low accuracy or incorrect classification. At the
same time, a high-risk patient in the proliferate category requires immediate cure and diag-
nosis. Keeping this view, the diagnosis procedure requires high accuracy with adequate
images of the posterior pole. In a nutshell, there should be an efficient, immediate and
autonomous method that can recognize retinopathy with accurate outcomes. This implies
that there should be a methodology to evaluate the classification performance parameters
on recent CNN architectures.

1.3. Contributions

In this article we propose a methodology to classify the DR images using five different
pre-trained CNNs. The contributions are summarized in the following points:

• Our proposed methodology is flexible and automatically detects the classified pictures
of patients with a higher accuracy. It classifies the dataset based on the severity of the
disease in different stages/categories. Moreover, it helps doctors to select one or more
CNN architectures for the diagnosis.

• We have analyzed the robustness of CNN architectures on our constructed (cus-
tomized) dataset for the diagnosis of DR patients. A brief description of the cus-
tomized dataset is provided in Section 1.4. It highlights how both CNN and dataset
directly or indirectly affect performance evaluation. It implies that deep transfer
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learning techniques have been used with some pre-trained models and customized
datasets to obtain high-accuracy results.

• We have also analyzed how the previously made architectures will perform on our
dataset and how these architectures can be fine-tuned to obtain the best results on our
dataset.

• To the best of our knowledge, the proposed work in this article is the first effort to
consider the evaluation of recent CNNs, using a customized dataset.

The objective is to provide accurate and less time-consuming results (as compared
to the manual methods) by applying different deep neural network algorithms for the
classification of different eyes infected by the illness. This helps to obtain more information
from the classified images. Consequently, doctors will be able to detect diabetic retinopathy
levels more accurately.

1.4. Customized Dataset for Performance Evaluation

The classification accuracy of the DR mainly depends upon the size of the dataset.
This implies that a higher accuracy requires a huge amount of training data using a ma-
chine learning algorithm. Moreover, the data should be collected from reliable sources
with accurate tags. The following datasets are most widely used for DR detection: Dig-
ital Retinal Images for Vessel Extraction (DRIVE) dataset [20], Structured Analysis of
the Retina (STARE) dataset [21], E-ophtha dataset [19] and Kaggle Diabetic Retinopathy
dataset [26,27].

In this study, we created our custom dataset as explained in Section 4.1. The created
dataset was built from different resources which are based on different severity levels.
It also includes EyePacs [26], which has collected approximately 5 million images from
75,000 patients. Another dataset from Kaggle, which consists of 53,594 images for testing
and 35,126 images for training, is also available for analysis. The Kaggle dataset includes a
significant number of pictures (72,743) from DR patients. Furthermore, it has pictures for
all DR categories in a single folder. Moreover, it also contains categories of various images
and their descriptions in the form of comma separated value (CSV) files.

The corresponding enhancements and preprocessing of data are explained in Section 2.1,
where all the images are oriented, resized and horizontally flipped. Moreover, the intensity of
images is also enhanced.Furthermore, an augmentation is performed where all the images
are made consistent in terms of size and intensity. The aforementioned enhancements and
preprocessing techniques help CNN for the robust classification. Based on the aforementioned
databases, we constructed a dataset of 5333 images, where 1421 are normal, 954 are mild, 1210
are moderate, 308 are severe and 1440 are high-risk patients (see Section 4.1).

1.5. Organization

The organization of this paper is as follows. The proposed methodology is described in
Section 2. Section 3 explains the pre-trained CNN architectures and different performance
matrices used in the results. Section 4 reports the results and implementation in light of the
proposed methodology. The article is concluded in Section 5.

2. Proposed Approach

The proposed methodology is illustrated in Figure 1. The entire process comprises
five steps. First, the retina pictures are pre-processed and supplemented using pre-trained
models. Deep transfer learning (DTL) is then used during the training phase. During
classification, feature extraction and precise prediction of models are employed. The retina
prediction is made using a machine learning algorithm. Subsequently, it is classified into
five different groups based on the severity of DR as described in Table 1.
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Figure 1. Proposed framework for the detection of DR.

