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Abstract: The rising use of online media has changed the social customs of the public. Users have
become accustomed to sharing daily experiences and publishing personal opinions on social networks.
Social data carrying emotion and attitude has provided significant decision support for numerous
tasks in sentiment analysis. Conventional methods for sentiment classification only concern textual
modality and are vulnerable to the multimodal scenario, while common multimodal approaches
only focus on the interactive relationship among modalities without considering unique intra-modal
information. A hybrid fusion network is proposed in this paper to capture both inter-modal and
intra-modal features. Firstly, in the stage of representation fusion, a multi-head visual attention is
proposed to extract accurate semantic and sentimental information from textual contents, with the
guidance of visual features. Then, multiple base classifiers are trained to learn independent and
diverse discriminative information from different modal representations in the stage of decision
fusion. The final decision is determined based on fusing the decision supports from base classifiers
via a decision fusion method. To improve the generalization of our hybrid fusion network, a
similarity loss is employed to inject decision diversity into the whole model. Empiric results on five
multimodal datasets have demonstrated that the proposed model achieves higher accuracy and better
generalization capacity for multimodal sentiment analysis.

Keywords: decision fusion; multimodal learning; representation fusion; social network

1. Introduction

Social media has become the dominant approach to sharing daily experiences and
publishing individual opinions, and is a benefit from the rapid development of mobile
devices and communication technologies [1]. Personal sentiments are contained in online
user-generated content, which have a direct relevance to users’ behaviors in offline lives.
Sentiment analysis is a significant technology that builds the bridge between user-generated
data and potential sentiment, which can provide decision support for massive applications.
For example, a product review on an e-commerce platform could contain the real demand
and interest point of the customer, which will help the manufacturers to promote product
quality. For investors, the emotions of shareholders are exploited to predict the market trend
and avoid investment risks. For the government, a social platform is an important approach
to collect public opinions that are further employed for policy making and evaluation.

Conventional methods for sentiment analysis only focus on textual contents and learn-
ing representations for different structures, e.g., word, phrase, sentence, and document.
However, the composition of user-generated content has been more complex and diverse in
recent years. The plain textual description is gradually replaced by the mixture of images
and texts [2]. Any source or form of information can be considered as a type of modality,
and a social network is such a complex environment full of multiple modalities, where text
and image are two of the most dominant modalities. Multimodal user-generated contents
have brought new challenges to various tasks of sentiment analysis. Firstly, the format
and structure of image and text are heterogeneous. It requires different methods to pro-
cess and extract discriminative features. Secondly, the model for multimodal sentiment
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classification should explore the interaction relationship and relevant features between
modalities. Finally, Verma et al. [3] pointed out that the individual modality has its unique
intra-modal characteristics. It is necessary to capture both the common inter-modal and
unique intra-modal information.

Existing methods for multimodal sentiment classification are grouped into three
categories according to the fusion stage, i.e., early data fusion, intermediate representation
fusion, and late decision fusion [4]. Early data fusion focuses on integrating information
from multiple data sources or views into one feature vector, which contains redundant
noises and cannot completely capture the relationship among modalities. The intermediate
representation fusion can extract individual characteristics from each modality and fuse
them into a joint representation. It concerns mining common inter-modal information
and achieving a higher accuracy with the complementary effect between the modalities.
Multimodal information is aggregated in the decision-making stage for late decision fusion,
and the final decision is determined by integrating the predictions from independent
models that are trained with only single-modal information. The late decision fusion has
better robustness and generalization by capturing the unique intra-modal information,
whose central idea is similar to ensemble learning.

Intermediate representation fusion is the most common method in multimodal senti-
ment analysis. Whether directly concatenating [5,6] or generating joint representations by
attention mechanism, most researches assume that there is a one-to-one correspondence
within the text-image pair [7]. You et al. [8] pointed out that different modalities are consis-
tent for expressing the same sentiment and a consistency constraint was added to implicitly
enforce the similarity between prediction functions of each modality. In the follow-up
study, they proposed a tree-structured model [9] to explicitly align textual words and visual
regions for learning joint representations.

However, for blog posts and product reviews, multiple images are attached with the
textual content to enhance the vividness and credibility of description. The correspondence
between text and images are unbalanced. Truong et al. [10] pointed out that images only
play an augmentative role in product reviews, rather than an independent role, which
means images are unable to deliver complete information on their own. For example,
the restaurant review shown in Figure 1 has two types of modal contents, including two
images and several sentences describing foods. According to the example, we can observe
that an image within a review tends to focus only on one thing that tends to be mentioned
in the textual content, while the sentences within a review tend to involve several things
and sentiment-bearing words. Therefore, an image can help identify the important parts of
the textual review, but the cues of sentiment polarity provided by an image are rare.

Given the pair (T, G) of textual and visual contents, T is a sequence of L words
{w1, w2, . . . , wL} and G is a set of N images {a1, a2, . . . , aN}. Our research objective is to
learn the mapping function between (T, G) and sentiment label y ∈ RC. A hybrid fusion
network (HFN), which integrates representation and decision fusion, is proposed in the
paper to capture the interactive inter-modal and unique intra-modal information for better
performance in sentiment classification. In the stage of representation fusion, the fine-tuned
BERT [11] is utilized to extract the embedding representations of words while the pre-
trained VGG16 [12] is employed for visual representations. Following the idea of VistaNet,
a multi-head visual attention is proposed to fuse multimodal representations, in which
multiple images are utilized as queries to locate and measure the importance of words. For a
better generalization capability and to capture unique intra-modal information, a decision
fusion method is proposed to ensemble prediction results from multiple independent
classifiers. The main contributions of this work are three-fold:

• A hybrid fusion network is proposed to capture the common inter-modal and unique
intra-modal information for multimodal sentiment analysis;

• A multi-head visual attention is proposed for representation fusion to learn a joint
representation of visual and textual features, in which the textual content provides the
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principal sentiment information and multiple images are employed as an
augmentative role;

• A decision fusion method is proposed in the late fusion stage to ensemble independent
prediction results from multiple individual classifiers. The cosine similarity loss is
exploited to inject decision diversity into the whole model, which has been proven to
improve generalization and robustness.

