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Abstract: Biometric identification systems are a fundamental building block of modern security.
However, conventional biometric methods cannot easily cope with their intrinsic security liabilities,
as they can be affected by environmental factors, can be easily “fooled” by artificial replicas, among
other caveats. This has lead researchers to explore other modalities, in particular based on physiologi-
cal signals. Electrocardiography (ECG) has seen a growing interest, and many ECG-enabled security
identification devices have been proposed in recent years, as electrocardiography signals are, in partic-
ular, a very appealing solution for today’s demanding security systems—mainly due to the intrinsic
aliveness detection advantages. These Electrocardiography (ECG)-enabled devices often need to meet
small size, low throughput, and power constraints (e.g., battery-powered), thus needing to be both
resource and energy-efficient. However, to date little attention has been given to the computational
performance, in particular targeting the deployment with edge processing in limited resource devices.
As such, this work proposes an implementation of an Artificial Intelligence (AI)-enabled ECG-based
identification embedded system, composed of a RISC-V based System-on-a-Chip (SoC). A Binary
Convolutional Neural Network (BCNN) was implemented in our SoC’s hardware accelerator that,
when compared to a software implementation of a conventional, non-binarized, Convolutional Neu-
ral Network (CNN) version of our network, achieves a 176,270× speedup, arguably outperforming
all the current state-of-the-art CNN-based ECG identification methods.

Keywords: electrocardiography identification; binary neural networks; system-on-a-chip

1. Introduction

Conventional biometric recognition methods require the person to pass the finger
through a reader (e.g., fingerprint), to talk to a microphone (e.g., voice recognition), or to
look at a video camera (e.g., face or iris recognition). Such methods have intrinsic security
limitations, as they can be affected by light or ambient noise, and can be easily “fooled” by
artificial replicas (e.g., silicone finger replicas, audio recordings or pictures). Such caveats
have driven researchers in the field to explore other alternatives [1,2]. ECG signals have
demonstrated particularly advantageous properties, becoming a practical alternative for
real-world deployment with modern approaches that addressed the usability constraints of
this modality.

In particular, invisible ECG enables signal acquisition, with the sensors integrated
in everyday use objects, without the user having to go through complex procedures like
in conventional ECG hospital equipment [3]. There has been an increasing number of
applications where invisible ECG allows the creation of a highly granular ECG medical
history, useful for prevention and monitoring of cardiovascular diseases. In many use
cases, everyday use objects are shared between multiple people, reason for which an ECG
identification is required to separate the users’ ECG record history. Possible applications
include ECG monitoring in sanitary facilities [4] and in vehicles through sensors integrated
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in the steering wheel [5]. Considering that the ECG sensor is already integrated in elements
of the target application, a major advantage of using ECG biometrics is the fact that it does
not require any additional action from the user. These ECG-enabled devices often need to
associate the collected signals with the corresponding user on the edge, with small size,
low throughput, and power constrains (e.g., battery operation), thus needing to be both
resource and energy-efficient. This system implements a BCNN, the ECG-ID-BNet [6], in a
SoC Field-Programmable Gate Array (FPGA) targeting the deployment in an invisible ECG
acquisition system for sanitary facilities [4], in an invisible ECG paradigm. As described
in [6], 3 heartbeats are required to perform an accurate biometric identification based on
invisible ECG signals, reason for which a latency requirement of tr = 3 × 60

150 = 1.2 seconds
(s) for the whole identification process was imposed, in order for the system to achieve
real-time identification.

The rest of the paper is organized as follows. Section 2 provides an overview of
current RISC-V processors and current CNN acceleration techniques. Section 3 introduces
the SoC and describes the hardware platform. Section 4 outlines the hardware accelerator
of ECG-ID-BNet. Section 5 summarizes the experimental results obtained. Finally, Section 6
concludes this work and presents its main outcomes and future work.

2. State-of-the-Art
2.1. RISC-V Processors

Several processors were considered for this work, namely microcontrollers with ARM
and Xtensa (e.g., ESP32) based cores. However, due to energy constrains derived from the
project’s application domain, an FPGA was targeted as the preferred hardware platform.
The RISC-V Instruction Set Architecture (ISA) was first developed in 2010, at UC Berkeley,
and has been gaining popularity in both academia and industry [7]. The supported ISA
is fundamental to a CPU, since, together with the compiler, it links the hardware and the
software by mapping the high level software constructs into low level instructions that the
CPU can and will execute [8]. Compared with other architectures, the RISC-V provides a
number of advantages that makes it especially attractive for development [9]:

• The open-source nature allows any interested entity access to the source Intellectual
Property (IP) of the cores without any licensing issue;

• Even though the development of the ISA is open-source, its major features are already
well defined and stable, which also attracts software development;

• Additional functionalities are available through a set of extensions, which are also
well defined after stabilization;

• Due to its modular nature, the ISA is suitable for both high performance and low
power integrated circuit applications. Additionally, specialized application processors
that feature dedicated accelerators are also supported by the ISA.