The following steps are involved during the prediction process: dataset, data pre-
processing, model setup and evaluation. In the dataset, the method of data generation
for training and testing purposes is described. In data pre-processing, the pipeline for
bringing the pictures from various sources is portrayed. Similarly, the model setup describes
multiple convolution layers for the classification of images. Finally, the results are evaluated
and analyzed.

The data were collected from different resources to construct a new dataset. Further-
more, Python visualization libraries were used to visualize our data [27]. The proposed
method in this article employs deep neural networks and a supervised learning architecture
(CNN) for image detection. The supervised learning is used for model training. After model
training, the sample data are tested and verified with the given training data. Moreover,
some evaluation techniques are applied for the classification of results. After executing
classification techniques, results are classified on the basis of training data. Finally, the
model accuracy is measured in comparison to training data.

2.1. Pre-Processing and Enhancement of DR Dataset

Actual pre-trained CNN models are too large to handle the retina images dataset,
resulting in overfitting issues. To address this problem, a variation can be introduced
to the dataset. Adding variation at the early point (input) of a neural network causes
significant changes in the dataset generalization. A variation refers to the fact that the
noise addition task augments the dataset in some way. The dataset constraint is one of
the critical challenges faced by researchers in the healthcare field. As a result, we have
employed some additional augmentation approaches. The retina image dataset was created
as follows. After resizing the photos to 224 × 224 × 3, we used the following augmentation
methods: random horizontal flip (aids in the detection of DR based on severity level),
random resized crop (the last stage of DR, i.e., proliferate) and, last, picture enhancement
by altering picture intensities.

2.2. CNN Architecture

Deep neural networks based on CNN models have recently been employed to handle
computer vision challenges. To categorize the DR dataset among normal and various
levels of DR patients, we employed deep-CNN-model-based AlexNet [28], GoogleNet [29],
Inception V4 [30], Inception ResNet V2 [31] and ResNeXt-50 [32] models, as well as transfer
learning approaches. Transfer learning may also aid with class imbalance and model
execution time. The employed CNN models, as well as AlexNet, GoogleNet, Inception
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V4, Inception ResNet V2 and ResNeXt-50 models, are presented schematically in Figure 2.
Pre-trained models work quite well on a new dataset before being used for classification.

Image classification

1- Normal

2- Mild

3- Moderate

4- Severe

5- High risk

Output

Figure 2. Schematics of CNN model for the detection of different DR stages.

The DTL is a useful approach for solving the issue of unfit training data. The goal of
this strategy is to extract the information from a process (issue). The extracted information
is then utilized over comparable tasks by overcoming isolated learning issues. This under-
standing provides an incentive to tackle the problems in a variety of disciplines where the
development is hard. It has resulted in insufficient or partial training data. Figure 3 depicts
the DTL process.

Learning Task

Knowledge

Learning Task

Transfer
learning

Source domain

Target domain

Figure 3. The adopted DTL process.

We utilize nine pre-trained architectures to deal with the retina image dataset, rather
than using the long training process from scratch. The weights of existing pre-trained
model layers are re-used for model training in a different domain, as illustrated in Figure 4.
The DTL methodology has yielded beneficial and significant achievements in a variety of
computer vision areas [33–36]. We used CNN architectural weights that had already been
learned. Moreover, the entire model was fine-tuned with some appropriate learning rates.
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Pre-trained 
weights

Learnable 
weights

Figure 4. The DTL with pre-trained and learnable weights.

3. Pre-Trained CNN Architectures and Performance Matrices

We selected five distinct pre-trained CNN architectures: AlexNet [28], GoogleNet [29],
Inception V4 [30], Inception ResNet V2 [31] and ResNeXt-50 [32]. These models are used
to classify the DR image dataset. In order to modify the classification layer, fine tuning is
employed. The fine-tuning process extracts features for the targeted tasks. Since pre-trained
models are utilized, only the previously diagnosed diabetic retinopathy images are used to
make the models more accurate. The model training process is given as follows:

• Load the pictures from every type of folder.
• Use cv2 to resize images in (80, 80) and transmit images to array.
• Label every picture with type.
• Transform pictures and labels to numpy array.
• Split the images in half, and in an 80–20 split, the labels change into category labels.
• Set parameters of the trained model (e.g., epochs = 100, batch size = 32, etc.).
• Pickle may be used to save both the model and the label.
• In the end, we can visualize loss and accuracy.