$2 gets you a large rice noodle with several fish balls.

Two orders of that and a large fried dumpling platter cost $6. 

This is why I love Chinese food! 

Figure 1. An image within a review tends to focus only on one thing that tends to be mentioned in
the textual content, while the sentences within a review tend to involve several things and sentiment-
bearing words.

2. Related Work
2.1. Sentiment Analysis

Sentiment analysis is a significant technology that builds the bridge between user-
generated data and potential sentiment, which have massive applications in diverse fields.
For markets, understanding the feelings and preferences of customers can contribute to
personalized recommendations and marketing [13]. For individuals, recognizing and
monitoring the personal psychology states are crucial for mental health and emotion man-
agement [14]. Conventional methods about sentiment analysis are based on representation
learning to capture semantic and sentimental information. Text sentiment analysis first
appeared in mid-1990s, which has several sub-tasks including opinion mining, emotion
mining, and polarity classification [15]. Despite the different terms, the research objectives
are similar, which is to detect and classify the feelings and attitudes about specific events
or objects. Early studies of text sentiment analysis focus on the extraction of sentiments
from semantic lexicons by building sentiment dictionary and matching specific words [16].
It is tedious and time-consuming to build the dictionary which also neglects the contex-
tual information. With the development of deep learning and text classification, loading
and fine-tuning the pre-trained language models have become a popular approach to
obtaining the embedding representations of texts [17–19]. Then, convolution-based neural
networks [20,21], recurrent-based neural networks [22,23], or attention mechanism-based
models [24,25] could be employed to learn high-level semantic features. Finally, a task-
specific network is constructed to predict sentiment labels for downstream applications.

For uni-modal sentiment analysis, textual features are considered to have a better
capacity of sentiment expression, because words can carry more or less information relevant
with sentiments and attitudes [26]. The methods of text sentiment analysis have been
continuously refined and improved with the development of text classification techniques.
Both text classification and text sentiment analysis require the extraction of semantic
information which makes them technically similar.

Image sentiment analysis has received less attention than text sentiment analysis,
although there is great progress on image classification tasks. Image sentiment analysis has
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an essential difference from image classification, since it needs high-level abstraction for
semantic understanding, rather than the low-level visual features extracted by classification
models [27]. Machajdik et al. [28] proposed that the core of image sentiment analysis
is efficiently learning representations from the low-level visual and high-level semantic
information. In addition, there is an implicit relationship between visual sentiment and
human knowledge background which makes the same image bring a different emotional
experience to different observers.

Borth et al. [29] introduced the psychology theories and constructed more than
3000 adjective-noun pairs with sentiment labels. Then, the mid-level semantic features
could be extracted from images by matching with recorded adjective-noun pairs.
You et al. [30] had an implementation of domain transferring from Twitter to Flickr for
binary sentiment classification. A convolution neural network was trained to recognize
sentiment information of different local visual regions by Yang et al. [31] and attention
scores were assigned to each local region for obtaining high-level representation. Guillau-
min et al. [32] found that the additional textual information corresponding to the images
are helpful for understanding visual contents and achieving a higher accuracy of image
classification, which also make communities pay more attention to multimodal fusion.

2.2. Multimodal Sentiment Analysis

Multimodal learning can attach the information of relevant modalities to textual
contents, which provides evidence from different views to understand the semantic and
sentiment. Baltrusaitis et al. [1] summarized the challenges and problems of multimodal
learning. There are four aspects related to multimodal sentiment analysis:

• Representation. The first challenge of multimodal learning is how to extract discrimi-
native features from heterogeneous multimodal data. Texts are usually denoted by
discrete tokens, while images and speeches are composed of digital and analog signals.
The corresponding methods of feature extraction are required for different modalities
to learn effective representations.

• Transformation. The second challenge is learning the mapping and transformation rela-
tionship among the modalities, which can eliminate the problems of missing modality,
and discover the correlation between the modalities. For example, Ngiam et al. [33]
proposed to learn a shared representation between modalities with restricted Boltz-
mann machine in an unsupervised transformation manner.

• Alignment. The third challenge is to correctly explore the direct corresponding rela-
tionship between different modal elements. Truong et al. [10] employed the alignment
relationship between visual and textual elements to locate the contents relevant with
opinions and attitudes. Adeel et al. [34] utilized the visual features to eliminate the
noises in the speech based on the consistency between audio and visual signals.

• Fusion. The forth challenge is to integrate and refine the information from different
modalities. The contributions of each modality to different tasks are variant. The fusion
of features is a process of removing noises and extracting relevant information.

Most researches about multimodal sentiment analysis have focused on the feature
fusion to construct joint representation. Early data fusion-based methods focus on the
fusion of multi-view or multi-source information. Perez et al. [35] extracted features from
visual, textual, and acoustic views to recognize the utterance-level sentiment for video data.
Poria et al. [36] firstly employed the convolution neural network to learn the representations
of image and text, then several classifiers based on kernel learning were employed to fuse
multi-view features. The early fusion only concerns each modality separately without
exploring interactive information, which neglects the complementary information among
the modalities.