This rising support is mainly due to it’s open-source characteristic and the advantages
listed above, which enables developers to create their own cores following the RISC-V
ISA guidelines. However, the other core attributes must be defined by the developer.
Therefore, a wide range of different memory interfaces (examples: AXI and Wishbone) and
configurations is used to add peripherals to the core, access memories or control execution.
One processor can use separate AXI interfaces to access instruction or data memories,
while another core (i.e., processor) uses a single Wishbone bus to access both [9]. This
heterogeneity complicates the choice of the right processor for a specific use-case, among
all the options core landscape. Due to the complexity of the implementations, many cores,
although supported by variety of toolchains, will not work out-of-the-box in the specific
user target platform. In the scope of this work we focused in open-source, FPGA-optimized
implementations. Other requirements were introduce in order to narrow down the number
of cores explored, such as:
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• As some singularities of ASIC-targeted designs, for instance the memory generator
usage, might make them unusable for an FPGA implementation, these kind of designs
were discouraged for this work;

• Cores must be able to support the recent versions of the ISA in order to be targeted by
the recent versions of the software toolchain.

Following these criteria, some notable cores have been summarized in Table 1. This
table displays some open-source RISC-V processors and some of the most important
features when selecting a processor for a given application.

Table 1. Properties of selected 32-bit RISC-V cores. Adapted from [10] and from own research.

Name Pipe Line
Stages Bus Arch HDL SIMD Debug

Support License Last
Update Cache

Freedom 5 TL/AXI Chisel N Y BSD No more
Support Y

ORCA 5 WB AXI VHDL N N BSD 2019 Y

RI5CY 4 AXI Verilog Y Y Solder pad 2021 N

Zero-Riscy 2 AXI Verilog N Y Solder pad 2018 N

OPenV 3 AXI Verilog N N MIT 2018 N

VexRiscv 5 AXI Spinal
HDL Y Y MIT 2021 Y

Roa Logic RV12 6 AHB WB Verilog N Y Non 2018 Y

SCR1 4 AXI Verilog N Y Solder pad 2021 N

Humming
Birdv2 E200 2 AXI Verilog N Y Apache 2021 Y

Shakti 3 AXI Bluespec N N BSD 2019 Y

ReonV 7 AHB VHDL N Y GPL v3 2018 Y

Pico RV32 0 AXI Verilog N N ISC 2020 N

SweRV EH1 9 AXI Verilog N Y Apache 2021 Y

Taiga 3 AXI Verilog N N Apache 2020 Y

Potato 5 WB VHDL N N BSD 2018 Y

Flutte 5 AXI Verilog N Y Apache 2021 Y

Piccolo 3 AXI Verilog N Y Apache 2021 Y

In [9], the authors performed a thorough evaluation of the performance and efficiency
of some of the cores listed in Table 1. Their selection of cores for a close evaluation consists
of: Piccolo and Flute, Orca, PicoRV32, SweRV, Taiga and VexRiscv, also, as a “gold standard”,
they used a 5 and a 8 stage proprietary cores. As these cores have configurations that
differ from one another, the authors were careful to make the same configurations for
all cores, allowing a fair comparison between them (e.g., cache was disabled for all that
support this feature). To evaluate them in real hardware, the authors also used the so
called TaPaSCo [11], a system-on-chip generator for FPGAs, to easily generate bitstreams
for a variety of platforms without having to deal with low level integration details. The
hardware used consisted in an array of Xilinx made FPGA platforms: (1) AU250; (2) PYNQ;
(3) VC709; (4) ZCU102. The chosen evaluation metrics were Single Core Performance and,
since the target hardware are FPGAs, Resource Utilization.

To evaluate the performance, there are many widely used benchmarking options,
most notably, there is the CoreMark and the DMIPS. For the latter, the results were quite
surprising. The two proprietary cores (the authors did not mentioned their names nor
their authors), which in theory had a high level of optimization, actually performed quite



Sensors 2022, 22, 348 4 of 16

poorly when compared with some open source cores. With this benchmark, we can also
observe that some cores have less Instructions Per Clock (IPC) but achieve reasonable
results with higher working frequencies, such as the PicoRV32. The results were similar in
both benchmarks; the most performing cores were the Taiga, VexRiscv and the Orca.