3.1. AlexNet Architecture

AlexNet is the name of a convolutional neural network that has made a significant
contribution to the field of machine learning. This is particularly true for in-depth learning
in machine vision. The AlexNet architecture has 5 layers of flexibility, 3 layers of merging,
2 layers of standardization, 2 fully connected layers, and 1 softmax tile. The convolutional
filters and the nonlinear activation function ReLU are included in each convolutional
layer. Blending layers are used to create a variety of combinations. Due to the existence
of completely linked layers, the input size is modified. Convolutional neural networks
are a key component of neural networks. They are made up of neurons with a readable
weight and bias. Each specific neuron receives a number of inputs. Subsequently, it takes
a weight-bearing amount on top of it. Finally, it is transmitted by activating, turning and
releasing. The complete architecture of AlexNet is illustrated in Figure 5.

3.2. GoogleNet Architecture

GoogleNet is a 22-level deep congenital neural network. Its salient feature is to work
very fast. It has less memory usage and less power consumption. This neural network
utilizes the averaged value of global pooling and maximum pooling. For our pre-trained
model, it consists of four parallel paths. The inception blocks perform a convolution (1 × 1,
3 × 3, 5 × 5 window sizes) for spatial sizes and information extraction. The ReLU is also
included in the convolution layer. The inception block is utilized three times. The first two
inception blocks are used for 3 × 3 maximum pooling, while the third is used as a global
average pool linked by a thick layer. The complete architecture of GoogleNet is illustrated
in Figure 6.
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Figure 5. The pre-trained architecture of AlexNet.

Figure 6. The pre-trained architecture of GoogleNet.

3.3. Inception V4 Architecture

Concerning the deep CNN architectures, Inception is considered for a good perfor-
mance with a low execution cost. It was initially introduced in [31] as Inception v1. Then,
this architecture was improved with the concept of batch normalization to a new variant
named Inception v2. Next, factorization was introduced during iterations to form different
variants, i.e., Inception v4, Inception ResNet V1 and Inception ResNet V2. Inception v4 is
a slightly modified version of Inception v3. The Inception model and Inception ResNet
model are residual and non-residual variants; this is the main difference. Moreover, batch
normalization is only used on top of the traditional layer rather than residual summations.
The architecture of Inception v4 consists of the initial set of layers that were modified
to make it uniform. This is referred to as the “stem of the architecture” and is used in
front of the Inception block in the architecture. This does not require the partition of the
replicas, which enables a training feature. However, the previous versions of the Inception
architecture require a replica to fit in the memory. This also reduces the memory require-
ment because it uses memory optimization during backpropagation. In our paper, we use
Inception v4 and Inception ResNet V2. The explanation of Inception ResNet V2 is given in
the next section. The complete architecture of Inception V4 is illustrated in Figure 7.
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Figure 7. The pre-trained architecture of Inception V4.

3.4. Inception ResNet V2 Architecture

Inception ResNet V2 is a decisive neural structure built into the Inception family of
architectures. It incorporates residual connections (changes the filter concatenation stage
of Inception construction). It has an ability to split images into 1000 objects, e.g., mouse,
keyboard, pencil. The network has a read rich property to accept presentations of various
images. The network has an input image size of 299 × 299. The output is a vector form
of measurable probability. The complete build of the network is based on a combination
of the original structure and the remaining connections. Moreover, multiple heavy filters
are integrated with the remaining connections. The use of residual connections not only
prevents degradation (caused by deep structures) but also reduces the training time. The
complete architecture of Inception ResNet V2 is illustrated in Figure 8.

Figure 8. The pre-trained architecture of Inception ResNet V2.

3.5. ResNeXt-50 Architecture

ResNeXt-50 uses a squeeze and excitation (SE) block for each non-identity branch of a
residual block. It comprises 5 different sections, including convolution and identity blocks.
A single convolution block has three layers of convolution and each ID has 3 stages of
conversion. The SE block acts as a computational unit that performs transformations from
inputs to feature maps. It can be attached with different CNN architectures and residual
networks. The SE block is placed before summation, which increases the computational cost.
However, it enables ResNext-50 to achieve a higher accuracy as compared to ResNet-50.
The complete architecture of Inception ResNet V2 is illustrated in Figure 9.