The intermediate representation fusion aims to capture the relationship between the
modalities for learning more discriminative representations. A simple and common method
of representation fusion is to directly concatenate features that are extracted by neural net-
works with various architectures or pre-trained models as shown in Figure 2. Gogate et al.
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applied 3D-CNN to extract features from different modalities and concatenated them
into the vector representation for emotion recognition [37] and deception detection [38].
Hu et al. [5] utilized the pre-trained Inception to extract visual features and GloVe to en-
code textual contents, while Chen et al. [6] employed AlexNet and Word2Vec for feature
extraction. Zadeh et al. [39] pioneered Tensor Fusion Network (TFN) for multimodal
sentiment analysis and the outer-product of two feature vectors is considered as the fusion
result. TFN could provide both bi-modal and uni-modal information, but the dimension of
outer-product tensors exponentially increases with the number of modalities which makes
it unscalable. To alleviate the problem of scalability, Liu et al. [40] proposed Low-rank
Multimodal Fusion (LMF) to approximate the result of an outer-product.

concatenation

Text Feature Extraction

Image Feature Extraction

Downstream Task

Figure 2. A simple and common method for representation fusion is to concatenate feature vectors
extracted by different pre-trained networks.

The attention mechanism is a better approach to aggregating the contextual informa-
tion and capturing the interactive relationship between the modalities. The bidirectional
attention between image and text was conducted after extracting global and local informa-
tion from images in [41]. Yu et al. [42] extracted visual and textual features respectively by
the pre-trained ResNet-512 and BERT. Then, the joint representation was generated by the
multi-head attention. A multimodal transformer was extended to a sequential multimodal
problem by Tsai et al. [43], which was able to be directly applied to unaligned sequences.
Similarly, the methods based on the architecture of the transformer or multi-head attention
were exploited in different fields, such as the cross-modal dialogue system [44] and video
retrieval [45]. The excellent performances have demonstrated the effectiveness of multi-
head attention for the cross-modal fusion. A gated mechanism could be considered as a
special variant of attention mechanism, which also be employed for the cross-modal fusion.
Kumar et al. [46] proposed a conditional gated mechanism to modulate the information
during mining inter-modal interaction.

The late fusion is implemented in the decision stage and its idea is similar to ensemble
learning which can capture the unique intra-modal information and improve the gen-
eralization capability. There are also several alternative approaches for decision fusion.
Verma et al. [3] trained a neural network to learn the weight coefficients after concatenating
different decisions, while Huang et al. [4] controlled the contribution to the final decision
of text, image, and fusion representations by empiric hyper parameters. A special type
of visual-textual data was investigated by Liu et al. [47]. Graphics Interchange Format
(GIF) has received huge popularity in social networks and users usually publish animated
GIFs with short textual contents to express individual emotions and sentiments. Sentiment
prediction scores from visual and textual parts were weighted in the late fusion stage. Since
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the neural network could fit arbitrary functions in theory, it is more robust to train a neural
network for making the final decision, which also reduces the number of hyper parameters.

3. Hybrid Fusion Network

The methods about multi-head visual attention and decision fusion are detailed in
this section. Our research is oriented to social applications in which user-generated content
consists of a textual paragraph and multiple images. Given the pair (T, G) of textual
and visual contents, T is a sequence of L words {w1, w2, . . . , wL} and G is a set of N
images {a1, a2, . . . , aN}. The objective is to learn the mapping function between (T, G) and
sentiment label y ∈ RC.

Most existing methods of multimodal sentiment analysis usually concern capturing
the inter-modal relationship, fusing the representations and making the prediction based
on the complementarity between modalities. However, as mentioned in [3], each modality
has their own unique characteristics and the expressed sentiments are different. Therefore,
a hybrid fusion network, consisting of the intermediate representation fusion and the late
decision fusion is proposed to capture both the inter-modal and intra-modal information
for multimodal sentiment classification.

As shown in Figure 3, HFN is composed of the text feature extractor, image fea-
ture extractor, representation fusion module, decision fusion module, and three individ-
ual classifiers. Our research is mainly conducted on the multimodal dataset proposed
in VistaNet, which only provides extracted visual features, rather than original images.
Therefore, the 4096-dimensional feature vector is employed as the image representation
VGG16(G) = {gi|gi ∈ R4096, i = 1, 2, . . . , N} which is output from the last fully connected
layer of VGG16. We fine-tune the pre-trained BERT as the text feature extractor, and each
word is encoded as an embedding vector BERT(T) = {Ti|Ti ∈ Rd=768, i = 1, 2, . . . , L}.

𝑦𝑦𝐼𝐼 𝑦𝑦𝑇𝑇

Representation 
Fusion

𝑦𝑦𝐹𝐹

Decision Fusion

𝑦𝑦𝑂𝑂

Self Attention
K        V        Q

Add & Norm

Feed Forward

Add & Norm

Text

Text
Representation

Image

VGG-16

Image
Representation

BERT

CLFI CLFF CLFT

Figure 3. HFN (Hybrid Fusion Network) consists of two feature extractors, three individual classifiers,
a representation fusion module, and a decision fusion module.