In terms of resource usage the results were also surprising. The cores that actually had
a better performance were the ones that also consumed the least FPGA resources. Meaning
that those cores, especially Taiga, Orca and VexRiscv are highly optimized in terms of
performance and resource usage.

2.2. FPGA-Based CNN Accelerator

This section presents methodologies from previous works that aim to accelerate the
inference of CNNs and recent approaches to ECG identification. The first section focuses
on conventional CNNs and next section (Section 2.3) specifically targets BCNNs and
ECG identification.

FPGA-based CNN accelerators aim to improve inference performance by parallelizing
the CNN forward propagation. There are 6 main ways to parallelize a CNN’s inference [12]:
intra convolution parallelism, inter convolution parallelism, inter feature map parallelism,
intra feature map parallelism, inter layer parallelism and batch parallelism. This section
will review previous works based on the implementation of 2D CNNs.

Some previous FPGA-based CNN accelerators [13–15] follow a standard architecture
that entails: an external memory, used to hold the CNN’s parameters and input/output
feature maps; an input and output buffer to cache the input and output feature maps; a
Processing Element (PE) that processes the operations required to compute the outputs
using the cached inputs and the weights that are maintained in a PE’s internal buffer; and a
controller which controls the overall execution.

In works such as [13,14], a PE performs concurrent Multiply and Accumulate (MAC) op-
erations to solve a single 2D convolution. This is an example of intra convolution parallelism.

The authors of [13] take advantage of inter convolution parallelism. Their accelerator
implements a PE that is capable of processing multiple input feature maps, by summing
the result of multiple concurrent 2D convolutions with the objective of computing a single
3D convolution necessary to produce an element of a output feature map.

By having an array of PEs, where each PE is designed to compute a single output
feature map at the time, the approaches found in [13,15,16] are able to concurrently process
multiple output feature maps, which is a form of inter feature map parallelism.

In [17], the authors implemented all layers in a pipelined structure that enables the
execution of all layers concurrently, while requiring a substantial amount of FPGA resources.
This is an example of inter layer parallelism. In the same work, the authors propose a divide
and conquer strategy in the computation of fully connected layers that, if executed all at
once, require a substantial amount of memory to hold all the operands. They divide the
operation into multiple simple sub-convolutions, whose results can be accumulated to get
the final result; this is an example of batch parallelism.

In [18], the authors note that in modern CNN architecures, such as [19], in deeper
convolutional layers, the number of input/output channels surpass the actual input/output
feature map size. In such CNNs, the authors argue that intra feature map parallelism is
preferred over inter feature map parallelism.

2.3. BCNN-Based Optimization

Quantization of the network’s parameters is a popular practice to save memory usage
and increase computational performance. The parameters are typically represented by
32-bit floating-point values, however, the hardware required to process floating-point data
is much more complex and slower, comparatively to what is needed to handle integer
data [20]. An approach commonly found in the literature is to quantize floating point
values to 8- or 16-bit integer values, but a more extreme quantization can be performed.
Binary Neural Network (BNN)s, first proposed by Courbariaux et al. in [20], introduced
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the concept of constraining the activations and the parameters of a Neural Network (NN)
to either +1 or −1 [20], allowing a 1-bit representation. This new quantization paradigm
helps minimize the memory footprint.

FPGA implementations of BCNN follow a similar architecture as conventional CNNs.
The main difference lies with the datapath structure of each PE, where the multipliers and
adder trees seen in conventional CNN accelerators are replaced with logic that implements
the XNOR Dot Product (XNP) operation (described in [20]). In [21], the authors propose a
pipelined PE datapath consisting of four stages: XNOR, popcount, accumulation and Batch
Normalization (BN) + binarization. Works such as [16,18,21,22] employ intra and inter
convolution parallelism, in addition to inter feature map parallelism.

The novel ECG-ID-BNet [6], a BCNN that implements ECG classification, was used as
the ECG identification method and it is detailed in Table 2, where unit refers to a sequential
stack of a convolutional/fully connected layer, a max pooling layer (if present) and a batch
normalization layer. The BCNN was evaluated on real-world data from the Physionet
Computing in Cardiology Challenge 2017 dataset [23] (containing 8528 ECG recordings
lasting from 9 to just over 60 seconds, acquired at the hand palms using the AliveCore
(https://www.alivecor.com/, accessed on: 1 October 2021) device and from our own
dataset collected containing ECG data collected at the thighs using an experimental device
integrated in a toilet seat cover [4] (further described in [6]).