Figure 9. The pre-trained architecture of ResNeXt-50.
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3.6. Performance Matrices

All of the previously mentioned CCNs were utilized in our experiments. We con-
sidered five parameters to evaluate the aforementioned CNN architectures to classify the
retina images. All these parameters were calculated using four important terms from the
confusion matrix, which are True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN). Therefore, the corresponding values for these parameters (accuracy,
error rate, precision, recall and Fscore) are given in Equations (1) and (4)–(6), subsequently.

Accuracy =
TP + TN

FN + TP + TN + FP
(1)

Recall/Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

Error =
1
N

j

∑
n=1
|yj − ŷj| (5)

Recall = 2×
{

Precision× Recall
Precision + Recall

}
(6)

The accuracy of the classifier depends on different parameters, as given in Equation (1).
Moreover, the rate of sensitivity interprets the ability of a classifier to correctly form the
target class, as given in Equation (2). Similarly, the rate of specificity illustrates the capability
of a classifier for separation, as shown in Equation (3). The precision rate evaluates the
determination of a certain class. Finally, FScore is the harmonic mean sensitivity (recall)
and accuracy value as set forth in Equation (6). The analytical average error value may be
determined using Equation (5). In our research, all associated evaluation parameters for
CNNs were computed. Consequently, the findings are presented in the next section based
on the above parameters.

4. Results and Implementation

This section provides the description of the proposed custom dataset, experimental
setup and obtained results.

4.1. Creation of Custom Dataset

We created our custom dataset of fundus images to grade the severity level of DR.
The proposed approach contrasts with the existing grading (as mentioned in Section 1.1),
which grades fundus images based on the pathological changes in the retina. In addition
to this, we consider the clinical practice; that is, we categorize a fundus picture of the
foundation of abnormalities and the treatment technique. For training and testing, the
pictures are divided and placed in different files. A custom script is created to determine
the kind of picture based on its tags. The pictures are then cropped and the essential
characteristics are separated. Furthermore, a filtering technique is employed to equalize
and contrast the picture modification. To increase the variety of data, data augmentation is
used. Finally, flipping, cropping and padding are performed. To summarize, the created
dataset comprises 1440 images for positive DR patients (high-risk).

4.2. Experimental Setup

We developed some fine-tuned CNN architectures to classify DR pictures. These
architectures are AlexNet, GoogleNet, Inception V4, Inception ResNet V2 and ResNeXt-50.
Each CNN architecture uses fully connected (FC) layers with a classification criticality of
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the final FC layer. The number of neurons in the final FC layer is calculated using the target
dataset. It is necessary to set and optimize these parameters as the CNN architecture itself
is not able to define parameters for the fine-tuning method. Therefore, the parameters are
defined using the results of training for the improvement of performance. We utilized the
Adam optimizer for the training of every network architecture with 30 epochs (maximum).
The batch size and initial learning rate for training and testing are 32, 8 and 1e-5, respectively.
We used Python (a programming language) to train the CNN models. All the experiments
were executed on an NVIDIA GPU (NVIDIA CUDA Version: 10.1 with Tesla P100) using
a Google Colaboratory. PyTorch version 1.5 was utilized to execute experimentation on
pretrained CNN models (AlexNet, GoogleNet, Inception V4, Inception ResNet V2 and
ResNeXt-50) using weights (This is a random value of initial weights for our pre-trained
CNN architectures). The aforementioned CNN architecture takes advantage of hyper-
parameters for DTL, as shown in Table 2.

Table 2. The setting of parameters for CNN architectures.