3.1. Visual and Textual Representation Fusion

The representation fusion is a crucial issue in our hybrid fusion network. Most
attention-based fusion methods are bidirectional which aim to align the textual entity with
the visual region. However, for online blogs and product reviews, sentiment informa-
tion expressed by the textual content is the principal part, while the visual content only
enhances the vividness of textual content. Therefore, the visual representation is only
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utilized to measure the importance of different words in textual content. Different from
the dot-product visual attention in VistaNet, a multi-head visual attention is proposed
for representation fusion. As shown in Figure 4, the representations of multiple images
G = {g1, g2, . . . , gN} ∈ R4096×N are exploited as the queries, and the embedding vectors
of words T = {T1, T2, . . . , TL} ∈ Rd×L are utilized as the keys and values. Firstly, image
representations are mapped into the vector space with the same dimension as text repre-
sentations by a fully connected layer I = WgG + bg ∈ Rd×N . The weighted result of each
attention head is calculated as:

Headi(I, T) = softmax(
(WQ

i I)T(WK
i T)

√
d/M

)(WV
i T)T (1)

where {WQ
i , WK

i , WV
i } are different learnable parameter matrices for linearly projecting

query, key, and value into
√

d/M-dimensional vector spaces. M denotes the number of
attention heads which is a hyper parameter. Since multiple images are corresponded to
one textual paragraph in our research problem, the shape of weighted result from a single
attention head is N ×

√
d/M. Then, the final weighted result MATTI,T ∈ RN×d could

be obtained after concatenating the results from M attention heads, and the operation of
concatenating is denoted as Concat in Equation (2):

MATTI,T = Concat[Head1, Head2, . . . , HeadM]. (2)

Visual Attention
K        V        Q

Add & Norm

Feed Forward

Self Attention
K        V        Q

Sum & Norm

Add & Norm

Residual Block

Residual Block

Feed Forward

Element-Wise Add

GELU

Layer Norm

Dropout

Residual Block

Multiple Images

Fusion Representation

CLS

Word Embeddings

L ×N

M ×

M ×

Figure 4. The visual features of N images are utilized as queries, while L word representations are
employed as keys and values in multi-head visual attention.

Similar to the multi-head self-attention in BERT, a residual connection followed by
layer normalization (LN) is placed between the query vector and next layer. LN could
prevent the gradient explosion caused by large accumulated gradients, and residual con-
nection could alleviate the gradient vanishment occurred in back propagation. In HFN,
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each residual block (denoted as Res) is composed of a fully connected layer, element-wise
additive, Gaussian Error Linear Units (GELU), LN, dropout, and shortcut connection.

Z = Res(LN(MATTT
I,T + I)) ∈ Rd×N . (3)

The original visual information and related textual information of images are captured
by intermediate features Z ∈ Rd×N now. Considering the relevance of visual content, there
are duplication and potential correlation between query results which are delivered to
intermediate features. Therefore, a multi-head self-attention is employed to refine and fuse
the information of intermediate features in Equation (4):

Headi(Z) = softmax(
(WQ

i Z)T(WK
i Z)

√
d/M

)(WV
i Z)T. (4)

The multi-head self-attention is similar to Equation (1), while the input matrix is
utilized as query, key, and value at the same time. After the results of each attention head
are concatenated into a vector MATTZ ∈ Rd×N as the same operation of Equation (2),
element-wise additive along N-dimension and LN are utilized to integrate the fusing
information corresponding to multiple images:

Z′ = Res(LN(sum(MATTT
Z))) ∈ Rd. (5)

For most methods of text sentiment analysis, TCLS, the embedding representation of
token [CLS], is usually considered as the sentence-level or document-level feature after fine-
tuning BERT. Z′ is the attention weighted result on word embedding representations and it
has the same level information with TCLS. Therefore, the element-wise addictive result of
Z′ and TCLS is directly employed as the fusion representation F after layer normalizing:

F = LN(Z′ + TCLS) ∈ Rd. (6)

3.2. Decision Fusion and Injecting Diversity

Considering the unique intra-modal information, individual classifiers CLFF, CLFT ,,
and CLFI are respectively trained with different representations to generate diverse deci-
sion supports. CLFF denotes the classifier trained with the fusion representation F. CLFT is
the classifier expected to learn the decision space with only textual representation. Similarly,
CLFI denotes the classifier trained with only visual representations. To prevent the over-
fitting in downstream classification task, only one fully connected layer is employed as the
classifier to learn the mapping from high-level representation to target label. The embed-
ding representation of the token [CLS], usually considered as the document-level feature
of textual content, is input into CLFT for learning the decision yT ∈ RC. The max-pooling
result over multiple image representations G ∈ R4096×N is utilized as the input of CLFI to
make independent decision yI ∈ RC. Similarly, the decision yF ∈ RC is generated from
CLFF based on the fusion representation F. Then, a neural network is trained to measure
the confidence of concatenated decisions yC = Concat[yF, yT , yI ] ∈ RC×3 output from three
classifiers, and final decision yO ∈ RC could be determined by attention fusion as:

yO = softmax(WCyC + bC)yT
C. (7)

For most methods about multimodal sentiment analysis [3,4], the cross entropy be-
tween prediction result yO and true label y is employed as the loss function for model
training. It expects the final decision could be closer to true labels without considering
the accuracy of individual classifiers before the decision fusion. We expect the indepen-
dent classifiers could also output accurate predictions, rather than further extract features.
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Therefore, the cross entropy loss values of individual classifiers are also considered to be a
part of decision loss as:

decision_loss = ∑
i
−y log yi; i ∈ {O, F, T, I}. (8)

In addition, the late decision fusion aims to improve generalization with the integrated
decisions. If three classifiers always make the same decisions, the decision fusion module
will degenerate into a linear additive function. Therefore, the cosine similarly is utilized as
a penalty term for decision diversity as follows:

similarity_loss = ∑
i

∑
j 6=i

cos(yi, yj); i, j ∈ {F, T, I} (9)

where cos(a, b) = a·b
‖a‖2×‖b‖2

denotes the cosine similarity. Finally, the loss function utilized
in our training process is:

loss = decision_loss + α× similarity_loss. (10)

The hyper parameter α is exploited to balance the influence of cosine similarity penalty
in the training process. It should not be too large, because the decision diversity is expected
to be optimized after the classifier is relatively convergent and larger α could reduce the
accuracy of individual classifiers, even for the entire framework.