From the AliveCore dataset we randomly selected ECG recordings classified as normal
and with 60 s duration for 50 different subjects, while our dataset contains ECG recordings
lasting approximately 180 seconds for 10 different subjects. The best results with ECG-ID-
BNet were obtained using 4 convolutional and 1 fully-connected units, and it managed
to achieve a 100 ± 0(%) and 99.3 ± 3.2(%) accuracy on the AliveCore dataset and our
dataset, respectively. Comparatively with the state-of-the art [24] these results exhibit
similar accuracy, hence demonstrating that the BCNN approach does not degrade the
quality of the recognition, with the advantage of improved computational performance.

Table 2. ECG-ID-BNet architecture. Extracted from [6].

# Filters/Neurons Input Fmaps
(c, x)

Output Fmaps
(c, x) Max Pooling

Convolutional
Unit 1 128 (1, 180) (128, 174) N

Convolutional
Unit 2 64 (128, 174) (64, 168) N

Convolutional
Unit 3 128 (64, 168) (128, 162) N

Convolutional
Unit 4 64 (128, 162) (64, 78) Y

Fully connected
Unit 50 (4992, 1) (50, 1) N

3. Software Implementation

In an effort to deploy the ECG-ID-BNet on the edge, the IOb-SoC (https://github.c
om/IObundle/iob-soc, accessed on: 1 October 2021) was implemented in a FPGA, as it
provides a convenient and efficient infrastructure to create FPGA SoC. In this section, the
software implementation is described.

3.1. Hardware Platform

IOb-SoC is an open-source RISC-V based SoC platform written in Verilog. This
platform is composed of a RISC-V soft-core, the PicoRV32 (https://github.com/clifford
wolf/picorv32, accessed on: 1 October 2021), an internal SRAM subsystem, an optional
external memory interface and peripherals. It implements the RISC-V RV32IMC instruction

https://www.alivecor.com/
https://github.com/IObundle/iob-soc
https://github.com/IObundle/iob-soc
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
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set [7] and it can be programmed with the RISC-V GNU Compiler Toolchain (https://gi
thub.com/riscv-collab/riscv-gnu-toolchain, accessed on: 1 October 2021). The hardware
platform selected to implement the IOb-SoC was the FPGA development board Basys3 (ht
tps://digilent.com/reference/programmable-logic/basys-3/start, accessed on: 1 October
2021), which features a Xilinx Artix-7 XC7A35T FPGA whose main characteristics are
shown in Table 3.

Table 3. XC7A35T FPGA main specifications.

LUTs FFs 36 kb BRAMs DSP Slices

33,280 41,600 50 90

3.2. ECG-ID-BNet Memory Usage

As the target hardware platform to deploy the NN is a resource constrained embedded
system, the memory usage of the NN must be carefully monitored. A memory usage study
of ECG-ID-BNet, whose architecture is detailed in Table 2, was conducted in order to define
the memory necessary to: (1) hold the network’s parameters; and (2) hold the input/output
feature maps of each layer.

In Table 4, each unit’s memory usage is summarized. The convolutional units have
a considerably lower number of parameters when compared to the fully connected one.
As a requirement for the hardware platform, it is concluded that ECG-ID-BNet requires
57,200 Bytes of memory to hold the parameters and two buffers of at least 2784 Bytes each
to hold the units’ input/output feature maps.

Table 4. ECG-ID-BNet memory usage summary.

Input Fmaps (Bytes) Output Fmaps (Bytes) Parameters (Bytes)

Convolutional
Unit 1 180 2784 2048 (3.6%)

Convolutional
Unit 2 2784 1344 7680 (13.4%)

Convolutional
Unit 3 1344 2592 8192 (14.3%)

Convolutional
Unit 4 2592 624 7680 (13.4%)

Fully Connected
Unit 624 200 31,600 (55.2%)

Max: 2784 Total: 57,200 (100%)

3.3. Memory Reorganization

The traditional storing order of a filter’s weights is (x, c), where x indicates the kernel
width dimension and c the channel dimension. However, this work proposes the weight
arrangement (c, x), illustrated in Figure 1.

Doing this rearrangement enables inter convolution parallelism, allowing the fast
computation of a single output feature map element. Furthermore, every ECG-ID-BNet
layer (see Table 2) has a 64 multiple number of input filters, with exception of the first
layer. With this ECG-ID-BNet feature, it is possible to group 64 1-bit weights in 64-bit
blocks. 64-bit was chosen as the size of the blocks, over other valid bit widths such as 32-bit,
in order to ensure compatibility between the software application and the IP developed
in Section 4. By having weights memory arrangement, it is possible to enable operand
parallelism, taking advantage of the 32-bit computing of the targeted processor if the input
feature maps are also in the (c, x) arrangement.

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://digilent.com/reference/programmable-logic/basys-3/start
https://digilent.com/reference/programmable-logic/basys-3/start
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Figure 1. Weights reordering on a filter that expects 3 input channels and whose kernels have size 3.

