A Mental Health Chatbot with Cognitive Skills for Personalised Behavioural Activation and Remote Health Monitoring
Abstract
:1. Introduction
2. Related Work
3. Conceptual Framework of a BA-Based AI Chatbot
- Feelings check;
- Recap previous session/review homework
- Agree on an agenda;
- Check for any unexpected/unplanned activities or incidents;
- Get out clause;
- Do the work;
- Summarise what was discussed;
- Set homework;
- Schedule next meeting;
- Feelings check.
4. Design and Development of the BA-Based AI Chatbot
4.1. Personalised Conversation
4.2. Emotional Support
4.3. Remote Health Monitoring
4.4. User Experience Design
4.4.1. Colour Scheme
4.4.2. User Interface
4.4.3. Privacy and Security
4.5. Technical Development
5. Participatory Evaluation
5.1. Study 1—Mood Improvement
5.2. Study 2—Impact Analysis of Personalised Conversation
5.3. Study 3—Qualitative Feedback on Remote Mental Health Monitoring
- Group 1:
- Installed the app and used all features (51.62%).
- Group 2:
- Installed the app and used some features (38.71%).
- Group 3:
- Installed, but did not use it at all (9.67%).
- “By using the app, I am more aware of how my moods fluctuate. It also made me think about what I am grateful for, which alleviated some negativity I was experiencing at the time”
- “Mood tracker is great to be able to give to my medical practitioner—If my psychologist or doctor asked me to use this as a monitoring tool in between sessions, I would be more likely to engage”
- “Bunji lets me feel courageous”
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Health, T.L.G. Mental health matters. Lancet Glob. Health 2020, 8, e1352. [Google Scholar] [CrossRef]
- World Health Organization. The WHO Special Initiative for Mental Health (2019–2023): Universal Health Coverage For Mental Health; Technical Documents; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. International Classification of Diseases; WHO [Internet]: Geneva, Switzerland, 1992. [Google Scholar]
- Edition, F. Diagnostic and statistical manual of mental disorders. Am. Psychiatr. Assoc. 2013, 21, 591–643. [Google Scholar]
- Arch, J.J.; Eifert, G.H.; Davies, C.; Vilardaga, J.C.P.; Rose, R.D.; Craske, M.G. Randomized clinical trial of cognitive behavioural therapy (CBT) versus acceptance and commitment therapy (ACT) for mixed anxiety disorders. J. Consult. Clin. Psychol. 2012, 80, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Mauro, J.; Domingues, J.; Fernandez, G.; Tolin, D.F. Long-term effectiveness of CBT for anxiety disorders in an adult outpatient clinic sample: A follow-up study. Behav. Res. Ther. 2013, 51, 82–86. [Google Scholar] [CrossRef]
- Hundt, N.E.; Mignogna, J.; Underhill, C.; Cully, J.A. The relationship between use of CBT skills and depression treatment outcome: A theoretical and methodological review of the literature. Behav. Ther. 2013, 44, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Oud, M.; De Winter, L.; Vermeulen-Smit, E.; Bodden, D.; Nauta, M.; Stone, L.; Van Den Heuvel, M.; Al Taher, R.; De Graaf, I.; Kendall, T.; et al. Effectiveness of CBT for children and adolescents with depression: A systematic review and meta-regression analysis. Eur. Psychiatry 2019, 57, 33–45. [Google Scholar] [CrossRef]
- Sigurvinsdóttir, A.L.; Jensínudóttir, K.B.; Baldvinsdóttir, K.D.; Smárason, O.; Skarphedinsson, G. Effectiveness of cognitive behavioural therapy (CBT) for child and adolescent anxiety disorders across different CBT modalities and comparisons: A systematic review and meta-analysis. Nord. J. Psychiatry 2020, 74, 168–180. [Google Scholar] [CrossRef]
- David, D.; Cristea, I.; Hofmann, S.G. Why cognitive behavioural therapy is the current gold standard of psychotherapy. Front. Psychiatry 2018, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Thase, M.E.; Wright, J.H.; Eells, T.D.; Barrett, M.S.; Wisniewski, S.R.; Balasubramani, G.; McCrone, P.; Brown, G.K. Improving the efficiency of psychotherapy for depression: Computer-assisted versus standard CBT. Am. J. Psychiatry 2018, 175, 242–250. [Google Scholar] [CrossRef]