4. Experiments and Analysis

Comprehensive experiments are conducted to evaluate the validity of multi-head
visual attention and the decision fusion method in this section. All the codes are written in
Python 3.6.9 on Ubuntu 18.04 and the framework of deep learning is PyTorch 1.4.0. Intel
Core i9-9900K CPU@3.6 GHz ×16 and GeForce RTX 2080 GPU are utilized to accelerate the
training process. Due to the limitation of graphics memory, the fine-tuning process of BERT
was completed on Google Colab, which provides NVIDIA Tesla K80 GPU for researchers.

4.1. Comparative Experiments on Multimodal Yelp Dataset

Five datasets from three social platforms are employed to evaluate our proposed
model. The first dataset is published with the baseline model (i.e., VistaNet), which was
collected from restaurant reviews on Yelp. Each review consists of one textual paragraph
and multiple images. Entire dataset has already been split into a train, valid, and test set.
According to the location of restaurants, a test set is divided into five subsets: Boston (BO),
Chicago (CH), Los Angles (LA), New York (NY), and San Francisco (SF). The target label is
the rating (from 1 to 5) of each review and it could be considered as a multi-classification
problem. The statistics of them are shown in Table 1.

Table 1. Statistics of the Yelp dataset.

Datasets #Docs Avg.
#Words

Max.
#Words

Min.
#Words

Avg.
#Images

Max.
#Images

Min.
#Images

Train 35,435 225 1134 10 5.54 147 3
Valid 2215 226 1145 12 5.35 38 3
BO 315 211 1099 14 5.25 42 3
CH 325 208 1095 15 5.60 97 3
LA 3730 223 1103 12 5.43 128 3
NY 1715 219 1080 14 5.52 222 3
SF 570 244 1116 10 5.69 74 3

The number of images in each review is fixed to 3 and an additional global average
image (MEAN) is added into each review. Truong et al. proposed the additional image
has global visual information which could improve the robustness. Following the same
preprocess, each textual content corresponds to four images. GloVe was employed for



Sensors 2022, 22, 74 10 of 20

word embedding in VistaNet, while pre-trained BERT (base-uncased), the most popular
language model in natural language processing, is utilized in our method to encode each
word as a 768-dimensional vector. In the process of fine-tuning BERT, the number of words
in each review is fixed to 256 and the batch size is set to 32. Transformers module [48] is
exploited to fine-tuning BERT with a 2e−5 learning rate for 4 epochs. Following baselines
are employed to compare with our proposed model on multimodal sentiment classification.

• TFN: It was firstly proposed by Zadeh et al. [39], which utilizes the outer product of
different modal feature vectors as the fusion representation. Since there are multiple
images for each review, the pooling layer is applied to aggregate visual information.
Therefore, two variants are presented in the experiments, in which average pooling is
employed in TFN-avg and max pooling is employed in TFN-max for all images before
concatenating with text feature vectors.

• BiGRU: The classic model proposed by Tang et al. [49] could capture forward and
backward dependence based on a bi-directional gated recurrent unit. Average pooling
and max pooling are applied to yield two variants BiGRU-avg and BiGRU-max.

• HAN: Yang et al. [50] proposed the attention network for text classification, which
could hierarchically extract the representation of words, sentences, and documents.
Although HAN was proposed only for textual modality, it is utilized to generate
textual representations that are concatenated with visual representations as the input
of a downstream classifier. HAN-avg and HAN-max are two variants that correspond
to average and max pooling.

• FastText: Bojanowski at al. [51] proposed to enrich the word representations with
sub-word information. It has a simple network architecture, but has a competitive
performances on text classification. It is employed to generate word embedding
representations as a comparison with BERT.

• Glove: It is a popular language model applied in numerous text-related problems [52].
Global matrix factorization and local context window are employed to extract both
global and local information from word sequences. It is also employed in VistaNet to
obtain word representations.

• BERT: The pre-trained language model proposed by Devlin et al. [11] can capture very
long-term dependence based on multi-head attention. The textual contents in a train
set are employed to fine-tune BERT on sequential classification task.

• VistaNet: Truong et al. [10] employed visual feature as query and proposed visual
aspect attention to fusion textual and visual features.

After fine-tuning BERT, it is utilized as an encoder for word vectors. Visual features
extracted by pre-trained VGG are directly provided by the dataset. These features are
employed without any other processing to ensure the fairness of experimental comparison
with VistaNet. The Adam optimizer is applied in the training process and the learning rate
is set to 2e−5. The batch size is 128 and the number of attention heads is 12. To prevent
the over-fitting problem, the dropout rate is set to 0.6 and the parameter of weight decay
in Adam is set to 10. The hyper parameter α for similarity loss is set to 0.1. Other hyper
parameters of the experiments are listed in Table 2. The classification accuracy on five
test sets are shown in Table 3. Notice that, the weighted average accuracy based on
sample amounts of five test sets is shown in the last column as a comprehensive metric of
generalization capability.
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Table 2. Settings of the hyper parameters.