3.4. Execution Flow

Each unit’s output becomes the following unit’s input. This enables the adoption
of two memory buffers, used in a ping-pong fashion, where their place alternate every
unit iteration.

Figure 2 depicts the high-level flowchart of the software application. A pre-compiled
binary file with all necessary ECG-ID-BNet parameters is used for inference. The file
contains: global parameters, such as number of units and convolutional kernel size; unit
parameters, including the type of unit, the presence of max pooling, the unit’s relative
position in the network, number of input and output feature maps, output feature map
size, and the convolutional/fully connected layer’s parameters (weights and binarization
thresholds for first and hidden units). A Pseudo SoftMax, instead of SoftMax, is performed
on the batch normalized outputs of the last unit, where the predicted class is assigned by
determining the max output value, skipping the probability distribution transformation
carried out by SoftMax.

Figure 2. High-level workflow of the software.
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3.5. IOB-Soc Configuration

The memory requirements of ECG-ID-BNet are presented in Section 3.2. Considering
the resources of the hardware platform (briefed in Table 3), it was concluded that the
memory resources of the FPGA are sufficient to hold the firmware and to satisfy the
BCNN’s memory needs. Hence, the external memory is not necessary. Special care was
taken to the dimensioning of the SRAM since, beyond the parameters and the firmware,
the program’s stack, where the input and output feature map buffers reside, also takes a
considerable amount of memory and thus needs to be taken into account.

IOb-SoC’s SRAM is composed of cascaded 36 kb Block RAM (BRAM)s and the BRAMs
are configured to be byte-addressable, by having the configuration 4k × 9 (9-bit 4 k words)
and ignoring one bit per word. Considering the sections memory sizes in Table 5, a
preliminary test was conducted using a 128 kB SRAM implementation; the program ran
successfully, thus validating the SRAM’s size. The final SRAM memory address mapping is
described in Table 6. Since each BRAM has 4k 9-bit sized words, the total SRAM’s expected
usage of BRAMs is given by 128k

4k = 32.

Table 5. IOb-SoC ECG-ID-BNet SRAM section memory size.

Section Memory Size (Bytes)

Firmware 28,024

Stack Unknown

Model Parameters 57,200

Table 6. IOb-SoC ECG-ID-BNet SRAM address mapping.

Section Address Range

Firmware 0x00000–0x06D78

Stack 0x06D79–0x0FFFF

Model Parameters 0x10000–0x1FFFF

3.6. IOb-SoC Optimization

Contrary to the BCNN software implementation, which is able to have a speedup
of 32 in all units (except the first) over a CNN implementation (see Section 3.3) due its
inter convolution parallelism, a conventional CNN cannot achieve any kind of parallelism
during inference in a software implementation (using only one core). Thus, a PicoRV32
software implementation of the inference of a conventional CNN version of ECG-ID-BNet
would take around tswCNN = 0.24 + 32(0.37 + 0.4 + 0.34 + 0.01) = 36.1 s. This implies a

speedup of
tswCNN

tswBCNN
= 36.1

1.36 = 26.5 of a BCNN version over a conventional CNN one.
The performance results show that a software only approach is not able to achieve

real-time ECG identification, since the overall identification process (preprocessing, feature
extraction and classification) needs to be under 1.2 s (see Section 1) and only the ECG-ID-
BNet takes 1.36 s > 1.2 s. As such, a more efficient solution for the ECG-ID-BNet inference
is needed.

4. IP-Core

An IP core was designed to execute ECG-ID-BNet in the same FPGA used in Section 3.
The hardware architecture (illustrated in Figure 3), selected based on the state-of-the-art
review (Section 2.2), is similar to the ones developed in the works [13–15]. Two methods of
CNN parallelism were used: (1) inter convolution, by having a PE processing Nops inputs,
each belonging to a different feature map; and (2) inter feature map, by having a group of
NPEs PEs concurrently computing multiple output feature maps (i.e., each PE executes one
filter). These allow all PEs to process the same input feature map elements, thus reducing
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the required input memory bandwidth. The possible number of concurrently processed
input feature maps is limited due to BRAM bandwidth, which is explored in Section 4.2.

Figure 3. ECG-ID-BNet accelerator high-level architecture. The blue arrows represent the control
signals, while the black arrows depict the datapath. Nops denoted the number of operations each PE
processes at a time and NPEs denote the number of processing elements.

4.1. Execution Flow and Control

The control unit of the proposed IP is subdivided into two units that work in parallel:
(1) the parameters control unit, responsible to download the parameters of each filter from
the parameters RAM into each corresponding PE internal buffer; and (2) the execution
control unit that oversees the inference process by controlling the PEs and input/output
feature map RAMs via control signals. Both control units are accomplished with finite
state machines.