- Watts, S.; Mackenzie, A.; Thomas, C.; Griskaitis, A.; Mewton, L.; Williams, A.; Andrews, G. CBT for depression: A pilot RCT comparing mobile phone vs. computer. BMC Psychiatry 2013, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Andersson, G. The Internet and CBT: A Clinical Guide; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Lukas, C.A.; Eskofier, B.; Berking, M. A gamified smartphone-based intervention for depression: Randomized controlled pilot trial. JMIR Ment. Health 2021, 8, e16643. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, K.K.; Darcy, A.; Vierhile, M. Delivering cognitive behaviour therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Ment. Health 2017, 4, e19. [Google Scholar] [CrossRef] [PubMed]
- Demirci, H.M. User Experience over Time with Conversational Agents: Case Study of Woebot on Supporting Subjective Well-Being. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2018. [Google Scholar]
- Prochaska, J.J.; Vogel, E.A.; Chieng, A.; Kendra, M.; Baiocchi, M.; Pajarito, S.; Robinson, A. A therapeutic relational agent for reducing problematic substance use (Woebot): Development and usability study. J. Med. Internet Res. 2021, 23, e24850. [Google Scholar] [CrossRef] [PubMed]
- Monnier, D. Woebot: A continuation of and an end to psychotherapy? Psychotherapies 2020, 40, 71–78. [Google Scholar]
- Sachan, D. Self-help robots drive blues away. Lancet Psychiatry 2018, 5, 547. [Google Scholar] [CrossRef]
- Newitz, A. I bonded with a robot. New Sci. 2022, 253, 22. [Google Scholar] [CrossRef]
- Campbell-Sills, L.; Liverant, G.I.; Brown, T.A. Psychometric evaluation of the behavioural inhibition/behavioural activation scales in a large sample of outpatients with anxiety and mood disorders. Psychol. Assess. 2004, 16, 244. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.A.; Ekers, D.; McMillan, D.; Taylor, R.S.; Byford, S.; Warren, F.C.; Barrett, B.; Farrand, P.A.; Gilbody, S.; Kuyken, W.; et al. Cost and Outcome of Behavioural Activation versus Cognitive Behavioural Therapy for Depression (COBRA): A randomised, controlled, non-inferiority trial. Lancet 2016, 388, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, N.S.; Martell, C.R.; Dimidjian, S. Behavioral activation treatment for depression: Returning to contextual roots. Clin. Psychol. Sci. Pract. 2001, 8, 255. [Google Scholar] [CrossRef]
- Addis, M.E.; Martell, C.R. Overcoming Depression One Step at a Time: The New Behavioral Activation Approach to Getting Your Life Back; New Harbinger Publications, Incorporated: Oakland, CA, USA, 2004. [Google Scholar]
- Dimidjian, S.; Hollon, S.D.; Dobson, K.S.; Schmaling, K.B.; Kohlenberg, R.J.; Addis, M.E.; Gallop, R.; McGlinchey, J.B.; Markley, D.K.; Gollan, J.K.; et al. Randomized trial of behavioural activation, cognitive therapy, and antidepressant medication in the acute treatment of adults with major depression. J. Consult. Clin. Psychol. 2006, 74, 658. [Google Scholar] [CrossRef]
- Ekers, D.; Webster, L.; Van Straten, A.; Cuijpers, P.; Richards, D.; Gilbody, S. Behavioural activation for depression; an update of meta-analysis of effectiveness and sub group analysis. PLoS ONE 2014, 9, e100100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanter, J.W.; Puspitasari, A.J. Global dissemination and implementation of behavioural activation. Lancet 2016, 388, 843–844. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, B.H. Depression as a disease of modernity: Explanations for increasing prevalence. J. Affect. Disord. 2012, 140, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Angermeyer, M.; Anthony, J.C.; De Graaf, R.; Demyttenaere, K.; Gasquet, I.; De Girolamo, G.; Gluzman, S.; Gureje, O.; Haro, J.M.; et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry 2007, 6, 168. [Google Scholar] [PubMed]
- Thomas, K.C.; Ellis, A.R.; Konrad, T.R.; Holzer, C.E.; Morrissey, J.P. County-level estimates of mental health professional shortage in the United States. Psychiatr. Serv. 2009, 60, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Middleton, H.; Shaw, I.; Hull, S.; Feder, G. NICE guidelines for the management of depression. BMJ 2005, 330, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Huguet, A.; Rao, S.; McGrath, P.J.; Wozney, L.; Wheaton, M.; Conrod, J.; Rozario, S. A systematic review of cognitive behavioural therapy and behavioural activation apps for depression. PLoS ONE 2016, 11, e0154248. [Google Scholar] [CrossRef] [Green Version]