Hyper Parameters Settings

optimizer type Adam
learning rate 2e−5
weight decay 10

batch size 128
dropout rate 0.6

the amount of attention heads 12
the weight of similarity loss α 0.1

the dimension of visual representation 4096
the dimension of textual representation 768

the amount of words in each review 256
the amount of images attached to each review 4

Table 3. Performance comparison to baselines on classification accuracy.

Methods BO CH LA NY SF Mean

TFN-avg 46.35 43.69 43.91 43.79 42.81 43.89
TFN-max 48.25 47.08 46.70 46.71 47.54 46.87

BiGRU-avg 51.23 51.33 48.99 49.55 48.60 49.32
BiGRU-max 53.92 53.51 52.09 52.14 51.36 52.20
HAN-avg 55.18 54.88 53.11 52.96 51.98 53.16
HAN-max 56.77 57.02 55.06 54.66 53.69 55.01

FastText 61.27 59.38 55.49 56.15 55.44 56.12
Glove 60.00 59.38 55.76 55.86 56.14 56.20
BERT 62.13 62.33 60.79 60.51 61.86 60.95

VistaNet 63.81 65.74 62.01 61.08 60.14 61.88
HFN-avg (FastText) 65.40 68.00 62.36 61.69 62.81 62.64
HFN-max (FastText) 65.71 66.15 62.95 62.39 60.35 62.87

HFN-avg (Glove) 64.76 66.46 62.39 62.68 63.86 62.90
HFN-max (Glove) 65.71 65.84 62.84 63.15 61.75 63.11
HFN-avg (BERT) 65.71 65.54 63.06 62.97 64.21 63.38
HFN-max (BERT) 65.71 65.54 63.22 62.62 64.56 63.41

Two popular language models (FastText and Glove) are employed to compare with
BERT, and their word representations are also utilized in HFN to evaluate our proposed
fusion methods. The dimension of word representations in FastText and Glove is set to
300. The average pooling is conducted on word representations to obtain a sentence-level
representation as the replacement of TCLS in BERT. As shown in Table 3, HFN with max
pooling and BERT has obtained the highest accuracy on three test sets except for CH and
NY. According to the weighted average accuracy, HFN-max has the highest comprehensive
accuracy and the best generalization ability. The pooling layer is employed to aggregate
visual information of multiple images and max pooling is better than average pooling for
most methods in Table 3, including TFN, BiGRU, and HAN. HFN is robust for the choice
of pooling layer, which also demonstrates the generalization of our proposed model.

4.2. Comparative Experiments on CMU-MOSI and CMU-MOSEI Datasets

Two additional datasets, CMU-Multimodal Opinion Sentiment Intensity (CMU-
MOSI) [53] and CMU-Multimodal Opinion Sentiment and Emotion Intensity (CMU-
MOSEI) [54] are employed to evaluate and compare the performance of HFN. Each record
in CMU-MOSI and CMU-MOSEI is a segment of a YouTube speech video, which is com-
posed of textual, acoustic, and visual modalities. CMU-Multimodal SDK [55] is utilized to
download, align, and split two datasets. The statistics of two datasets after preprocessing
are shown in Table 4.

To satisfy the condition of single text and multiple images, acoustic signals are aban-
doned and only the first four images are exploited in each record. Visual features are
directly provided by CMU-Multimodal SDK, which are extracted by FACET, including
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facial action units and face poses. The label of each record in CMU-MOSI and CMU-MOSEI
is a real number between −3.0 and 3.0, representing the sentiment score. According to the
scores, the regression problem is translated into two classification problems: 2-class (non-
negative, negative) and 7-class (ranging from −3 to 3). Correspondingly, binary accuracy
(Acc-2) and seven-class accuracy (Acc-7) are utilized as the metrics as shown in Table 5.

Table 4. Statistics of CMU-MOSI and CMU-MOSEI.

Statistics CMU-MOSI CMU-MOSEI

#Train 1283 16,315
#Valid 229 1871
#Test 686 4654

#Textual Features 768 768
#Visual Features 47 35

Length of Sequences 20 30

Table 5. Performance comparison over CMU-MOSI and CMU-MOSEI.

Methods
CMU-MOSI CMU-MOSEI

Acc-2 F1 Acc-7 Acc-2 F1 Acc-7

TFN-max 71.14 71.26 27.55 82.53 82.41 49.38
TFN-avg 69.53 69.80 30.47 82.06 82.15 48.89

BiGRU-max 72.16 72.33 32.80 82.83 83.77 50.86
BiGRU-avg 72.59 72.75 33.67 82.75 83.63 50.58
HFN-max 73.03 73.46 34.26 82.61 83.92 51.20
HFN-avg 74.49 75.07 35.42 82.36 83.60 51.65

HFN with average pooling has achieved the highest accuracy for both the 2-class and
7-class classification task on CMU-MOSI. Although the performances of each method on the
2-class classification task for CMU-MOSEI are close, the HFN-avg has the best performance
on seven-class accuracy. Both two datasets are collected from YouTube videos, and CMU-
MOSEI is a extended version of CMU-MOSI. The essential difference between them and
Yelp datasets is that images in CMU-MOSI and CMU-MOSEI could provide sufficient and
complete sentiments and emotions. It is necessary to discover the bidirectional interaction
between text and images, but HFN has obtained an effective classification performance
with multi-head visual attention. In addition, training samples of CMU-MOSI are not
enough which cause its classification task more difficulty than CMU-MOSEI, and the 7-
class classification task is more complex than the 2-class classification task. According to
the results of Table 5, it could be found that HFN has a better generalization capability for
complex tasks.