In Figure 4, a depiction of the execution flow is presented. In the scope of this work
“session” is defined as the computation of NPEs output feature maps concurrently by the PEs,
thus multiple sessions are needed in order to fully execute a layer, e.g., with NPEs = 32 and
Nout_c = 64, Nsessions =

Nout_c
NPEs

= 2 are needed. Moreover, an “even” and “odd” session refer
to an even numbered session (e.g., session 0) and to an odd nuber session (e.g., session 1).
The ECG-ID-BNet inference starts with a setup phase, which involves downloading the first
batch of NPEs filters, to enable the execution of the first session. After that, the execution
parameters control units work concurrently in a ping-pong fashion: when one is working in
an “even” session, the other is working in an “odd” one.

This promotes execution performance, but puts a memory constrain in the internal
PE memories, since they need to be large enough to hold two sets of filters’ weights at a
time. The control unit employs counters to iterate through the network’s inference iterators.
The input/output memory module contains an address calculator, which uses a counter to
keep track of the current output address and current output channel to compute the PEs’
outputs memory destinations.
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Figure 4. ECG-ID-BNet IP core execution flow.

4.2. Memory Specification

The target FPGA contains 50 36kb BRAMs (detailed in Table 3), and each BRAM can
be configured as single-port RAM, simple dual-port RAM, true dual-port RAM, simple-port
RAM or dual-port RAM [25]. The simple dual-port RAM is the configuration that enables
maximum port width; due to the FPGA constraints, the BRAM’s depth × width ratio must
be one of the following: 32k × 1; 16k × 2; 8k × 4; 4k × 9; 2k × 18; 1k × 36; or 512 × 72 [26].

This IP uses the internal FPGA BRAMs to hold three main data components: (1) NN
parameters; (2) weights for each filter; and (3) input and output feature maps. In Table 7, a
detailed ECG-ID-BNet memory usage is shown, where the memory necessary to hold the
weights of each filter/neuron are indicated.

Table 7. ECG-ID-BNet memory usage per filter/neuron in each unit summary.

# Filters/Neurons Parameters (Bytes) Filter/Neuron
Memory Size (Bytes)

Convolutional
Unit 1 128 2048 (3.6%) 16

Convolutional
Unit 2 64 7680 (13.4%) 120

Convolutional
Unit 3 128 8192 (14.3%) 64

Convolutional
Unit 4 64 7680 (13.4%) 120

Fully connected Unit 50 31,600 (55.2%) 632

Total: 57,200 (100%) Max: 632

The memory holding the parameters is configured as a multiple cascaded single-port
RAM. The amount of BRAMs needed to support the parameters is defined by 57,200×8

36k = 12.41
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(ECG-ID-BNet’s parameters size divided by BRAM size), which gives a total of 13 BRAMs.
As shown in Table 4, the two buffers must have a minimum size of 2784 bytes; this can be
accomplished with a single BRAM for each of them. Similarly, in Table 7, it is possible to
check that the maximum filter or neuron size is 632 bytes, and since each PE’s weights buffer
must be able to hold two filters/neurons, it’s minimum size must be 632 × 2 = 1264 bytes,
which can also be accomplished with a single BRAM.

Due to the fact that the weight and input/output RAMs are composed of a single
BRAM, the maximum possible width, due to the FPGAs constraints, is 72 bits, unless more
BRAMs are cascaded. However, that would deplete rapidly the number of BRAMs available
and consequently the possible number of PEs. Using the same memory reorganization
described in Section 3.3, each PE processes multi-bit blocks of inputs and weights, enabling
inter convolution parallelism. Additionally, by analysing the topology of ECG-ID-BNet
(Table 2), it is possible to conclude that the number of input feature maps is always a
multiple of 64, with the exception of the first unit. This enables a fast and simple computing
of output feature map elements by each PE, if the number of concurrently processed
inputs and weights Nops is 64, which is possible to achieve by configuring the weights and
input feature map BRAMs as 512 × 72 and using 64 out of the 72 bits of the configured
BRAM width.

The memory generator [25] was used to generate the parameters, input feature maps,
output feature maps and each of the weights RAMs. Table 8 summarizes the configurations
of each RAM generated. The maximum possible number of PEs is thus limited by the
amount of available BRAMs. Since the target FPGA features 50 BRAMs (detailed in Table 3),
the maximum number of PEs is given by NPEsmax = 50 − 15 = 35. However, by inspecting
the number of executing sessions it takes to compute each layer, it is possible to reduce the
number of PEs to 32, without penalizing performance, as shown in Table 9.