- Dale, R. The return of the chatbots. Nat. Lang. Eng. 2016, 22, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Hoy, M.B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 2018, 37, 81–88. [Google Scholar] [CrossRef]
- Madhavi, I.; Chamishka, S.; Nawaratne, R.; Nanayakkara, V.; Alahakoon, D.; De Silva, D. A Deep Learning Approach for Work Related Stress Detection from Audio Streams in Cyber Physical Environments. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 929–936. [Google Scholar]
- De Silva, D.; Sierla, S.; Alahakoon, D.; Osipov, E.; Yu, X.; Vyatkin, V. Toward intelligent industrial informatics: A review of current developments and future directions of artificial intelligence in industrial applications. IEEE Ind. Electron. Mag. 2020, 14, 57–72. [Google Scholar] [CrossRef]
- Adikari, A.; de Silva, D.; Moraliyage, H.; Alahakoon, D.; Wong, J.; Gancarz, M.; Chackochan, S.; Park, B.; Heo, R.; Leung, Y. Empathic conversational agents for real-time monitoring and co-facilitation of patient-centered healthcare. Future Gener. Comput. Syst. 2022, 126, 318–329. [Google Scholar] [CrossRef]
- Leung, Y.W.; Wouterloot, E.; Adikari, A.; Hirst, G.; De Silva, D.; Wong, J.; Bender, J.L.; Gancarz, M.; Gratzer, D.; Alahakoon, D.; et al. Natural language processing–based virtual cofacilitator for online cancer support groups: Protocol for an algorithm development and validation study. JMIR Res. Protoc. 2021, 10, e21453. [Google Scholar] [CrossRef] [PubMed]
- Bendig, E.; Erb, B.; Schulze-Thuesing, L.; Baumeister, H. The next generation: Chatbots in clinical psychology and psychotherapy to foster mental health–a scoping review. Verhaltenstherapie 2019, 1–13. [Google Scholar] [CrossRef]
- Vaidyam, A.N.; Wisniewski, H.; Halamka, J.D.; Kashavan, M.S.; Torous, J.B. Chatbots and conversational agents in mental health: A review of the psychiatric landscape. Can. J. Psychiatry 2019, 64, 456–464. [Google Scholar] [CrossRef]
- Wang, J.; Deng, H.; Liu, B.; Hu, A.; Liang, J.; Fan, L.; Zheng, X.; Wang, T.; Lei, J. Systematic Evaluation of Research Progress on Natural Language Processing in Medicine Over the Past 20 Years: Bibliometric Study on PubMed. J. Med. Internet Res. 2020, 22, e16816. [Google Scholar] [CrossRef] [PubMed]
- Weizenbaum, J. ELIZA—A computer program for the study of natural language communication between man and machine. Commun. ACM 1966, 9, 36–45. [Google Scholar] [CrossRef]
- Inkster, B.; Sarda, S.; Subramanian, V. An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: Real-world data evaluation mixed-methods study. JMIR MHealth UHealth 2018, 6, e12106. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, F.; Orji, R. Insights from user reviews to improve mental health apps. Health Inform. J. 2020, 26, 2042–2066. [Google Scholar] [CrossRef]
- Melcher, J.; Camacho, E.; Lagan, S.; Torous, J. College student engagement with mental health apps: Analysis of barriers to sustained use. J. Am. Coll. Health 2020, 1–7. [Google Scholar] [CrossRef]
- Chowdhary, N.; Anand, A.; Dimidjian, S.; Shinde, S.; Weobong, B.; Balaji, M.; Hollon, S.D.; Rahman, A.; Wilson, G.T.; Verdeli, H.; et al. The Healthy Activity Program lay counsellor delivered treatment for severe depression in India: Systematic development and randomised evaluation. Br. J. Psychiatry 2016, 208, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Moradveisi, L.; Huibers, M.J.; Renner, F.; Arasteh, M.; Arntz, A. Behavioural activation v. antidepressant medication for treating depression in Iran: Randomised trial. Br. J. Psychiatry 2013, 202, 204–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolton, P.; Bass, J.K.; Zangana, G.A.S.; Kamal, T.; Murray, S.M.; Kaysen, D.; Lejuez, C.W.; Lindgren, K.; Pagoto, S.; Murray, L.K.; et al. A randomized controlled trial of mental health interventions for survivors of systematic violence in Kurdistan, Northern Iraq. BMC Psychiatry 2014, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanter, J.W.; Santiago-Rivera, A.L.; Santos, M.M.; Nagy, G.; López, M.; Hurtado, G.D.; West, P. A randomized hybrid efficacy and effectiveness trial of behavioural activation for Latinos with depression. Behav. Ther. 2015, 46, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Egede, L.E.; Acierno, R.; Knapp, R.G.; Lejuez, C.; Hernandez-Tejada, M.; Payne, E.H.; Frueh, B.C. Psychotherapy for depression in older veterans via telemedicine: A randomised, open-label, non-inferiority trial. Lancet Psychiatry 2015, 2, 693–701. [Google Scholar] [CrossRef]