Parameters AlexNet GoogleNet Inception V4 Inception ResNet
V2 ResNeXt-50

Optimizer ADAM ADAM ADAM ADAM ADAM

Base learning rate 1e-5 1e-5 1e-5 1e-5 1e-5

Learning decay
rate 0.1 0.1 0.1 0.1 0.1

Momentum β1 0.9 0.9 0.9 0.9 0.9

RMSprop β2 0.999 0.999 0.999 0.999 0.999

Dropout rate 0.5 0.5 0.5 0.5 0.5

# of epochs 30 30 30 30 30

Train batch size 32 32 32 32 32

Test batch size 8 8 8 8 8

Total number of
parameters 60 M 4 M 43 M 56 M 27.56 M

4.3. Results and Analysis

The proposed methodology in this work was evaluated using the performance met-
rics (see Section 3.6), which were calculated during experiments. This methodology also
explores the fine-tuning of DTL, which includes the extraction of the features from pre-
trained CNN networks. The experimental study was conducted using our custom dataset
which is completely based on 4 publicly available datasets as described in Section 1.4. The
complete experimental process was based on five pre-trained CNN networks, i.e., AlexNet,
GoogleNet, Inception V4, Inception ResNet V2 and ResNeXt-50.

The process starts by evaluating the accuracy for a multi-class dataset. Next, k-fold is
utilized to evaluate the average classification accuracy. The value of the average accuracy
is calculated using the values of individual accuracy. The results illustrate the exploration
of the DTL method using feature extraction on pre-trained CNN networks. The results
are listed in Table 3 using our custom dataset (The performance of the experiments was
obtained using finetuned and pre-trained architectures for all k-folds). It is noteworthy
that the CNN classifies the images and reports a confusion matrix for each severity level
of disease.
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Table 3. Results and performance obtained using pre-trained CNN architectures.

Classifier Folds TP TN FP FN Accuracy (%) Specificity (%) Precision (%) Recall (%) Fscore (%)

AlexNet

F1 37 210 35 12 84.01 85.71 51.38 75.51 61.15

F2 38 210 37 12 83.50 85.02 50.66 76.0 60.80

F3 38 214 27 8 87.80 88.79 58.46 82.60 68.46

F4 37 216 27 8 87.84 88.88 57.81 82.22 67.89

F5 37 216 27 8 87.84 88.88 57.81 82.22 67.89

GoogleNet

F1 38 219 22 7 89.86 90.87 63.33 84.44 72.38

F2 40 222 19 7 90.97 92.11 67.79 85.10 75.47

F3 38 221 18 8 90.87 92.46 67.85 82.61 74.51

F4 37 220 18 8 90.81 92.43 67.27 82.22 74.00

F5 38 220 18 7 91.16 92.43 67.85 84.44 75.24

Inception V4

F1 39 224 21 7 90.37 91.42 65.00 84.78 73.58

F2 39 224 17 8 91.32 92.94 69.64 82.97 75.72

F3 39 225 16 8 91.66 93.36 70.90 82.97 76.47

F4 39 226 18 8 91.06 92.62 68.42 82.98 75.00

F5 39 222 20 8 90.31 91.73 66.10 82.98 73.58

Inception
ResNet V2

F1 40 220 18 6 91.55 92.44 68.96 86.96 76.92

F2 40 221 14 6 92.88 94.04 74.07 86.96 80.00

F3 40 227 14 7 92.71 94.19 74.07 85.11 79.21

F4 41 226 13 5 93.68 94.56 75.92 89.13 82.00

F5 39 223 18 6 91.61 92.53 68.42 86.67 76.47

ResNeXt-50

F1 41 233 8 5 95.47 96.68 83.67 89.13 86.31

F2 41 234 7 5 95.82 97.09 85.41 89.13 87.23

F3 42 234 6 4 96.50 97.50 87.50 91.30 89.36

F4 42 236 5 3 97.20 97.92 89.36 93.33 91.30

F5 41 236 5 2 97.53 97.92 89.13 95.35 92.13

Table 3 for different k-folds indicates the accuracy value for the employed pre-trained
models. The most accurate ResNeXt-50 model is 97.53% for fold-5 (fold-1 and fold-2 also
reach the same accuracy). It is clear that the accuracy of the model increases when we
increase the value of the fold. Our unique data package achieves the highest precision of
95.98% for fold-5 and the lowest precision of 84.01% for fold-1 for AlexNet models. The
same precision is achieved by fold-3, fold-4 and fold-5, for Alexnet and GoogleNet. As
regards the maximum individual accuracy of the pretrained models, we have AlexNet:
87.84%, GoogleNet: 91.16%, V4: 90.31%, ResNet V2: 91.61% and ResNeXt-50: 97.53%.
For all AlexNet and GoogleNet models pretrained we observe that V4, ResNet V2 and
ResNeXt-50 achieve comparable accuracy after fold-3; GoogleNet after fold-1, changing
after fold-5; ResNet V4 after fold-1, changing after fold-5; ResNet V2 for fold-2 and fold-3;
and ResNeXt-50 for fold-1, fold-2 and fold-5.