Table 8. RAM configurations summary.

# BRAMs RAM Configuration (depth × width)

Parameters 13 7168 × 64

Input Feature Map 1 512 × 64

Output Feature Map 1 512 × 64

Weights 1/PE 512 × 64

Total: 15 + NPEs

Table 9. Number of executing sessions required to compute each ECG-ID-BNet layer, in function
of NPEs.

# Filters/Neurons # Sessions Required

Convolutional Unit 1 128 4NPEs=32, 4NPEs=35

Convolutional Unit 2 64 2NPEs=32, 2NPEs=35

Convolutional Unit 3 128 4NPEs=32, 4NPEs=35

Convolutional Unit 4 64 2NPEs=32, 2NPEs=35

Fully Connected Unit 50 2NPEs=32, 2NPEs=35

Total: 14NPEs=32, 14NPEs=35

5. Results

This section presents the results of the various results obtain throughout the course of
this work, namely the performance results of both the software and IP core implementations.
Additionally, a comparative analysis between the two implementations is made.
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5.1. Software Implementation

With the objective of implementing the IOb-SoC in the Basys3 development board,
a synthesis and implementation were performed, where the SoC’s internal SRAM was
pre-loaded with the firmware and the ECG-ID-BNet’s parameters. The IOb-SoC hardware
design was completed and FPGA implementation was conducted.

The FPGA resource usage are presented in Table 10 and the clock frequency for the
PicoRV32 was finalized at 100 MHz. This clock frequency was chosen given that it is
near the maximum possible operating frequency, also being the same frequency of the
IP-Core (detailed in Section 4), hence being beneficial for the performance profiling shown
in Section 5.2. Among the BRAMs used by IOb-SoC, 1 is used for its internal bootloader
and the other 32 are used for the SRAM.

The ECG-ID-BNet was executed in the IOb-SoC and every unit’s execution times
were monitored; the results are presented in Table 11. A compiler optimization was tested
(O3) and it resulted in a 40% execution speedup, when compared to a non-optimized
implementation. The highest execution time is observed in the convolutional units, where
the program spends 99% of the time.

Table 10. IOb-SoC with ECG-ID-BNet parameters and firmware pre-loaded FPGA resource utilization
(relative to FPGA’s resources).

LUTs FFs 36 kb BRAMs DSP Slices

2233 (6.7%) 1212 (2.9%) 33 (66%) 4 (4.4%)

Table 11. Execution time of the ECG-ID-BNet IOb-SoC @ 100 MHz, software only implementation.

Unit No Optimization Execution
Time (s)

O3 Optimization Execution
Time (s)

Convolutional Unit 1 0.3 (15.6%) 0.24 (17.8%)

Convolutional Unit 2 0.55 (28.1%) 0.37 (27.1%)

Convolutional Unit 3 0.57 (29.5%) 0.4 (29.2%)

Convolutional Unit 4 0.5 (26%) 0.34 (25%)

Fully Connected Unit 0.014 (0.75%) 0.01 (0.73%)

Total: 1.9 (100%) Total: 1.36 (100%)

5.2. ECG-ID-BNet IP-Core

With the purpose of evaluating the developed IP core, a synthesis was performed. A
resource utilization report was made to the four main modules of the IP. The report is
represented in Table 12, where the PE cluster is the module containing all NPEs = 32 PEs.
It shows that, relatively to the FPGA resources, there is 19% LUT, 10% FF, 94% BRAM
and 0% DSP usage. The PE cluster uses on average 103 LUTs and 109 FFs per PE. The
input/output memory module, beyond the 2 BRAMs, uses logic resources for the output
address calculator. No DSP slice is used because the proposed IP does not require complex
computations, such as multiplications or divisions. The control unit uses 543 LUTs for its
finite states machines and various counters, of which 258 are dedicated to the parameters
control unit and 285 for the execution control unit. Along the synthesis, it was imposed a
clock frequency constraint of 100 M Hz as a first proposition and a timing report revealed a
Worse Negative Slack (WNS) of 1.1 ns.

A simulation of the IP core execution was made for performance profiling purposes.
Table 13 shows the results, where the execution times are presented, per unit, alongside
the software only implementation (O3 level optimized) already shown in Section 5.1.
Additionally, the speedup that the IP core manages to achieve over the software only
execution is also represented. In comparison with other units, the first one achieves half
the speed up. This is due to the fact that each PE is only able to process a single input and
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weight at a time. Another notable observation is the increased inter convolution parallelism
that the IP core has over the software implementation, since each PE processes 64 inputs
and weights at the time, while the other processes 32 inputs and weights at a time. This fact
is especially visible on the speed up difference between the first and the other convolutional
units, where the first unit’s speedup is half of that of the others.