- Dimidjian, S.; Barrera Jr, M.; Martell, C.; Muñoz, R.F.; Lewinsohn, P.M. The origins and current status of behavioural activation treatments for depression. Annu. Rev. Clin. Psychol. 2011, 7, 1–38. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Update of the Mental Health Gap Action Programme (mhGAP) Guidelines for Mental, Neurological and Substance Use Disorders, 2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Bandaragoda, T.; Ranasinghe, W.; Adikari, A.; de Silva, D.; Lawrentschuk, N.; Alahakoon, D.; Persad, R.; Bolton, D. The Patient-Reported Information Multidimensional Exploration (PRIME) Framework for investigating emotions and other factors of prostate cancer patients with low intermediate risk based on online cancer support group discussions. Ann. Surg. Oncol. 2018, 25, 1737–1745. [Google Scholar] [CrossRef]
- Ranasinghe, W.; de Silva, D.; Bandaragoda, T.; Adikari, A.; Alahakoon, D.; Persad, R.; Lawrentschuk, N.; Bolton, D. Robotic-assisted vs. open radical prostatectomy: A machine learning framework for intelligent analysis of patient-reported outcomes from online cancer support groups. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 529.e1–529.e9. [Google Scholar] [CrossRef]
- Adikari, A.; De Silva, D.; Ranasinghe, W.K.; Bandaragoda, T.; Alahakoon, O.; Persad, R.; Lawrentschuk, N.; Alahakoon, D.; Bolton, D. Can online support groups address psychological morbidity of cancer patients? An artificial intelligence based investigation of prostate cancer trajectories. PLoS ONE 2020, 15, e0229361. [Google Scholar] [CrossRef]
- De Silva, D.; Ranasinghe, W.; Bandaragoda, T.; Adikari, A.; Mills, N.; Iddamalgoda, L.; Alahakoon, D.; Lawrentschuk, N.; Persad, R.; Osipov, E.; et al. Machine learning to support social media empowered patients in cancer care and cancer treatment decisions. PLoS ONE 2018, 13, e0205855. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, J.; Mayfield, M. Speaking from the heart: Empathetic language. In Motivating Language Theory; Springer: Berlin/Heidelberg, Germany, 2018; pp. 35–48. [Google Scholar]
- Obeid, J.S.; Dahne, J.; Christensen, S.; Howard, S.; Crawford, T.; Frey, L.J.; Stecker, T.; Bunnell, B.E. Identifying and predicting intentional self-harm in electronic health record clinical notes: Deep learning approach. JMIR Med. Inform. 2020, 8, e17784. [Google Scholar] [CrossRef]
- Burdisso, S.G.; Errecalde, M.; Montes-y Gómez, M. UNSL at eRisk 2019: A Unified Approach for Anorexia, Self-harm and Depression Detection in Social Media. In Proceedings of the Working Notes of CLEF 2019—Conference and Labs of the Evaluation Forum, Lugano, Switzerland, 9–12 September 2019. [Google Scholar]
- Bocklisch, T.; Faulkner, J.; Pawlowski, N.; Nichol, A. Rasa: Open Source Language Understanding and Dialogue Management. arXiv 2017, arXiv:1712.05181. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Bunk, T.; Varshneya, D.; Vlasov, V.; Nichol, A. Diet: Lightweight language understanding for dialogueue systems. arXiv 2020, arXiv:2004.09936. [Google Scholar]
- Honnibal, M.; Johnson, M. An Improved Non-monotonic Transition System for Dependency Parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; Association for Computational Linguistics: Stroudsburg, PA, USA, 2015; pp. 1373–1378. [Google Scholar]
- Felbo, B.; Mislove, A.; Søgaard, A.; Rahwan, I.; Lehmann, S. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. arXiv 2017, arXiv:1708.00524. [Google Scholar]
- Akbik, A.; Bergmann, T.; Blythe, D.; Rasul, K.; Schweter, S.; Vollgraf, R. FLAIR: An easy-to-use framework for state-of-the-art NLP. In Proceedings of the NAACL 2019, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 54–59. [Google Scholar]
- Wu, L.; Petroni, F.; Josifoski, M.; Riedel, S.; Zettlemoyer, L. Zero-shot Entity Linking with Dense Entity Retrieval. arXiv 2019, arXiv:1911.03814. [Google Scholar]
- Amir Bhochhibhoya, M. Exploring the relationships of physical activity, emotional intelligence, and mental health among college students. Am. J. Health Stud. 2014, 29. [Google Scholar] [CrossRef]
- Emmons, R.A.; Mishra, A. Why gratitude enhances well-being: What we know, what we need to know. In Designing Positive Psychology: Taking Stock and Moving Forward; Oxford University Press: Oxford, UK, 2011; pp. 248–262. [Google Scholar]
- Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 2008, 4, 1–32. [Google Scholar] [CrossRef]
- Kurt, S.; Osueke, K.K. The Effects of Color on the Moods of College Students. SAGE Open 2014, 4, 215824401452542. [Google Scholar] [CrossRef]
- Elliot, A.J. Color and psychological functioning: A review of theoretical and empirical work. Front. Psychol. 2015, 6, 368. [Google Scholar] [CrossRef] [Green Version]
- Briki, W.; Majed, L. Adaptive Effects of Seeing Green Environment on Psychophysiological Parameters When Walking or Running. Front. Psychol. 2019, 10, 252. [Google Scholar] [CrossRef]
- van Rossum, G. Python Tutorial; Technical Report CS-R9526; Centrum voor Wiskunde en Informatica (CWI): Amsterdam, The Netherlands, 1995. [Google Scholar]
- Flanagan, D. JavaScript: The Definitive Guide; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2006. [Google Scholar]
- Grinberg, M. Flask Web Development: Developing Web Applications with Python; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018. [Google Scholar]
- Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2. [Google Scholar]
- Moore, B. Do You Know a Bunji from a Boorie? In the Conversation; Australian National University: Canberra, ACT, Australia, 2016. [Google Scholar]
Primary Construct | Description |
---|---|
Anatomy of engagement | Derives structure from typical conversation that a mental health practitioner would have with patients. |
Emotion detection and sentiment analysis | Discern an individual’s emotional disposition from his/her speech, based on either three emotions (positive, negative, and neutral) or eight emotions (anger, fear, sadness, disgust, surprise, anticipation, trust, and joy). |
Mood transition tracking | Evaluate and monitor the user’s mood through the use of specialist tools such as PHQ2 and PHQ9. Derive an evidence-based understanding of the transition of a user through moods. |
Mood aggregation and reporting | Summarise and synthesise mood scores and all emotion expressions with intensity scores across multiple granularities, daily, weekly, monthly, and yearly. |
Activity bank | Provide a bank of common activities that can be used to personalise a user’s experience toward becoming active. Will also provide a base from which the community can be built looking into which activities will typically improve mood. |
Personalised experiences | Use evaluation-based methods to understand the mood of a user following the completion of an activity, i.e., how did participating in an activity make the user feel. |
Positive reinforcements | Contribute towards recurrent emotion support through inspirations drawn from a compilation of quotations, imagery, inspirational, and emotional journeys. |
Third-party intervention | Be cognizant of indications of self-harm by monitoring conversational cues and direct the users to formal healthcare services and support. |
Users with at Least 2 Feelings Checks and PHQ2 | Pre-Usage | Post-Usage |
---|---|---|
Number of users (N) | 34 | 34 |
Mean mood score | ||
Median mood score | ||
Shapiro–Wilk statistic (p-value) | ||
Mann–Whitney U (p-value) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathnayaka, P.; Mills, N.; Burnett, D.; De Silva, D.; Alahakoon, D.; Gray, R. A Mental Health Chatbot with Cognitive Skills for Personalised Behavioural Activation and Remote Health Monitoring. Sensors 2022, 22, 3653. https://doi.org/10.3390/s22103653
Rathnayaka P, Mills N, Burnett D, De Silva D, Alahakoon D, Gray R. A Mental Health Chatbot with Cognitive Skills for Personalised Behavioural Activation and Remote Health Monitoring. Sensors. 2022; 22(10):3653. https://doi.org/10.3390/s22103653
Chicago/Turabian StyleRathnayaka, Prabod, Nishan Mills, Donna Burnett, Daswin De Silva, Damminda Alahakoon, and Richard Gray. 2022. "A Mental Health Chatbot with Cognitive Skills for Personalised Behavioural Activation and Remote Health Monitoring" Sensors 22, no. 10: 3653. https://doi.org/10.3390/s22103653
APA StyleRathnayaka, P., Mills, N., Burnett, D., De Silva, D., Alahakoon, D., & Gray, R. (2022). A Mental Health Chatbot with Cognitive Skills for Personalised Behavioural Activation and Remote Health Monitoring. Sensors, 22(10), 3653. https://doi.org/10.3390/s22103653