4.4. Comparison and Discussion

The comparison of our evaluation with the recent publications is presented in Table 4.
We found two recent publications and analyzed our implementation results. The authors
in [15] evaluated Alexnet and ResNet architectures using a small dataset. This collection
includes 4476 pictures from three clinical departments of the Sichuan Provincial People’s
Hospital. The authors in [11] implemented Inception V4 and ResNeXt-50 architectures with
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a dataset that is moderate in size. They utilized a pre-processing pipeline that converts a
set of fundus images into a uniform format. They used a modified version of the Inception-
V3 network. Subsequently, the performance is compared with several mainstream CNN
models. The authors in [11] classified the dataset into five different classes with AlexNet
and ResNet. The utilized dataset of 35,126 images exercised three types of ensembles.

In our work, we implemented several mainstream CNN architectures and evaluated
five different parameters with DTL using our custom data. The authors in [24] exploited
a modified version of Lenet-5 architectures that is quite old. However, in our study, we
exploited recent CNNs. Regarding evaluation scores, the proposed methodology efficiently
classifies images in different classes as DR, normal, mild, moderate, severe and high-risk.
From our analysis, we conclude that the fine-tuning of a pre-trained CNN architecture
with DTL could be employed as one of the efficient techniques in the medical field for the
classification of DR images.

It is noteworthy that high-risk DR patients lie in the proliferate category. They require
an immediate cure and diagnosis. In our diagnosis method, we exploit DR images of
patients that reflect the posterior pole. Using a high resolution ultimately elevates the size
of the dataset, which may increase the execution time for the classification. However, the
use of low-resolution DR images could affect classification due to the lack of clear media. In
this research work, we used high-resolution datasets from different sources as mentioned in
Section 1.4. To handle this issue, we executed pre-processing of data where the DR images
were resized and augmentation was performed for the picture enhancement. Last but not
least, there is still a possibility of an error during classification that could be reduced, but
the accuracy of the dataset reflects the correctness of the diseases. From the comparison of
the state-of-the-art, we conclude that our datasets achieve better accuracy and this was the
main goal of this research work.

Table 4. Comparison with state-of-the-art classifiers.

Classifiers
Alexnet Inception V4 ResNet/ResNeXt-50

Acc (%) Pre (%) Rec (%) Acc (%) Pre (%) Rec (%) Acc (%) Pre (%) Rec (%)

Our Work 87.84 57.81 82.22 90.31 66.10 82.98 97.53 89.13 95.35

S. Kumar et al. [11] 60.10 – – – – – 55.70 – –

Z. Gao et al. [15] – – – 88.72 95.77 9484 87.61 95.76 95.52

Acc: Accuracy, Pre: Precision, Rec: Recall.

5. Conclusions and Future Work

In this article we have provided a deep-transfer-learning technique, based on convo-
lutional neural networks, for the categorization of diabetic retinopathy patients. In order
to investigate the proposed deep-transfer-learning technique, five pre-trained convolu-
tional neural network models were employed. It was observed that the fine tweaking
of pre-trained models may be used effectively on a multi-class dataset. As a result, the
diagnosis efficiency for diabetic retinopathy patients has been improved. Across all the
five employed models, the ResNeXt-50 architecture achieved a maximum accuracy of
97.53 % for our dataset. Our high-accuracy findings can assist doctors and researchers in
making clinical judgments. Our work includes a few limitations that can be addressed in
future research. A more in-depth examination is needed, which requires more patient data.
Future study should also focus on differentiating the accuracy of individuals with normal
symptoms from those with non-proliferate symptoms. The non-proliferate symptoms may
not be properly visible on retina images, or may not be visualized at all. Another probable
direction is to apply the proposed method to larger datasets. It may address other medical
problems such as cancer and tumors, as well being applicable in other computer vision
industries such as energy, agriculture and transportation.
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