Table 12. ECG-ID-BNet IP core FPGA resource utilization.

LUTs FFs 36 kb BRAMs

Control Unit 543 (13.5%) 623 (14.7%) 0 (0%)

Parameters Memory 0 (0%) 0 (0%) 13 (27.7%)

Input/Output
Memory 158 (3.9%) 102 (2.4%) 2 (4.3%)

PE Cluster 3312 (82.5%) 3517 (82.9%) 32 (68.1%)

Total 4013 (100%) 4242 (100%) 47 (100%)

Table 13. Performance profiling of the ECG-ID-BNet inference in the proposed IP core @ 100 MHz
compared with PicoRV32 @ 100 MHz (software only implementation, optimized with O3 level).

Unit PicoRV32 @ 100 MHz(s) IP Core @ 100 MHz(µs) Speedup

Convolutional
Unit 1 0.24 (17.8%) 49.6 (24.2%) 4839×

Convolutional
Unit 2 0.37 (27.1%) 47.2 (23%) 7839×

Convolutional
Unit 3 0.4 (29.2%) 45.6 (22.3%) 8772×

Convolutional
Unit 4 0.34 (25%) 43.8 (21.4%) 7763×

Fully Connected
Unit 0.01 (0.73%) 18.6 (9.1%) 537×

Total: 1.36 (100%) Total: 204.8 (100%) 6641×

The last unit is not able to accomplish nearly as much speedup as the rest of the units.
This is due to the fact that, contrary to the convolution layers, the fully connected layer’s
parameters are numerous (see Table 4) and downloading them onto each PE’s internal
memory takes about 5× longer than the other layers. The execution of this unit is faster than
its parameters downloading process, thus, most of the time spent in this unit the execution
is idle. As stated in Section 3.6, a conventional CNN version of ECG-ID-BNet would take
36.1 s to execute in a software-only paradigm. Thus, we argue that this BCNN accelerator
achieves at least a

tswCNN
tIPBCNN

= 36.1 s
204.8µs = 176,270 speedup over the CNN PicoRV32 software

implementation. In addition, a simulation snapshot of the IP’s execution is presented in
Figure 5. This snapshot shows the last stages of the forward propagation of the last unit
alongside the execution’s main control signals, mainly the BNN’s global parameters, the
units parameters (layer_parameters), and the iterators’ counter values.
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Figure 5. Simulation snapshot of the IP core @ 100 MHz showing the end of the computation of the
last unit.

6. Conclusions

A SoC that performs ECG identification was proposed. The main components of
such system were developed, namely the The RISC-V based SoC architecture, and the NN
accelerator. The IOb-SoC, which integrates the PicoRV32, was configured and implemented
successfully in the Basys3 FPGA development board. The PicoRV32 was programmed
with the software implementation of ECG-ID-BNet, and it was successfully executed with
an execution time of 1.32 s. This software implementation already managed to show a
tswCNN

tswBCNN
= 36.1 s

1.32 s = 27.3 speedup over a similar conventional CNN version of ECG-ID-BNet
implementation, due to the binary nature of ECG-ID-BNet.

However, software only solution proved to be insufficient to cope with the latency
requirement of 1.2 s, defined in Section 1, to enable real-time ECG identification. As such,
the ECG-ID-BNet IP core was designed and implemented successfully in the Basys3 FPGA
development board. It showed its ability to achieve real-time ECG identification, by running
the inference of the network in only 204.8 µs, which translates to a 6641× speedup over the
software implementation and a 176,270× speedup over a similar software implementation
but with a CNN, non-binarized, version of ECG-ID-BNet arguably outperforming the
current state-of-the-art CNN-based ECG identification methods in terms of execution time.

In summary, this work further extends the state-of-the-art with: (a) a SoC architecture
with small hardware footprint capable of performing fast and low-power ECG biometrics
in real time; (b) a software implementation of the inference stage of a BCNN in a size-
optimized RISC-V core; and (c) an optimized IP core that performs ECG classification with
a latency of 205 µs, arguably outperforming the current state-of-the-art CNN-based ECG
identification methods in terms of execution time.

Although all the objectives set forth for this work were met, a number of future work
opportunities have also been created, namely concerning the integration of the different
peripherals of the SoC via a memory interface, such as AXI. As described in Section 2.1, the
PicoRV32 is not the most performing core and as such, can be replaced with a more efficient
one. Furthermore, it would also be interesting to evaluate the ability for the proposed SoC
to generalize to other biometric modalities (e.g., voice, gait, etc.).
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