4.3. Comparative Experiments on Twitter-15 and Twitter-17 Datasets

In order to further evaluate the adaptability of the proposed model on different plat-
forms, the additional experiments are conducted on the datasets collected from Twitter.
Twitter-15 and Twitter-17 are two datasets released for target-oriented multimodal sen-
timent classification [42], which meet the inductive bias of our method, i.e., the image
within a text-image post or review only plays an augmentative role, which cannot deliver
complete information on their own. Two datasets have already been split into train, valid,
and test set. The basic statistics of Twitter-15 and Twitter-17 are shown in Table 6.
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Table 6. Statistics of Twitter-15 and Twitter-17.

Datasets
Twitter-15 Twitter-17

#Docs Avg.
#Words

Max.
#Words

Min.
#Words

#Docs Avg.
#Words

Max.
#Words

Min.
#Words

Train 3179 16.72 35 2 3562 16.21 39 5
Valid 1122 16.74 40 2 1176 16.37 31 6
Test 1037 17.05 37 2 1234 16.38 38 6

Note that, each record in two datasets has provided annotated target terms (i.e., entities
or aspects) for the instruction of capturing the target-oriented sentiment information. Target
terms are concatenated with the related context as the complete textual content in this
experiment. The label of each record indicates three categories of sentiment polarity (i.e.,
negative, neutral, and positive). The number of attention heads is set to 8, and the hyper
parameter α for similarity loss is set to 0.1. The learning rate is set to 2e−4, and the batch
size is 16. Since each record in Twitter-15 and Twitter-17 is attached with only one image,
the pooling layer of HFN, employed to aggregate the features from multiple images, is
removed in this experiment.

Seven competitive approaches are employed to evaluate our model, in which Mem-
Net [56] employs a multi-hop attention mechanism to capture the relevant information;
RAM [57] applies a GRU module to update the queries for multi-hop attention mechanism;
ESTR [24] extracts the relevant information from both a left and right context with the
target query; MIMN [58] adopts a multi-hop memory network to model the interactive
attention between the textual and visual context; ESAFN [24] is an improved version of
ESTR with a visual gate to control the fusion of visual information; and TomBERT [42] is a
multimodal fusion model based on a multi-head attention mechanism. The representation
fusion approach of TomBERT and our proposed model is similar, but the textual and visual
context are equally treated in TomBERT. Besides, the decision fusion is not considered
in TomBERT.

According to the experimental results shown in Table 7, HFN has achieved the best
performance on both Twitter-15 and Twitter-17 datasets. The performance of text-based
methods is still relatively limited except for BERT. BERT has a competitive performance
even compared with two multimodal methods (MIMN and ESAFN) that have sophisticated
architectures. This suggests that the multi-head attention mechanism plays a crucial role in
information extraction, and the textual content can provide relatively complete semantic
and sentimental information for learning a discriminative representation. Besides, ESAFN
and TomBERT are both proposed by Yu et al., and two models have similar architectures
but different attention mechanisms. The dot-product and vanilla attention mechanism are
employed in ESAFN, but the multi-head attention mechanism is employed in TomBERT.
From the comparative results, it is clearly observed that the performance improvement by
multi-head attention mechanism is significant. Compared with ESAFN and TomBERT, our
proposed model also applies the multi-head attention mechanism, but explicitly assigns
different importance to the textual and visual content. The results in Table 7 can prove the
effectiveness of our views and approaches.
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Table 7. Performance comparison over Twitter-15 and Twitter-17.

Methods
Twitter-15 Twitter-17

Acc Macor-F1 Acc Macor-F1

MemNet 70.11 61.76 64.18 60.90
RAM 70.68 63.05 64.42 61.01
BERT 74.15 68.86 68.15 65.23
ESTR 71.36 64.28 65.80 62.00

MIMN 71.84 65.69 65.88 62.99
ESAFN 73.38 63.98 66.13 63.63

TomBERT 76.37 72.60 69.61 67.48
HFN 78.62 73.83 71.35 68.52

4.4. Ablation Analysis for Representation Fusion

In the intermediate fusion stage, a multi-head visual attention is proposed for rep-
resentation fusion and this process can be split into three steps: (1) The fusion of word
vectors by visual attention; (2) the fusion of multiple images by self-attention; and (3) the
fusion of high level representation by element-wise additive. The ensemble decision part of
HFN is fixed and the ablation experiments are conducted to evaluate the impacts of three
representation fusion steps. Besides, the fusion performances of HFN are also compared
with common fusion methods: Element-wise additive (Add), element-wise multiply (Mul),
and concatenating (Concat), in which TCLS and the average of G are utilized as textual and
visual representation. As shown in Table 8, each step in multi-head visual attention has an
improvement over the previous fusion which proves three fusion steps are efficient and
necessary. The comparison results with other fusion methods also prove the effectiveness
of the multi-head visual attention.

Table 8. Performance comparison of the representation fusion methods on classification accuracy.

Methods BO CH LA NY SF Mean

Concat 63.81 63.38 61.80 61.69 63.16 62.06
Add 64.76 62.15 62.52 63.44 61.40 62.75
Mul 65.40 63.38 62.65 62.68 63.16 62.87

Step1 64.13 64.62 61.64 61.98 63.51 62.15
Step1 + 2 64.76 64.92 62.92 63.44 63.16 63.26

Step1 + 2 + 3 65.71 65.54 63.22 62.62 64.56 63.41

Note that NY has shown a different trend compared with the other cities in Table 8.
The third fusion step has not achieved the expected improvement with the element-wise
additive of textual representation TCLS and fusion representation F. It is caused by the
inaccurate information provided by either TCLS or F. However according to the result of
Add on the NY test set, textual representation has captured accurate sentiment information.
Therefore, the different trend is caused by fusion representation, which relies on the match
of visual and textual contents. For visual-textual sentiment analysis, it assumes that there
is a implicit correlation between visual and textual contents. When the realistic problem
does not meet the assumption, the unimodal method could even be better than multimodal
fusion methods.

4.5. Visualization for Decision Fusion and Diversity

Individual classifiers are trained to make independent decisions with textual, visual,
and fusion representations. Decision fusion based on the attention mechanism is employed
to make the final decision with the decision supports from individual classifiers. In ad-
dition, decision diversity is injected into the whole model via a similarity penalty. In the
training process, individual classifiers are expected to be a real classification module which
could make a decision close to true labels, rather than a feature extractor. As shown in
Figure 5, individual classifiers could also have high accuracy which are conductive to a
decision fusion stage. Obviously, CLFI with visual features has the worst performance,
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and this phenomenon could prove our view that visual features in reviews cannot tell a
complete story, but only play an augmentative role for textual information.

Figure 5. Individual classifiers are expected to output decisions close to true labels which is significant
for subsequent decision fusion.

The decision fusion method is proposed to ensemble prediction results from each base
classifier and make the final decision, in which a neural network is trained to measure the
importance of classifiers. Figure 6 is employed to visualize the decision fusion process
and adaptive attention scores. Each row corresponds to the decisions of a classifier and
the bottom row denotes the final predictions. The scores of sixth columns (ranged from
Rate = 1 to Rate = 5), represent the probability distribution of each classifier whose values
accumulative total in each row is 100. The first column denotes the attention distribution
generated by the neural network in the decision fusion process. The attention scores are
assigned to three base classifiers (CLFI , CLFT , and CLFF), and the weighted sum is the
final decision of HFN.

Figure 6. A neural network is trained to measure the importance of classifiers and the final decision
is determined by adaptive attention weighted based on prediction results of CLFF, CLFT , and CLFI .
Decision diversity has guaranteed the generalization and robustness of the whole model.

In the decision fusion process, each base classifier firstly predicts the probability of tar-
get labels and is enforced to make diverse decisions by a similarity penalty. Then, different
adaptive attention scores (the first column) are assigned to the classifiers. At last, the final
decision (the bottom row) is determined based on the attention weighted. As shown in
Figure 6, CLFT has assigned similar probability to Rate = 1 and Rate = 2, because it is
difficult to distinguish them only using single text modality. The same problem has also
accrued in CLFI that Rate = 2 and Rate = 5 have similar visual information. Therefore,
benefiting from the decision diversity, the decision fusion has improved both the accuracy
and generalization of the whole model based on the complementary effect classifiers.
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4.6. Analysis on Hyper Parameter

The hyper parameter α is utilized to balance the decision and similarity loss which are
proposed to improve both the accuracy and diversity of prediction results from independent
classifiers. The value of α is changed from 0 to 1 with a step of 0.1 and the results of each
classifier are shown in Figure 7. Since the accuracy of CLFI fluctuates between 26.90% and
27.30%, it is not shown in the figure for better visualization.

It is obvious that the accuracy of CLFF drops sharply with the increasing of α, while the
results of CLFT are stable only using textual features. The reason is that the whole model
will focus on the decision diversity of classifiers instead of classification accuracy when α is
too large. Since the architecture of CLFT is much simpler (only one fully connected layer)
than that of CLFF, CLFT could converge earlier which will make CLFF harder to converge
because of the cosine similarity.

HFN has reached the highest accuracy at α = 0.1, and it could keep good results with
the changing of α, even the accuracy of CLFF continues to drop. The results illustrate that
the hybrid fusion network could benefit from decision diversity and multiple classifiers are
better than a single one. The accuracy of the hybrid fusion network is always higher than
CLFT which also prove the decision fusion is not simply forwarding the decision of CLFT ,
but is adaptively learning the importance or confidence of each classifier and making the
final prediction with decision diversity.

Figure 7. Benefiting from decision diversity, the hybrid neural network keeps stable results although
the accuracy of CLFF drops sharply with the increasing of α.

5. Conclusions

A hybrid fusion network is proposed for multimodal sentiment classification in an
online social network. It captures both the common inter-modal and unique intra-modal
information based on the intermediate representation fusion and the late decision fusion.
In the intermediate stage, multiple images are exploited as queries to extract principal
information from textual content based on the multi-head visual attention. To improve
the generalization and capture the intra-modal characteristics, a decision fusion method is
proposed to make the final decision based on diverse decision supports from individual
classifiers. The cosine similarity is added into the loss function to promote the decision
diversity between classifiers. Empiric results on known multimodal datasets have shown
that our hybrid fusion network could achieve a higher accuracy and better generalization
for sentiment classification.

However, there are still some limitations of the proposed model. Firstly, the quality
and quantity of training samples have limited the performances. Secondly, the classification
accuracy and decision diversity are two conflict objectives when the model is about to
converge. In future work, we plan to build multimodal corpus and find more effective
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methods to balance two training objectives. Besides, our work concerns global sentiment
information, rather than fine-grained local sentiments. Aspect-level multimodal sentiment
analysis is our next research direction, which is a more complex problem and requires more
accurate semantic representations.
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